"SAFT
8 Simiple’ASCII Pile Transfer system
User and Implementation Documentation
Version 1.2
“Siiie 1, 1081

mrtLFinkUC/L‘BL
‘s Léringe, QZ
Fiits ‘Nilsson, KI

Addresses to the authors:

Robert L. Fink. .

University of California

Lawrence Berkeley Laboratory
Berkely, CA 94720 USA

(Guest researcher at QZ 1980/1981)
Orjan Leringe

Stockholm University Computing Centre, QZ
Fack

8-104 50 Stockholm, Sweden

Hans Nilsson)
Systemgruppen

Karolinska institutet

Box 60400

S-104 01 Stockholm, Sweden

Textproduction with TEX at QZ]

Table Of Contents

1. INTRODUCTION TO SAFT
1.1 Overview
1.2 Why yet another protocol?
1.3 SAFT, as protocols go
1.4 Advantages of SAFT
1.5 ASCII and ISO character code

2. SAFT FOR THE USER
2.1 Overview of SAFT from the users point of view
2.1.1 SAFT as a program
2.1.2 The ways SAFT may vary
2.1.3 Interactive startup of SAFT

2.2 Startup menus
2.2.1 Basic menus
2.2.2 Terminal mode menu
2.2.3 Menu choices

2.3 Terminal mode

2.4 File structure
2.4.1 Text mode
2.4.2 Byte mode

2.5 Timing options

2.6 Transfer operation
2.6.1 Transfer startup
2.6.2 Display .of transfer status
2.6.3 Diagnostic termination messages
2.6.4 Termination of transfers

2.7 Example of SAFT usage

3. SAFT FOR THE IMPLEMENTOR

3.1 Overview of SAFT from the implementors point of view
3.1.1 Ways to implement SAFT
3.1.2 Use of menu format
3.1.3 Use of diagnostic termination messages
3.1.4 Display of transfer status
3.2 Design philosophy
3.2.1 Transparency
3.2.2 Symmetry
3.3 Message structure
3.3.1 Basic format

3.3.2 Control messages

3.3.3 Data messages

3.3.4 Checksum

3.3.5 Data message retransmission

3.3.6 Echo suppression during the formal protocol
3.4 File structure

3.4.1 Text mode

3.4.2 Byte mode
3.5 Examples of protocol

3.5.1 Message flow example

3.5.2 Examples of transfers

APPENDIX A ISO International Reference 7-bit coded character set

1. INTRODUCTION TO SAFT

1.1 Overview

SAFT is a system for the transfer of text and simple byte files between smart
(i.e. computer controlled) terminals and shared multi-user computer systems. The
word SAFT means Simple ASCII File Transfer. The entire design of the SAFT
protocol and user interface is intended to allow the use of asynchronous ASCII
serial communication lines for the transfer of simple text and byte binary files.
These lines are often called V.24 or EIA RS232 lines, and are the lines used to
interconnect many interactive terminals and computer ports.

The SAF'T system includes both the formal SAF T protocol, for communicating
with another SAFT system, and a recommended SAFT human user interactive
dialogue, for the user to tell the SAFT system what to do. SAFT is the name
given to both the techniques and the programs that implement these techniques.

Hopefully you, as a user of SAFT, will be able to find a SAFT program you
might use so that any two smart terminals or computer systems can transfer files
between themselves. The entire concept of SAFT is based on the desire to have
this wide spread availability and use possible. SAFT accomplishes this through
the use of terminal communication lines in the simplest way possible, and by the
use of human interaction to invoke, specify and execute the SAFT file transfer
desired.

In the remainder of this manual SAFT is described from two points of view,
that of the user and that of the implementor. The implementor is the person(s)
that will implement a SAFT system for a particular machine environment. The
user is the actual person hoping to transfer a file between two computer systems.

The user information specified here must not be construed to be all that is
needed to understand how to use SAFT to transfer files of data between two
systems. Systems of different types (software or hardware) vary greatly and it is
the flexibility of the SAFT system specification, in the area of different system
environments, that is the greatest strength and merit of SAFT. Thus the methods
of using SAFT may also vary quite widely.

It is assumed that the user is familiar with each of the two systems being used
for the SAFT transfer. It is the user’s responsibility to enter each system (i.e.
login), invoke (i.e. cause to be executed) the SAF'T program and specify, for that
system environment, the SAFT operation to be performed. In this light the user
documentation is oriented towards the description of sample typical environments.

The implementors information is primarily to describe the formal part of the
SAFT system, the SAFT protocol. Much more than this is needed by an im-
plementor in practice. In particular, the hosting system environment and a
selected user interface for SAF'T are obviously intimate parts of the SAFT im-

plementation also.

1.2 Why yet another protocol?

There is a need for simple transferring of character data between dissimilar
machines that only have ASCII asynchronous serial communication interfaces to
communicate with. Any protocol used for this purpose must have the following
characteristics:

e Must be able to move lines of character text between machines that may have
different character set and line format standards.

o Must operate as transparently as possible to avoid the possible sensitivity that
computer front ends, data communication networks, terminal concentrators
and exchanges etc. might have.

e Must reasonably guarantee reliable data delivery without high overhead or
complexity.

e Must be as simple to implement as possible to-allow its implementation on a
minimal ‘smart terminal’.

o Must not be proprietary to any given vendor, system or environment.

e Must provide flow control to prevent overloading the communicating systems.

e Must be symmetric in operation so that any two implementations can ‘talk’
with each other.

The above set of requirements seemed able to be best met by the creation of
a new protocol. Ideas from many different protocols were integrated and much
‘collective’ experience went into the creation of SAFT. Also it was feit that if the
requirements for simplicity were to be taken seriously that the proof would be in
how easy the (or any) new protocol would be to implement.

In fact, the first implementations of the protocol were developed in BASIC for
three different system environments within a few days. The second implementa-
tion was done by another person with no previous familiarity with communica-
tions protocols. It was completed in a few days. This version was in SIMULA and
has been extended to work on two other systems of different type.

As to how well these first versions worked, the person who had implemented
the first version in BASIC simply ‘tried’ the SIMULA version, without any help
~ from its author, and the first transfer of a file was successful.

1.3 SAF'T, as protocols go

It must be stated that it is not believed that SAF'T is the answer to all com-
munications problems. In fact it is a good deal less capable than many of the
currently ‘serious’ protocols, such as HDLC, SDLC, DDCMP, etec. SAFT had

(3

some rather specific goals to meet and it hopefully meets them, but it does have
some drawbacks. At least a few of them are detailed below. To fully understand
these drawbacks the user may need to read more information in this document
first.

¢ SAFT does not use the communication line efficiently due to its requirements
for transparency. In fact, a file transfer with SAFT may only use the com-
munication line between 20 and 30 percent of its theoretic capacity. This
‘high overhead cost’ has been acceptable, in fact necessary, in order to keep
the protocol simple and transparent.

e Only simple ‘network ISO code’ character mapping is supported due to the
differences between systems. A simple byte binary mode is offerred to partially
solve more complex requirements.

o Binary data movement is only supported in the most trivial 8-bit form. This
is again due to wide differences between systems and the need to keep things
simple. Requirements for more complex forms of transfer will need host
specific utilities to package the data in the ‘local’ byte format if one must use
SAFT to transfer them.

e There is not a perfect guarantee of reliable message delivery as the SAFT
checksum approach only protects the data field. However, it is easy to imple-
ment on simple machines with little effort. Thus there is the theoretic pos-
sibility of having a bad message escape error detection. Most existing direct
or dial-up ASCII interfacing is done in a totally non-checked or protected
environment; this does not seem to have caused excessive problems with bad
data. Most local direct lines, or those routed through X.25 PAD-s, are very
reliable and not at all likely to suffer from ‘reliability’ problems.

o The recovery, i.e. retransmission, of bad data is restricted to data messages
that have had their “=+” header correctly received. This greatly simplifies
protocol logic as the correct recovery of all messages would entail very complex
state and timing rules that SAFT wishes to avoid for the sake of simplicity.
The assumption here is that the things most likely to fail are data messages
as they are 42 characters longer than control messages (which are only 2).

e SAFT may appear somewhat clumsy or dirty to use in some system environ-
ments and is definitely not suited, in the general case, for use by ‘automata’
programs (i.e. non human operated). SAFT is intended for use in so many
different systems that it relies on the human user to deal with differences and
possible inconsistencies between systems. Some help in this area has been
given by the specification of ‘recommended’ (i.e. not mandatory) menu for-
mats for use by the user in starting up SAFT transfers. However, the use of
these menu formats is not recommended for ‘automata’ use, in the general
case, although it is quite possible to do so in specific cases.

7

1.4 Advantages of SAF'T

The protocol developed to meet all of the above requirements is called SAFT
for Simple ASCI File Transfer. The use of the word ASCII is to represent the
basic message structure as being encoded in ASCII on an ASCII line, not because
ASCII characters are being transmitted as data in the messages.

Each byte or character of data transferred by SAFT is encoded as two hexa-
decimally represented (hex doublet) characters using ASCII characters 0 through
9 and A through F to represent each 4-bit hexadecimal value. This results in there
being absolutely no data sensitivity of the message to any switches, networks,
nodes, frontends or otherwise that the message may be passed through on its
way from source to destination (sender to receiver). This means that almost any
way of getting a terminal to computer path for timesharing use will provide an
acceptable path for SAFT.

SAFT has been implemented in the required symmetric fashion that allows any
two implementations to work together. Thus having two terminal ports for access
to two different big machines will provide a method to send files between the
machines with SAF'T.

SAFT will detect almost all failures, partially due to the use of a checksum and
partially due to the use of fixed format characters in front of each message and
within the hexadecimal doublet characters. Though theoretically possible, it is
extremely unlikely that bad data will be transferred undetected.

The interactive nature of the protocol to startup SAFT provides many possible
parameters or features for the use of SAF'T, but does not complicate the automatic
part of SAFT. This greatly helps the simplicity requirements for SAFT.

1.5 ASCII and ISO character code

It should be noted that the use of the word ASCII to define characters in the
"SAFT message protocol, or to refer to serial communication ports, is entirely for
historical reasons. Those characters used by SAFT in the basic message protocol
(i.e. 0 through 9, A through F, Zand = + - ? x) are the same in ASCII or ISO
code. ISO code refers to the International Reference 7-bit coded character set
as defined in ISO 646-1973 (E). It is more important to refer to ISO code when
~ defining character mapping in SAFT text mode, as described in sections 2.4.1 and
-3.4.1. APPENDIX A includes the table for ISO code.

2. SAFT FOR THE USER

2.1 Overview of SAFT from the users point of view

2.1.1 SAFT as a program

SAFT is the name of the system as well as the definition of the actual line
protocol (i.e. defined rules of communication). It is hoped that in all implementa-
tions of SAF'T that the program to execute the SAFT system will be called SAFT
as well. SAFT is fully intended for interactive use on interactive communication
lines with computers capable of interactive processing. What this means in prac-
tice is that SAFT is an interactive program that you call into operation from
your terminal. Then you will interactively specify to SAFT what operation it
is to perform. Finally, SAFT will carry out the operation of transferring data
by utilizing the interactive communication line between your terminal and the
remote computing facility. o

In actual practice there are two SAF'T programs communicating with each other
to effect the transfer of data between any two systems. It is the responsibility of
the user to startup both of the communicating SAFT programs. One of the SAFT"
programs will typically be in your ‘smart’ (intelligent) terminal and the other in
the remote computer facility you are trying to transfer files of data with. This
‘inconvenience’ of having to manually startup both SAFT programs is due to the
‘use of interactive communications lines and the wide and diverse nature of all
the different systems that may implement SAFT. In fact, the interactive natute
of the entire SAFT system actually means that SAFT programs are operating
as interactive, or timesharing programs in both machines (i.e. terminal and
computer).

2.1.2 The ways SAFT may vary

As has been stated previously, SAFT is intended for use in a wide variety ‘of
systems (both hardware and software). This has created a need for great flexibility
and simplicity in the SAFT system design. The result has been to place the least
possible formal definitions within SAFT and to allow very flexible methods for
the user interface to SAFT. This has been done by the use of interactive startup
procedures.

SAFT is expected to be implemented in an interactive programming environ-
ment, in each system, to allow access to the ASCII asynchronous communications
lines and to provide interactive procedures for the startup of SAFT. Thus it is

"

very difficult to say what SAFT will look like in every different case. One can
only generalize.

Some systems may have just one communication port or line available for use by

- the interactive SAF'T program. Other systems may provide two. This means that
in the single line case human interaction will take place on the same line that is
used for the SAF'T formal communication with another SAFT. On systems having
two ports for a SAFT program, the user dialogue with SAF'T will take place on
one of the lines and the formal communication on the other. It is also possible
that the user will be offered the choice of one or two port mode of operation, thus
allowing convenient local or remote use of SAFT.

Some versions of SAFT may wish to provide all possible SAFT services while
other ‘quick and dirty’ implementations may only provide a single service (e.g.
transfer in one mode and direction only). The quick and dirty SAFT may provide
no human interaction at all, just the formal communication with another SAFT
to transfer a file. While, on the other hand, the full service SAFT may have an
elaborate menu dialogue with the user before SAF'T transfer actually starts.

Some implementations of SAF'T may wish to totally automate the entire process

" of selecting a remote system, invoking the remote SAFT and specifying, to the

~ remote SAFT, the desired operation. This type of implementation will probably

-“not be very general, thus allowing access only to specific remote systems, to allow
the automatic SAF'T program to know all the ‘quirks and peculiarities’ of the
given remote system. Nonetheless, this type of SAFT, as others, may yet appear
entirely different to a user even though the desired result is still a simple SAFT
file transfer.

Hopefully by now the point is clear; there is little ability to specify ‘the’ way

iz SAFT will appear to the user. However, typical recommended scenarios are
included in the following sections that will go far in helping the user to understand
the concepts of SAF'T operation, and how it might appear in different systems.

2.1.3 Interactive startup of SAFT

The startup operation for SAFT, and examples of its use, are given in the
following sections of this chapter. To understand these procedures it is important
for the user to understand a typical operating environment. This would most
typically be an interactive smart computer controlled terminal or word processor.
The smart terminal usually has a terminal, meaning a keyboard with an output
device like a printer or CRT, to provide interactive control of the entire smart
terminal. Also, there is some local file storage such as floppy disc or cassette.
Certainly, at least, the smart terminal will have a large internal memory if not
external local storage. Finally, the typical smart terminal has an interactive
communication line to allow it to connect elsewhere. This ‘line’ must be capable
of asynchronous ASCII operation in & full duplex mode to be useable by SAFT.

The smart terminal user will invoke (i.e. cause to be executed) a SAFT program

4N

on the smart terminal. The first mode of operation for the smart terminal SAFT
is to pretend to be a remote ‘dumb’ interactive terminal to some remote computer.
Thus the user may select the remote computer, login to it and invoke the SAFT
program in the remote computer. At this point the smart terminal user is actually
talking to the remote computer SAFT program, even though the smart terminal
SAFT program is ‘helping’ in this by pretending to be a dumb terminal.

The user selects the desired option in the remote computer SAFT program, e.g.
receive a text file, and typically specifies a file for the remote computer to use for
the SAFT transfer. At this point the user tells the local smart terminal SAFT
program to stop being dumb. Now the user will be interacting with the smart
terminal SAFT to tell it the desired option, e.g. send a text file, and typically
a file for the smart terminal to use for the SAFT transfer. From this point
the smart terminal and remote computer SAFT programs will be communicating
themselves, transferring the specified file of data in the selected direction. At the
conclusion of the transfer, the typical remote computer SAFT will return control
to its local time sharing system, and the typical smart terminal SAFT will once
again pretend to be a dumb terminal to the remote computer. This will allow
the user to perform what is necessary in the remote computer, such as checking
the status of the file transferred, or at least logging off of the remote computer.
When the user is done with his/her remote computer activities the smart terminal
SAFT will be told, by the user, to return to a normal smart terminal mode.

It must be appreciated that the foregoing is only a very general description of
a possible SAFT operation. Not all SAFT programs will emulate (i.e. pretend to
be) dumb terminals, not all smart terminals will have a separate communication
line from the local control terminal and communication will not always be between
a local smart terminal and a remote large computer. Nonetheless, the concep(cnal
operation of SAFT is always the same: :

. select and enter the first system

. invoke the SAFT program on the first system

. select operation in the first SAF'T

. select and enter the second system

. invoke the SAFT program on the second system

. select operation in the second SAFT

. allow the transfer between the two SAFT programs to take place
. return to normal operation in both systems

00 3 O Ut i W N =

The necessarily vague parts of the above general conceptual model are related to
specific hardware and system software features that differ widely between systems.

11

2.2 Startup menus

2.2.1 Basic menus

It is recommended to implementors that they follow the menu specifications
.given in this section, thus allowing the user to see as standard a SAFT user
interface as possible. At this point no distinction is made between one and two
port SAFT programs, or whether local or remote. How the user selects a system
and invokes the SAFT program is not specified here, nor can it be, and is not
important to the understanding of menus. However done, once the user has
accessed the desired system with an interactive terminal and the SAF'T program
has been invoked, it is the intention that the user will see the following welcome
message and primary menu:

This is system name SAFT

1. Help

2. Send text file from system name

3. Receive text file into system name
4. Other commands

5. Exit from SAFT

Enter choice number:

The above menu is called the primary menu. The system name is a descriptive
title identifying the system hardware and/or software, and possibly the given
site. If “Other commands” is requested (i.e. “4”), the following secondary menu
is given: ‘

Timing options

Send byte file from system name
Receive byte file into system name
Other commands

Exit from menu

E‘.nter choice number:

Again, the above menu is called the secondary menu. If “Other commands” is
requested from this menu (i.e. “4”), the first of several optional menus is given.
If there is none the following message will be given:

No other commands

m.bw:ou

The optional menu format is as follows:

optional command
optional command
optional command
Other commands
Exit from menu
Enter choice number:

meNH

192

Subsequent optional menus look the same as the one above. The same “No
other commands” message will be given in response to “Other commands” re-
quests that have no other menus following.

2.2.2 Terminal mode menu

The general description of an interactive startup of SAFT, given in section
2.1.3, describes an implementation for a smart terminal with two communication
ports. One is for the local control console (terminal if you will) and the other for
remote communication. In this environment it may be desirable for the SAFT
program to pretend to be a normal interactive (‘dumb’) terminal to the remote
system the user is going to invoke SAFT on. This mode is called terminal mode
and may also be known as virtual or pseudo terminal mode. If terminal mode is
to be supported the SAFT primary menu is expanded to provide the ability to
select terminal mode whenever it may be convenient. This terminal mode form
of the primary menu looks like:

This is system name SAFT
Terminal mode
Help
Send text file from system name
Receive text file into system name
. Other commands
. Exit from SAFT
Enter choice number:

oW N O

If terminal mode is selected the following message will be given:
You are in terminal mode, enter chars to stop

Where chars is a totally implementation dependent choice of a character se-
quence that SAFT terminal mode will not pass on to the remote system, but will
cause & return to the SAFT primary menu on the local system.

It is possible that the user’s non choice of “Terminal mode”, at startup, will
cause a reversion to single port use. This is the implementor’s choice, though the
user must be clearly notified if this has happened.

2.2.3 Menu choices

Choices from menus are single number entries, from the menu, followed by a
carriage return (or other local system line delimiter). Illegal entries should yield
the response:

Bad choice, try again:

The user then simply tries again.

. e “Help” will give simple operational information about the use of the given
* version of SAFT. If more information is available the help information should
describe how to access it.

e “Send...” and “Receive...
output as follows:

‘ Enter filename:
The user shall then enter a local filename, followed by a carriage return,

specifying the file to SAFT send or receive operation is to take place on. There
is no standard for these filenames as they are totally local system dependent.
e “Other commands” choices give the next menu as described in the basic menus
section, 2.2.1 above.
e “Exit from SAFT” will cause a return to the local system that SAFT is
operating under. A goodbye message will be given as follows:
Goodbye from system name SAFT

”»

choices will cause a request for filename to be

e “Exit from menu” will return to the primary SAFT menu.

" o “Send text file from system name” will cause a text file to be transmitted
from the specified file on the local system. A text file is one that is in a simple
“ ¢ line format that is described later in more detail.

e “Receive text file into system name” will cause a text file to be received
into the specified file on the local system. A text file is one that is in a simple
line format that is described later in more detail.

e “Send byte file from system name” will cause a bytefile to be transmitted
from the specified file on the local system. A byte file is one that is in a simple
-~ binary structure that is described later in more detail.

@ “Receive byte file into system name” will cause a byte file to be received
" into the specified file on the local system. A byte file is'one that is in a simple
" binary format that is described later in more detail. " -

7' o “Timing options” selects two slowdown options for speclﬁc use in ways
described later in more detail.

“2.3 Terminal mode

" Terminal mode, as has been described earlier, simply allows the SAF'T program
to pretend to be an interactive terminal to the remote system. All this means is
that SAFT will pass on all characters received from the local terminal’s keyboard
to the second communication line output port, and that all characters received on
the second communication line input port will be output on the local terminal’s
‘output device (i.e. CRT or printer). This is desirable due to the human interactive
startup procedures for SAFT programs. Thus, an ideal implementation of a smart
terminal SAFT program will let the user switch into terminal mode to provide a
method for the user to startup the remote computer SAFT program. '

< 4

At the conclusion of a SAFT transfer it is also desirable to provide the user,
once again, with terminal mode to allow any final interaction with the remote
computer. For example a user might want to look at or use a file he/she has
Jjust transmitted to the remote computer (from the smart terminal). Also a logoff
(i.e. telling the system that the user is going away) may be desired on the remote
computer system. All these options are possible with the use of terminal mode
and the SAFT program in the smart terminal will hopefully be able to supply
this feature.

It will not always be possible to have a terminal mode for use with SAFT as
not all smart terminals will have a communication line separate from that used
for the local console. Also, it may be the case that the two systems needing to
transfer a file between themselves are not a smart terminal and a large computer,
but two large computer systems. In these cases (where there is no terminal mode
available) another approach will be needed. One possible way is to utilize the single
communication line in each computer system for different purposes by manually
switching the equipment connected to the line.

An example of the above suggested manually switched line could be as follows:

1. user connects a regular interactive terminal to computer system 1 and pro-
ceeds to:
a. login
b. invoke SAFT ' .
c. interact with menu to specify SAFT options

2. user disconnects terminal from SAFT 1

3. user connects terminal to computer system 2 and performs. steps &, b,and ¢
as in 1. above

4. user quickly interconnects SAFT 1 commumcatlon line to SAFT 2 com-
munication hne, with terminal remaining in parallel on line to observe transfer

5. user reconnects to each computer system at end of transfer to accomplish
desired tasks in both systems 1 and 2 (i.e. using files, logging off, etc.)

This procedure above may be either very difficult or very simple depending
on the knowledge and assistance a user has of the given systems and their com-
munications peculiarities. Also it helps to have a manual switch box to simplify
all the physical switching required.

The “Timing options”, selectable by menu, have a role in this type of opem-
tion as an added delay is prov1ded for the SAFT program to start the transfer,
thus allowing the physical line switching to take place first. .

It is planned to have a separate operational technique description to provide
assistance for this mode of operation. A recommendation for the switch box would
also be provided. However, this information is considered an adjunct to SAFT
not an integral part of it. :

<

2.4 File structure

File structure for any computer system can be a very complex subject. SAFT
cannot provide a general solution for transferring all possible file types between all
possible computer types. Instead SAF'T assumes two simple structures are able to
satisfy most typical requirements. These two structures are text and byte mode.

" 2.4.1 Text mode

Text files are usually stored as printable lines in any given machine. There are
no standards for the internal representations of the lines, or even of the character
sets themselves. IBM can have blocked EBCDIC text files, CD CYBER systems
use 6-bit Display Code with zero filled 60-bit words to represent lines while DEC
machines use several different formats for storing both 6-bit and 7-bit forms of
characters.

SAFT takes the simple view that each unique version of SAFT for a specific
machme type must deal in a private, and hidden from the outside point of view,

wnth lines and character sets. SAFT has the concept of the ‘network virtual
line’ ‘with characters represented in the ISO International Reference 7-bit coded
cha.racter set (ISO code).

“The network virtual line is a line of up to any size terminated with a CR LF
(carna.ge-return and line-feed). If a line is too long to be stored in one local line
structure, then it is up to the receiving SAFT to break it up, though hopefully
this will not be the typical case. The transmitting SAFT must take the local
;epresentatlon of a line and make a network v1rtual hne, terminated by CR LF, of
it. “This mcluaes mapping “the local character set into’ riéfwork ISO code. Similarly
iver “must map the recelved characters to a. localiy accepted cha.racter

Mappmg of a local character set into ISO code should be done in accord-
ance with ISO 646-1973 (E). National versions (e.g. Sweden s SIS 63 61 27) or
apphcatxon-onented versions may be used when necessary. However, it should be
noted that the success of a SAFT ‘text mode’ transfer w111‘be determined by the
agreéments for character mapping between sender a.nd recexver

2.4.2 Byte mode o

Byte files are stored in an unfortunately large number of ways, even on the
same machine. SAFT makes no attempt to bring order to‘this chaos and takes
the simple view that there is at least some simple format for 8-bit binary byte
storage on each machine. SAFT byte transfers perform no special formatting
for word values, or for sub file structures that may exist, such as records. Each
implementation of SAFT must decide on the most likely to be useful local form
of 8-bit binary byte storage and support that format.only.:; -

10

Formats beyond this must be handled by external to SAFT processes or ‘pro-
grams that put unusual structures into the byte form supported by SAFT. The
inverse of this is also true for the receiving end of SAFT.

Byte mode will be most useful when two systems of identical file structures want
to exchange data. It is also possible for a ‘third’ system of different file structure to
be utilized as a backup medium, with the transferred files structure being ignored,
as the proper structure of the data will be preserved upon subsequent retrieval.

There is no internal structure for the byte data within byte binary mode
messages other than the data itself. The final message of the file will be filled
with a termination character, as described in the implementors chapter.

2.5 Timing options

There are two timing conventions that may be selected for use by SAFT. One
is to provide a 100 milli-sec delay between receipt and start of transmission of
characters. This allows very minimally equipped intelligent terminals to have
time to turn around the use of the line interface internally to themselves." For
example, the ABC-80 will lose characters received within 100 milli-secs of the ﬁ‘s{;
character the ABC-80 has output. e ds

The second timing convention is for a 5 second delay in SAFT before it iﬁsues
its first control message. This allows time for a user to quickly connect his/her
intelligent terminal to the central computer port. This is useful in those cases
when a SAFT implementation only has access to one ASCII communication port
or line. This is typically the case with most big machines and is sometimes the
case with intelligent terminals with' no integral terminal. In these cases the, tl
must connect an mter t1Vé (f‘dumb) terminal to the intelllgent smart")‘te
to startup SAFT, wait’ for its prompt to know that it is going, then dlsconnect
the dumb terminal so 1t may be connected to the large machine port to stf: lip
its SAF'T. v -

Just after the user has started up the large machine SAFT with the delayhﬁ
timing options selected, he/she quickly disconnects the terminal yet again ana
quickly connects the’ sma.rt terminal to the big machine terminal port A]l thls
hopefully before the timer has exhausted.

This scenario may yet change as more expenence is gained with use of SAFT
in these type of environments.

2.6 Transfer operation

2.6.1 Transfer startup

Transfer is initiated “between two SAFT systems by the selection of the ‘é.p-‘

propriate “Send...” or “Receive...” in each SAFT. One SAF'T will always be
started first but the formal SAF ‘T protocol will cause it to wait for the startup
‘ of ‘the other SAFT. Details of this should be noted in the sections on terminal
“mode and timing options above. Once 1mtlated the transfer w111 go to completion,
whether it succeeds or fails.

2 6.2 Display of transfer status

Dunng the transfer the user will be given status of ‘the transfer in one of
two ways. If the local initiating SAF'T has terminal mod_e, or at least a second
communication port, SAFT will present information regarding the transfer (i.e.
_status) while the transfer is taking place. This information is unspecified and
could be the clear text or byte information being sent or received, or it could
be just an occasional message indicating the transfer was progressing. On the
other hand, if there is no local console (i.e. second port with a control terminal),
then all status of the transfer must be gotten from the flow of data between the
two SAFT programs, i.e. the formal message communication. In this case the

“user’s terminal may be connected to eithef direction of flow, it doesn’t matter, as
i meSSages will be seen indicating the continuing operation of the transfer.

2.6.3 Diagnostic termination messages

As an aid to the user, SAFT shall output diagnostic messages at the successful
conclusion of transfers and upon aborting in the case of failures. These diagnostic
“‘mestage w111 be output by each respective SAFT program on its communications

"‘ﬁﬂe”‘ dr ¢ on the contiol cofisole of 4 shdrt terfninalif 6nd exists independently of
‘the SAFT éommunications lime. Typlcally this' woild bé?in smart terminal im-
“plementations where terminal mode-was supportéd aswéll.Either way, however,

“the user will see a diagnostic message as it is necessarf?*for the user to monitor
the communication lines SAFT is using if a local console‘is not available for ob-
‘‘gerving the transfer. These diagnostic messages shoukfvgreatly aid the user in

“anderstanding the status of the SAFT operation.

Examples of these messages are given below, but- are more fully presented in
the examples of transfers section of this document. Com{uqnts in parenthesis are
descriptions of the message, not part of them. o

Lodr

Send done, n chars, m lines (text ﬁle'ébiﬁﬁe?éd by sender)
Send done, n bytes (byte file completed by sénder)

Receive done, n chars, m lines (text file fully received)
Receive done, n bytes (byte file completely rece1ved)
Receiver aborted sender possible reason .

Sender aborted by receiver (in response to above situation)
Sender aborted receiver possible reason }";,_éﬁ;

0N AL
18

Recelver sbort.ed ‘by sehdér (m response to above sztuat:zon)

The underlying concept for the format of these messages is that it will a.lwa,ys
be clear to the user, no.matter wlnch message is seen, what has happened and
who initiated the action in case of an error.

The send and receive done messages must only be issued when the entu-e send
or receive is complete. For send, this means that the final acknowledging SAFT
control message has been received. For receive, it means that the received file has
been completely stored away and the final SAFT control message has been sent.

The character, and line counts for text files, and the byte count for byte files,
are important information and should be given if at all possible. Line count-is
the number of text lines sent and received, not the number of SAFT data lifiés.
Character and byte counts shall not include “z”? ﬁll or CR LF line boundanes’ in
the case of text files.

2.6.4 Termination of transfers P O f‘;se,:i.:.

- : SN SR et DT
Upon completion of SAFT transfers, each SAFT shall either exit. back, ta.the
host local system or to the primary menu if it supports terminal mogie -Ip the
case of a full exit from SAFT, the goodbye message will be given as described in
the menu choice section, 2.2.3.

2.7 Example of SAFT usage

The following . example will be useful in ynderstanding how a user. mtega,gts
with both SAFT programs:ta eﬁ'ect - transfer. ; The example given.is for » smart
terminal SAFT that supports, termmal ‘mode and.a remote computer SAFT that
does not. This is-a iquite ideal case of SAFT use in the human driven, style.
Manually svmched cgses of use wﬂl be more- complex operationally, a.ncL some
possible automata’ machine dnven forms of use-hopefully less complex.. . .,

For the example.operational notes are enclosed in parenthesis. The v1ew is. that
of a user interacting with a console of a smart. terminal with outpnt fromfthe
computer in upper;case apd human input in lower case.,:

(user starts Uff'the smart termmal)
WELCOME TO ST"SYS

*run progr_am saﬁ?

THIS IS ST-SYS SAFT

TERMINAL MDDE

SEND TEXT FILE FROM ST-SYS
RECEIVE TEXT FILE INTO ST-SYS
OTHER COMMANDS

> W= O

5. EXIT FROM SAFT
ENTER CHOICE NUMBER:
0 (user selects terminal mode)
YOU ARE IN TERMINAL MODE, TYPE CTRL- S TO STOP
(at this point the user may have to contend with -
a terminal switch, frontend or other networking
function to reach the remote computer)
WELCOME TO DEC-10 SYSTEM

PLEASE LOGIN:username

ENTER PASSWORD:password

YOU ARE NOW LOGGED IN

(the remote computer will prompt with .)

.r saft

THIS IS DEC-10 SAFT

HELP

SEND TEXT FILE FROM- DEC-10

RECEIVE TEXT FILE INTO DEC-10

OTHER COMMANDS

EXIT FROM SAFT

ENTER CHOICE NUMBER:

3 (user wants to transfer a file to the DEC-10)
ENTER FILENAME:revfil.txt

=+ (this is part of the internal SAF'T protocol)
ctrl-s (remember, this escapes from terminal mode)
THIS IS ST-SYS SAFT

TERMINAL MODE

HELP

SEND TEXT FILE FROM ST-SYS

RECEIVE TEXT FILE INTO ST-SYS

OTHER COMMANDS

EXIT FROM SAFT

ENTER CHOICE NUMBER:

2 (user wants to transfer a file from the st-sys)
ENTER FILENAME:file:text-data

TRANSFER STARTING

SEND DONE, 5280 CHARS, 1000 LINES

THIS IS ST-SYS SAFT

TERMINAL MODE

HELP

SEND TEXT FILE FROM ST-SYS

RECEIVE TEXT FILE INTO ST-SYS

OTHER COMMANDS

EXIT FROM SAFT

ENTER CHOICE NUMBER:

U\th\)HO mhwl\)’-‘

Ul W o

9N

0 (user selects terminal mode again)

(user now wants to look at file on DEC-10) -

YOU ARE IN TERMINAL MODE, TYPE CTRL-S TO STOP

ctrl-c ctrl-c (user is just seeing if DEC—lO is there)
.sos reviil.txt

EDIT RCVFIL.TXT-

(user looks at file received)

eq (user leaves editor)

.kjob (user logs off DEC-10)

YOU ARE LOGGED OFF DEC-10

ctrl-s (user leave terminal mode for the last time)

THIS IS ST-SYS SAFT

TERMINAL MODE

HELP

SEND TEXT FILE FROM ST-SYS

RECEIVE TEXT FILE ‘INTO ST—SYS

OTHER COMMANDS . =

EXIT FROM SAFT SRR

ENTER CHOICE NUMBER: I

5 (user chooses to exit saft)

GOODBYE FROM ST-SYS-X SAFT

* (now user is back in original state in smart terminal)

U\t#wMHO

3. SAFT FOR: THE IMPLEMENTOR

3 1 Ovemew of SAFT fmm tbe lmplementora pomt of wew c
Thls chapter specxﬁes those parts of SAFT whlch are: ma.ndatory for an im-
::plementation to be considered a. SAFT system.- But first, several of the points
+ from chapter two are more fully explained before the details of the formal protocol
“ate presented.- As mentioned in the chapter.on SAFT. for the user, SAF'T is the
.pame of-a,system, which includes a formal protocol and a-user interface. The
-program ;written to implement SAFT. shall also be, known -as SAFT The user
..interface of SAFT is ent;zrely system dependent ta.kmg into. account the goals of
:: the speclﬂe desxgn ot riarign; a

AR VIS 2 SR INETST SR NP UEEPILPEEES SRS P TR LA

" “‘31 1'Ways to implement SAFT. ~"™ "'
There are several ways to approach an implementation of SAFT. All of them
require the use of the SAFT formal protocol described in this chapter. However,
there are different approaches possible based on the goals desired. One approach
_is the ‘quick and dirty’ one, to simply get a file of one type transferred in just
.- one direction. For example; to receive a text file. -At-the other extreme is an
;. automata SAFT that can select ‘. Temote system;, login to.it,. invoke .a remote
copy of SAF'T in that system and interactively converse.withit all automatically.
2:Amd, of;eomrsesall:possible options.of SAFT would.be: ava.ﬂgble- Between these two
i«tather extrerpe examples, both oﬁwhmh are. Qossxbl[e, is the,normal case. There are
+-twa, typical examples .of t,hm nopna.l case:] The first is &eqntral multi-user shared
i u8e computer system Wlth only one coquymcatwn part far, the use of its SAFT
implementation. The. othepma typ;cal single user. SW (e g.. microprocessor
controlled) terminal which has two communication ports for the use of the SAFT
program.

The typical multi-user system-{call*it 4 ‘remote comiputer) will implement the
typlcal basic set of SAFT semces, i.e. send and receive in text and byte mode,
““and the timmg options. ' This" type “of SAFT will’ typi&ally be’ the remote end
“¢f*u conversation with a sinart terminal systein whére 'the user is. All of the
SAFT communications, both formal protocol and usef “titérface, are carried out
on one communication port. Thus the user will be interacting with the remote
computer in a fairly normal way while logging in, invoking SAF'T and interactively
specxfymg the desired SAFT options. Then, for the tra.nsfer, the user relinquishes
.- the communication line to the use of SAFT.

:;-The:typical smart terminal ‘environment w111 xmplemen; f:he basxe set of SAFT
services as.does: the typical remote compuber, i.e. send-and;receive text and byte

files, and the timing optionsi This type'of SAPT will typicdlly be the local end
of a conversation with a remote computer system. The user will be at the local
smart terminal. The user will interact with the smart terminal via a console that
in itself is very much like a typical interactive terminal, i.e. it has a keyboard and
an output device (CRT or printer). The interactive setup of the remote computer
SAFT will take place through-this cansole and the local interactive setup. of the
local SAFT as well. For the actual SAFT file transfer the smart terminal will use
another communication.line:than the console.is attached to.. B T

In describing thé two different, and typical, enviromments above it is.not meant
to imply they ‘are'all: .intlusive of possible. uses that SAFT will. be. put. to..:Each
implementor will have fo decide the intended:environment for the'desired: SART.

One example, of -deciding" the intended use envifonment, is: where: two modes
of SAFT operation ‘afé' desifed ‘in’ a:computer sybterh:: One for local use with tw
terminal ports, and the-othér for rémote usé withi ‘ofily one terfainal port {ir-e.
the menu interaction and file transmission occur on the same:terminal port)iAn
implementor could choose to provide these two modes of operation by the use of
either an optional command, or the user’s implicit refusa,l of “Termp,al)node” at
startup, to allow smgle port use instead of two port use.

[T P

3.1. 2 Use of men f‘ormat S supeT
Foenili
Though the meni formats descnbed in the user chapter are not at all a man-
datory part of the SAFT’specxﬁcamon, it is the hope that if the use of an interac-
tive setup is needed thdtthe- irlenits as" described-will be used This: could:greatly
simplify the life of & #s@provane Vievisusainl hos msloy daids o THAZ Jo wqoo
The mplementdf’éh‘&ifd%ﬁr W the el cmbter M dailic abour-vile hedus.
Note that if menu# are'aséd $61°8 s gle“ﬁé?t“ SAPT destgh hat tHe mend iesed
over the single port/ "B d'tiwo port SAFP s iniPlétnented; thier Thie meriug aré'tised
over the console pdf’c ot the %dirdﬂ&’ﬁib“éh‘ﬁn’ﬁbft A opféioné.l camm&ﬁd eefald
be used to allow thé ?e?éctldﬁ of éné’of t%o’ port: mode of‘use A ’Q g

TIOT AJIO0 LN LMD O PR

rer
S

3.1.3 Use of. dimometgrmiuation messages . . -, 3, '
x SV LN K ¥y J“i‘
The dxagnostlc tgmatmq messs,ges arq tg be used in. the same fashlqn Bs, the
menus, optionally,but 1o, be. used if at. all possibl.e Agam, r,efer to th.e user, cg>er
for speclﬁc&tlonoi&l;gsquessages. - e

L‘k).J‘

[EERTeANECTU I FE SO LR SR T

i < ok i LU ey 20 30
3.1.4 D1spIay‘of ﬁ‘aﬁtzsfer status 5 BT i e "f T ETShEEs

There is no recommendatlon for the speclﬁé'format of displaying tra.usfer s‘aa%us
while the transfer:is itiprogress. ‘Of course, the'single port SAFT implementation
need dé-nothing fdr thisias the protocol messages themselves must suffice:for

informing the user of the progress of the transfer. In two.port: SAF'T implemen-
tations, it is desirable to keep the user informed by the use of some display on
the console.

3.2 Design philosophy
Tr ooy) i

I . e

321 Tz‘a.nspa_rénoy‘ P

-+~ SAFT-is intended to-operate’transparently aeross dny or-all communication
. paths typically used for terminal-dccess to & ‘computer-system: Thus a smart or
- intelligént terminal, such as a microproeessur based word'processing system, could
". transfer flles: with & traditional multi-user timesharing machine. ‘As SAFT is also
* ‘gyThrhetric twolargs machines canalse usedt totransfer files between themselves.

More important here, however, is the transparency. All messages are encoded
with a minimal set of ASCII characters.

3.2.2 Symmetry

B0 (O I e . IR L s B g
SAFT is a symmetric protocol to allow a.ny two 1mplementat10ns to transfer
“’files between theinselves. The only real Tequirement that this'] lmposes on the
implementation is the startup. First of all most protocols that arefiot symmetric
come about due“té’*the”differshee’ bétweett who"gives the’ Yommands and who
responds to them. In the casd BFSAP Pihis ihot é‘ﬁ!‘@oﬁfﬁdﬂue"to theTequirement
for simplicity which led to all commands and responSés‘f’of mltlatmg ‘the transfer
s;being-done by the human neemfaSAET ao laesf 3l gatwed 1o

B f fact . typlcal lmplementatlons of SA'F‘T’ ta.k‘é ”i;ommands ﬁ'om the human user
as interactive setupl of th% SFAFT transfgr before ¢the aciual SAFT protocol for
control and data message passing starts. This is poss%le as'all SAFT communica-
tion must be done on an ASCII terminal line and thus this line can be used for the
interaetive setup ag well: This- beggmg gre{atad ein\ keeping-the protocol
simple.-Thus, sincé aﬁp‘fi}' étof dontroLis now-sph ., &-ﬁ‘omthe SAF'T protocol

itself, syrtheétry s’ more ea‘sx.ly achiévea, o

~moE

)\'ﬂi ':.(«

starts up first, and thus issues aii ‘=t prompt 'eh ‘will not be-seen yet by the
other SAF'T as it has yet, to be started. by tne,user. Thus all SAFT startups,
whether for sending or receiving, will issue the “-+” prompt and all SAF'T pro-
grams receiving a proinpt will either start sendlpg q;xa or send another prompt.
Thus symmeétiy is achieved; éither SAFT sy be Started 1 up first and the process
will work.

Deoemnt Ut Wl 9nt sl T wESAESIY Moy o
294

T st T qEirpgt, st gL aernor 0 Sc notgen e wplo
3.3 Messageastmctm~" CLoEd 1o DOT 30 AL a0 TR BT HLTT
I SR SR FIEIE VR I LONS N il .

LT Ay dwns T RS T P

3.3.1 Basic format

When two SAFT programs are in communication with each other, one SAFT
will send a protocol message causing the other SAFT to respond with an ap-
propriate protocol message. During this part of the SAFT transfer any echoing of
characters must be suppressed in both direction. See the section on echo suppress
later in this chapter. '

All SAFT protocol-messages begin with -an- equal sign (=) character.. All
messages end with a carriage. return. All chapacters encountered: (i.e: ;received)
between:the carriage return and: equal- sign are totally.ignored. by-SAET, These
characters:may be:discarded: by. $he receiving SAFT with.ne affect-on' the-SAFT
operation in progess ‘Fhere-are; onlthwsa&wc typesmf masaages, x;antmhand
data. oo oorgessm S messgraes 300 3w BuES LY

3.3.2 Control messages

There are four (4) different control messages and thejr a.}e createdby one
character following the equal sxgn header cha.racter

ROy e TRe
=+ prdmpi; .at, sf.artﬁp, np-pp at any tlme, posxtwe acknowledgement to data
MEessBEES. .., . - 2i oy ST GNP ERETI 9t RH
=- negative aclmwledsemgn& o Gala,messages, SDOTL TOSagE,, . 11 +cums
=? request, for W?WQ%?‘Mf%me ads i madi of em‘ocm"
=/ end of data. file trARAfET. .0 [o: chaemio s o3 Bl deidvr gz 10°

Any character following the legal control charwbm!s £1?) 5/ ig disearded: i'Bhis

allows languages like FORTRAN to. xp‘put‘ ﬁxed sized messages without concern
OBINTI0N G420 PR R Rt Y T GRS Y Y
for how long the message lly 1s.

The use of the ¢5itro] Messsg

Tag Q0T

8 15, ,deﬁ.‘ned By

L3

PR Y U AT T S e

ool el «'e't"-’{' SO s TAN0T 0N

. _DEFINITION OF CONTROL MESSAGES” 1"
Command | Received t r . | by._receiver
=+ start sending data " send an =+’
7 viaw g osendihext dat,ai SR T o8 7 7l e
e R 2 IR E s vl o efuety
=7 s <l jétransmit last data“ g ﬂot deﬁned R
i T oo I ’“méssage ERRREACIN S f ot cooreriee
Ehafs U500 2ifit d‘eﬁii'ed R end of' data ﬁle Lo pemR

T IO TSN IR N] AR T

s

- et

EEFE L6

The ‘not defined’ messages may cause aborts if received.

.7:3:3.3:Data; meSsages Toesd st e CUpimdalut g A

,Any character a.ft,er the 44th cha.racter in the message x,s dlscarded The h field

. Ag forty, (40) characters long and represents twenty (20) S-blt bytes of mformatlon
.whether character or bmary The encoding is in hexadec),mal “doublets with two
-, h characters representing.an &blt value Each h chara.cbe}' can ha.ve the value

0 through 9 and A through Flor z = - = " <8 " e ol

Note that the “A” through “F” and “Z” are upper case only. These values
for h allow it to represent & 4<bit ‘hexadecitnal valuei-The ;“2”: is:to-provide fill
~when terminating the file tra.nsfer, as all data messages are always 44 characters
(excludmg ithe CR) lonig:" A O LRI Viaals R

“The'cc feld i 18 tivo (2) characters long" and represents a smgle 8-b1t checksum
vdlue eneoaed in the saxm hexadeamamoublet format that the data is formatted

L 454 Chegkmum, 7

D

The checksum (cc) is only present, and thus used for, data messages ‘When the
checksum is computed it is the sum of the 20 8-bit values comprising the data
field, before conversion to hexadecimal doublets, modulo 256.. Lo

Note that messages to be filled with “ZZ” characters should elther be uncounted
in the checksum, or added as binary zero values.

As an example of the format described above, the following spp_ng
tttttttttttttttttttt (20 lower case t-sin a ;g;)v; .
i ,%m be forrhatted ihtd the 44 ¢hafsictér st essigé Seriig:
sl ..ww«rm747474%474'}47271747474747#47;@341c

5 5

A,SCH‘va'lue of “gig 7 4 hex, Tl()‘ decmial The last two hex chafacters,
ecksum, e710 ﬁex as the sumn: 'of’}20 &-bit Yalues o‘f‘ 74 hex is 910 hex,
' the’ rightmost 8 bits of Which' are 10 hex” 'To lead Yo’ thé rest of the SAFT
descnptlon, note that the proper ‘receivil of this message"?ﬁiﬂ result o the recelver

séxidmg a.n Uy control message Back to the sender) f -

TS, i R 3

o 335Datamessagerétran@mxssi‘on ST e e

B LTS S e

‘ib

S_J,mple error recovery is done in SAFT by the use pf the "{” control message.
The “=?% :response is only for use in errors detgcted-in the data messages by the
- recgiving-end of a SAF T file. transfer. . Checksum.errors are cauge for a request to

.0

the sender (i.e. “=?”) to retransmit the last data message.-Errorsin the.character
format (i.e. hex doublet) are also cause for retransmission.

There is no requiremeért for'$ATT" filé recéivers to kéép’a cotint of'the fumber
of times a given message is xetransmitted.{e:g8. to eventually sbort.on toe.-many
retransmits). Thus it is possmle that infinite loops can occur if a SAFT transmitter
is generatmg & bid checkEtih or the iné 1s contm‘ually causing data mesagefaults.
This is ot & p{aetlcbi consrde‘l"ahbn, ‘However, asﬁny ‘line that is faulting st*badly
that this night ¢8¢dris‘even méte likelyto tatise’an errdr in a hédder* '(1@’3“‘-”)
or control message, Whieh“Will entirely swp*‘da‘fa flow: These cases aré“left*for

detection by the user on the monitoring terminal, .. St Bl 6
am D VIOD e TRUGE S B R B O L S0

33 6E¢mo supprﬁsslen dumngg tbe fprmal protocpl e v wain d 7*“
e GVE TG D36 FRTEE.IAL SIS0 Lb 0L Pluu T il —.-:_‘ Ry ed

Dunng the formal protocol phase of the SAFT tra.nsf‘et?a:ll eqhomg,mg@ be
suppressed-in the:communications interfacing system for eseh SAFYE. Thigshould
be dene: (i.e«"théiecho suppress):sutomatically: by the. SART; program, if:at all
possible. If it is not able to be done automatically the user must be informedhow
to accomplish this by the documentation of the SAFT implementation.

At the conclusion of the formal protocol (i.e. the actual file transfer) the SAFT
program must enable the echoing again to provide for the subséquent ‘return to
mt,e‘,ra;,ctn‘{g.ulque”by the,.qse;rm_ e

Vit Tt e g i) ot

3.4 lee structurén : clabia
nf

Y
: “*J/J
Tegic a8 bsbbe vo .muedasds st ot
e wie TITRROLHCT 0 v m 1’\ mests Jermrol 543 to slqrasye s eh

3.4.1 Text mode

Nr)-l ‘§< f«x -T] -,:521., .)t ::,“ .»: :..‘..~J..;.-,J‘ ...‘¢~ § 2

w

Text files, on. RSV that has a SAF mplementathn Jmpst have
a well defined nfa%%ﬁgbet\jet:? t}’nléiﬁiocaf> system‘{,haracﬁer ‘it and thé SAFT
character set (i.et IS0 d0ds, See” béctions: 145 ‘aifd 2:4.1) In' particular, all local
system, chqra.ci;ers ;nuqt ve 8. mapping into some charpct.er sequence,] in thp’SAFT
character set. Tha;s 1t sl a} i;orm A}’T ’oo generate 8 text mode messagse with
a character grgat,ar t);p,p }2% a}' he gresence “of.an 111ega1 text chﬁ’facter in
a recelveq, data me%;gg wﬂl Cg;ause a.n a‘ ort z

rt “=’ ”) %y the SAP:"I'“ ﬁle rece;ver
This means that an abortjwm occ?; for ;gharéc s great.er than’ 127‘ although a
correct text format and a correct checksurn was réceived. This is requ‘i‘réd as the
most likely reason for such an error is that text mode was chosen in the receiving
SAFT when byte mode was chosen in the:sending -SAF.T. A.reprodyction of the
ISO International Reference 7-bit coded character set is given in appendix A.
There' inust also be’afwell defined mapping of the 16cal file line striictute into
SAFT. text mode’ lihe Strtture (i:6. “'CR EF). 'If theré is more than oné’line

structure conventiotifn’a Biveri sysbem, it i¥'the fesponsibility-of either the loeal file

BLOOT 25 PR I JE

system, or the user’s file specification to SAF'T, to tell SAFT which file structure is
in use. However it is done, the result must be that text mode files clea.rly delineate
line structure by the presence of the CR LF. If the file needs to represent a CR
followed by a LF, then the sénding SAFT ‘shalt formiat"a CR' NUL LF to avoid
the mxsmterpretatlon of 1t asa lme boundary NP

LS A L s s T e Sl

342Bytemode . ;oo inr LYUORIWIAREAGL AL 95

Byte files are intended to be simple octet (i.e. 8-bit) binary ﬁles of da,ta with
no structure implied other than that of a serial stream of 8-bit values

The SAFT implementation of byte mode transfer must have an appropnate
_ mapping of the machine binary, word and file structure with the SAF T byte binary
"ﬁ'a.nsfer struqture ‘This means two, different t thmgs, One, that a_meaningful
mappin; g must be qhosen, and two,, that a file: senpqm SAI;"T md thengecelved
’Beck, via SAFT, ill result in the same local file. . .
A mea.mngful mapping is one. th&!;j 01 i les. the sztr useful ﬁle from—t,he user
~ point of view, For example, a ngemmachme type may, have several ways of storing
‘p;nary qurmatlon. One way might be. words of the local system, another might
;5 ,l}e &-bit yalue atorage "This. is. most (:ntlca-l to chstmgmsh on ma),chmekwmh word

that are not.a multiple of 8bits... . . . e sy
‘Reproducible files, the second point mentloned above, is qmte 1mportant as it
prevents a file from being transmitted via SAF'T, and later retrieved in a different
form or value. This is not always an easy thing ‘to:acGoniplish, ‘a3 machines with
word sizes that are not multiples of 8-bits may not be able to resolve word values
in the SAF'T byte format.

An issue related to reproducible files is that of word versus byte I'eEl'OdUCIblht}’
This means that a design choice must be made about whether to tra,nemxt the local
‘convenient’ form of byte storage or whether to transmit all bma.ry information
within a word. Afi exainple 6f-fkis would be-on-4 36 bit Word §ite machine where
the choice is between sending 9 bytes constructed from two consecutive 36 bit
words and sending 4'bytes pér: 36 bit Word.-The latterisonly Felevant if there is a
convention that stores 8 bit values in 9 bit quarter word values, with thé& ninth bit
being zero or unused. There is no absolute recommendation made here, ‘though
it must be noted that the full word transmission method is most ﬂexlb}e, though

X

possibly less efficient at times. sozelwl oulLatsds O onoe
ceraa o musdn 7o osaeh sv oo o
3.5 Examples of protocol o mee i
AR SR IS L T G E PTESRRR LI BT e

; >351 Meesageﬂowexample st

What follows is an example of the message ﬂow between two coples of SAFT

0Q

SIS S ARV VIS }3.:"‘.; SRR TR VRN s'v.'.'- ers

EI T I wsHGH Sz
Lo snt Ve oMUE T 4T
:QCCR = ova pewolic!

N
G LRI EELE o
'*hhhhhhhhhhhhhhhhhh.hhhhhhhhhhhhhhhhhhhhhhccCR =
& =+CR
=+hhhhhhhhhhhhhhhhZ2Z277272722222272222222ccCR 25* 2775 wdb
-+CR

saeds e e

SRR - SEH & do RN SV SRR 0 SRS {5 17 5
R TN I Y :u:é wur sl 4TI o

] . - ; . nope 0o '
';”‘!-"f’ﬂ?- Bt T A T IR £ Loy, 370 0 eI rena Ly L H ~ alT

'+ ¥Noté the tge of‘the Ehptal *‘2"’to’denbte‘~€hé‘unﬁ‘éed rtion of the }a?ht.,ih

ih eh%"éraﬂsﬁélf Ai%o note-that th‘e't':‘fansgﬁﬁt‘in" g §ide idsted a‘}sf'oxﬁpt W éﬁfi Wa
" statted’up! ‘A¥ it whE gthrthi first, it is"likely thEe g elvm ¢ BEVAY Ban
it. It was the prompt sent by ‘the’ i‘e‘éeivél“"w‘ﬁen it statted up; th ttﬁggereﬁ th

“tranbmitter 66 stalt:sending dats meﬁia%esf i} 800 Bt PAICTALT W **"*‘f‘*ﬁm £
CThere dhibre: 16 rrors'inthi§ Mansrhissfone "I ehded noFinatly Wi eﬁé‘&e‘ngi

(transmlb‘ﬁer) Behditig' ario ke h.ndhﬁh’é'ré‘ce ér Befidthg's' pré f(ﬁ’é’ *F“-f

Yo dektiowledge i. “At' thad'potnt the user-car 'éafely usurp)bﬁ?:h’ ﬁfééiﬁh) se

as the “=+” from the recelver denotes full' recelpt and safe storage, oﬁheaﬁfe.

PSS U3 Pl ShatelieI QS LMY F TR K3 LOPMRT e Ti ,,.unw‘;d}‘
Lor oo hpves son gedgl e L0 kD ’Q'“"c);' Y Dif s Vg
2.Examplgq Qf&r&psfer& Gaad T e AR O 6V BETARPRRN IS B el 1 z:".::“

vt af el 971 S el wiined 10 suu T IS 4T TRLY eavis DO
> 'Sender starts first 2ammiot sive A2 uds @
Crtigee e gid epetev brow Yo ded? of g2l sldinrbonger of bedsley ormei oA
et diaderd od TBEI‘HW SEOGE ,w:r e\, 2t acterde qaleeh & $ady wasem eidT
= aid Us simeas CEEninde 89210 T ool lasioevoens’
' - - -t hhhhhhheaOR: ®E. brow & midi v
'TCR 05 ows o betuinasnon eatvd § umbasn cmaesd & wendy ens
A2 ZZZZZZZWZZZZZEZZZZZGQ@R Shizage bna shiow
iy s:; -*CR 57 9.»11:* s rresup tH VAl eanysy Trel Y aaior 38GT (LTSRS
=/ CR%?#«::.-M aoiis AT 9IOIGE T D fu] Fad Bady”
st EmAERY 2o &l bodrem moizrurissti D10 L 8 3 SR LN 1T BN
send done, n chars, m l:Lnes = Aot Te daelithe weel Sdinsay
< receive done, n chars, m lines

X ot eaianard L
The completion messages shall be output at the completion of the successfu

transfer. In the case of the sender the message may be output upon receiving th
“=+” for the “=/” . However, the receiver shall not send the “=+”, in respons
to the “=/” , until all the received data has been properly disposed-of..*Fhus th
sender may be totally assured of proper recelpt of the message sent

>Rece1ver starts Brst " B T T S & S AT DR

v i FCR . L tes ey m regagl yoeedggmemoal DR o A T L
=+CR =
< =+CR

=«hheeCR =

—iv 7 E
FENRA I S 13
& =+CR
send done, n chars, m lines =
o «&=.Teqeive done, n. chgrs,.m lineg . o- o o .
SRET QT ANIG T T hdlt D T L B

bhecewer aborts tra.nsfer - . .

R ¥ C- O

Ignonng ‘who starts first, "this”e example presumes ‘an error is detected by tb.e
receiver. This could be for a checksum or control character failure.

--~-4=- receiver eborted sender —poas;b}eyeason s e s
‘.gender aborted *by recelver = . Co NI ON LA

In ,the exa.mple above it is the responmbmty of both th.e abamng proces8es
(copies-of-SAFT)-to output-error messages.~The side-aborting-the-precess must
try to specifys the type of failure (possible reason) while the side that has Been
nborted‘needoﬂymte “the fact” that’it"hiﬁ”‘ﬁaﬁﬁé‘ned T '"\““ T

2

>.S.endsmab01:tatxansfer e R

As with the prevmusexample, it does not matter who starts ﬁrst It is presumed
that-the-sender-detects a faﬂm‘e for- example~a. bad—response-cha.racter after the
“=? ﬁas beer received.’

e
gt

it s ot g g e e S S - i T v s e et v b e

-&hlﬂ;hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhbhﬁhhccCR = & (o
PO :."8R —- e e e e - S ———— -_.:. P ; A
-*hmnhmnmmmhmmnhhhhhhhhmnhhmphcgqg .f’,.- o
==CR . B LT e
.=CR. =T P

sender aborted recelver pos51b1e feason =~ i i
. 4= TECE1Ver-aboThed DY--SeRAET -~ - —i—mn i mmmm e

__Abin the previous example the side J:ecelvmg the ahort, need nat respond other
thatg the mandatory error messa,ge, whlch the abortmg side must output as well,
but mth a posslble reason: i :

e & a5t
et e e e e s e e o e ren e s
TS ; ‘ » ‘ . .
- e h e e o et emw 4w e s e e e b aavhs va s e a5 o

APPENDIX A — ISO International Reference 7-bit coded ch‘araggppr_ se’

. cos s e P B
T A TR ST UL oA TR el .
' LEFARIR Jol SRR Sk AR By P

ST T .&.--J..'.N.q histd

This character code set.is f

ter set, ISO 646-1973 (E), section 6 (Table 2). 'We cite the pa.ragraph 6. 2_In
reference version in that document:

thelnbemaneml Reference-Version 7-bit coded c.ha.rac

. 9\)',_:

P AR

oavT =
=230 (L e €Y%e bnet

“This version is available for use when there fb-Hb requireniefit 46 use a natiénal o¢ %& ‘applicatior
oriented version. In international information processing mterchange the international ref

¢
BRSO T R
version (Table 2) u auumed unless a particular agreement exists be sendér a?.nd} rélelent C
mn{: [e BSIMIPNT G OIGLOLe 2EAY GeD CTiETE uAW RAMGIQE
ST RISATALS LI R LU En R0 5t B0 slues el 1viavee
0 LogaiagisRonizandans il uh-m..& irddos ™4
000s | NUL | SOH STX ETX | EOT. ENQ ,F
S-SR WA AT BT TE NI Vs Ky TOR Cho g Vo] alg 1-*1:*-.:1““,__;:,,*:1(: u i 1@’
0106 | BS | HT | LF | VT | FF | CR F O8I
0203 | DLE | DC, DC; DGC; o DC,: |- NAK: pd%N?E:MB
.= 6304 CAN> - BM:. 1" SUB:! "ESC:| <FS: | G8'¢ | RS- 11US
HREEIEE T - A e e L L . T S B
¢ 040g. . SP anfe sht stige Mozeq &aur;r Bt e e it &lonade ot Ty
[AENERTES BTSRRI IV & () YL T I850 | DITIO0E
0505 | () ! + -

s

023 AR K

15 18bial <

5: 080g 1 1 0F Lazfft e dr Pl @atipfy ok 1 gl mloragactiee @ns diiw gt
RS HRSES MRS LTS RESI Y '.l‘ T &an K e ot ; J.lk.n i v wd ‘;.a.w 3
070g : \: .

&AM

=Telo

Q

Y

a

A hasn ol oo 3

Teh Bhiz

q

y

This is the Swedish version of ISO 646 7-bit coded character set intended for general
use. It is called SIS 63 61 27.

000s
010s
020g
030s
040s

0508

0605
0708
1008
1105
1208
1305
1405
150
160
1708

0 1 2 3 4 5 6 7
NUL | SOH | STX | ETX | EOT | ENQ | ACK | BEL
BS HT LF VT FF CR SO SI
DLE | DC, DC, DCj; DCy | NAK | SYN | ETB
CAN | EM SUB | ESC | FS GS RS US
SP ! " # X % &
() * + . - /
0 i 2 3 4 5 6 T
8 9 ; < = > ?
Q A B C D E F G
H I J K L M N 0
P Q R S T U \' W
X Y z A 0 A - -
N a b c d e f g
h i j k 1 m n o
P q T s t u v w
x y z a4 (<} a - DEL

Py

. C e e Cagsd 3L . R
- . ot w3 WIS okl cier PR A
CRTRY i e
. . . . ,
' : . L ; H
T T3, . T
TR . -
B o~ . = . oaen
P - .-
fee - " [.. -
' > L : . EXV AN
. : Y T R PR

- < N N - x - -

i L 3 1 bie {

S R BT e 4 3 S S W 1 e i i, A TR 13 A s vl | s e it A —— A s 1 Attt M5y &

g 5 B » S 8) U 3
. I

x» e
. o
A E

‘Masskorsband

Stackholms Datoraantral

104 50 Slockhoim

