
’“ Mimer/DB

..

2\

/'\

Mimer Database Manager User Guide

Updated for Mimer/DB Version 3.2.8

974000

Diab Data AB

Box 2029 s-183 02 TABY
swsneu

A
»-

MIMER DATA BASE MANAGER
A (MIMER/DB)

/’\

A

Reference Manual

Version 3.2
January 1984

MIMER INFORMATION SYSTEMS AB, 1981:. All rights reserved

._\
2.

I\

/'\

‘ \

NNNNN
000Q0

O\U1J>blN

NNNDNNNNNNUNNNNUNNNNNNUNNNNNNNNU

0OImi00000ml0O0me0OO00ml0I0IOO0m
O\O\O\,-.-U\\nU1U‘lU\U\¢-q-‘>1->-$>-l>¢-r\A\A\.A\A\A\.A;-¢l\)l\)t\)l\)I\)l\)I\Jl\>4-1»

000mo00000mo000mo00000mi00000I0m
\Al\Jl--O\\n£>\.»ll\Jl--'J>\»ll\)l-'O\U'\J>\AI\)r-1(D\lO\U1-l>\.~4I\)l--*

Appendix

Control -------------------- -- 2.09
DPENT2 - Open Table Cursor -------- 2.10
PRDJE2 - Project Column ------ —— 2.11
SELEC2 - Select Rows ---------- -- 2.12
SET2- - Set Table Cursor -------- -- 2.14
PUSH2 - Push Table Cusor ------ -— 2.15
PCP2 - Pop Table Cursor ------- -— 2.16
DEQUE2 - Dequeue Table Cursor -------- -- 2.17
CLOST2 - Close Table Cursor ------ -— 2.18

Retrieval/Manipulation --------- — - 2 . 19
GET2 - Get (Next) Row -------- -- 2.20

2 INSER2 - Insert New Row -------- -- 2.21
LPDAT2 - Update Current Row --------- 2.22
DELET2 - Delete Current Row -------- -- 2.23
LDAD2 - Load Rows ---------- -- 2.24
DRDP2 - Drop All Rows ----------- -- 2.25

Definition -------------------- -- 2 . 26
DEFCD2 - Define Column ----- ---- 2.27
REMCD2 - Remove Column(s) -------- -- 2.29
DEFIX2 - Define Index ---------- 3 2.30
REMIX2 - Remove Index(es) ------- --I 2.31

Base Definition -------------- -- 2.32
DEF-‘AC2 - Define Access ---------- -- 2.33
REMAC2 - Remove Access --------- -- 2.34
DEFDB2 - Define Databank ------- -- 2.35
REMDB2 - Remove Databank ------- -- 2.36
DEFLJS2 - Define User ------------------ -— 2.37
REMUS2 - Remove User -------------—- 2.38

Base Service ------------------------- -- 2.39
CDPYD2 - Copy Databank --------- -- 2.40
RESTD2 - Restore Databank --------- -- 2.41
CENDBZ - Generate System Databank ------ 2.42

 page

A. MINER/% ERROR CODES ----------------- A.0l

A e. MINER/DB EXIT ROUTINE oescarpnows ------- e.o1

Application Exit Routines -------——-—— 8.02
EXITAl - Allocation-exit -------------- 8.02
EXITC1 - Call-error-exit ------------- 8.02

Installation Exit Routines -------------- 8.03
EXIT8l - Begin-exit ------------------ 8.03
EXITE1 - End-exit ---—----—------—- 8.03

MIMER/DB USER MANUAL/3.2/1.0
Contents

1.01

CHAPTER 1

MIMER/DB GENERAL DESCRIPTION

1 . 1 Introduction

MIMER/DB is a multi-user relational data base management
system with an active data dictionary to control data access, usage,
and security. MIMER/OB was developed at Uppsala University Data
Centre (UDAC) in Sweden and it is now the nucleus of a family of

A products which as application programs, access the data base. These
 products include:

A query language

a
-MIMER/QL, an English type query language suitable for end/'\

users which has simple commands for accessing the data quickly and
also for interactively building and extending the data base records.

A prototyping language and program generator _

-MIMER/PG, which eliminates the need for coding in primitive
languages such as COBOL. MIMER/PG includes a report generator
for rapidly preparing reports to any specification.

EA screen handler system

-MIMER/SH, for quick and easy formatting of data entry and
query screen menus.

An information retrieval system

A -MIMEIR/IR, for large data and text searchapplications.

Utility programs

-i-used to execute frequent operations on the data base, such as

A back-up and recovery operations, and to carry out statistical analysis
—

of disk usage, analysis of buffer pool usage etc.

MIMER/DB USER MANUAL/3.2/1.0
introduction

1.03

1.2 Physical Storage Structure

1.2.1 Databanks

. MIME-IR/DB works with storage units called databanks. A
MINER data base may contain an arbitrary number of databanks. A
databank corresponds to an ordinary direct access file as far as the
operating system is concerned. It consists of commonly sized pages
addressable by a relative page number. The size of the pages used
in MINER/DB is installation dependent. A large block size is
desirable for sequential access but a small size is preferable for

A multi-index searching. Note that if you do change the block size for
an installation, it is necessary to reload all the applications. This is
a lot of work! I

A databank contains an arbitrary number of tables. All the
"‘ contents in a table are stored in one databank, whereas one

databank may contain several tables. The structure of a databank is
shown in Fig. l.

In MIMER/DB data transfer between primary and secondary
memory is done on a page by page basis. Every databank has a
bitmap which is used to indicate which pages are used, and which
pages are free. Thus the bitmap is a directory of space utilization.
If MIMER/DB needs a new page in a databank, this page is marked
"usecf' in the bitmap. If a page is detached, e.g. when deleting
data, it is marked "free" in the bitmap. This means that the
databank grows and shrinks, depending upon user needs, without the
user having to state a maximum size for each table to be stored in
the databank.

When creating a databank the first page will become the
,-\ bit-map and the second will be the "root" page. The root page is

effectively a master directory of all the tables in the databank. If
the databank is very large, additional bitmap pages maybe used and
these will be connected to the first one. In a similar way, if the
root page does not have enough entries, addtional root pages are

/-\ created, connected to the the first. This implies that there is no
limit to the number of tables within a databank. All other pages in
a databank are either free or used for indexes or data.

MIMEIR/DB USER MANUAL/3.2/1.0
Databanks

A

)

1.05

1.2.2 Tables

As mentioned earlier, a databank contains a number of tables.
According to the terminology of relational data bases, every table is
a "n-ary relation", i.e. it contains a number of "tuples" (rows 'or
records), each one consisting of n "attributes" (columns of fields).

The disk storage structure of a table is shown in Fig. 2 and is
represented by a so called 8*-tree.

In MINER/DB, the B*-tree consists of an index section and a

data section. The rows of a table are stored in the data section,
i.e. in the leaf nodes of the tree. The index section of the tree,
i.e. where the non-leaf nodes of the tree are stored, is a roadmap
to enable rapid location of the required node on the next level.
Inside all nodes, data are stored sorted on the key values. This

,.\ makes it possible to use a fast binary search algorithm to find a

. Y

A

certain row, or to find the place where a row should be inserted.
When inserting new rows, the tree gows and when deleting rows,
the tree gets smaller quite automatically. The MINER/DB algorithm
for maintaining the 8*-tree structure will give an average of 83%
(5/6) used space in each node. This implies that continuous
reorganization is done automatically by MIMER/DB, and periodical
reorganizations are obsolete.

A table is entered via the root page of the databank containing
the table. The root page is the directory of the tables in the
databank and contains page number references to the roots of the
8*-tree structures. -

MINER/DB USER MANUAL/3. 2/1 . 0
Tables

/\

r-\

/\

\/\

l . 07

ROOT PAGE

IE ’ FREE SPACE

@‘ EH.
“ls \-

EI il E-K1 55%|

Fig. Z Table Structure (B*-tree)

PAGE POINTER

1.09

PHASE 1 i #1I. FREE PAGES: #3,#a-II
#2IIII

A PHASE 2 #1.-

 Ill
A #2IIII

-I I-
PHASE 3 #1-I

" IIIB
. #3I #4;III I

’“ i #1

PHASE 4 #1In FREE PAGE: #2

#3U #4.
Fig. 3 8*-tree Transformation (Split)

/“\

,_\

Z-\

l.ll
Valid numeric constants:

12
LE-5

-33. 523
6E-I22 ‘

Invalid:

2.5E E must be followed by an integer value
E33 E must be preceded by a decimal value

l25A3 Letter among the digits
r~\ 2,4 Use decimal, point comma not valid

Character format

/\ Characters are stored one to a byte in the same way as the
internal machine representation (ASCII, EBCOIC etc). This means
that the logical storage order is in accordance with the repre-
sentation, and implies that for ASCH the digim are sorted before the
letters, whereas in EBCOIC it is the other way round. A string of
null-bytes is regarded as undefined.

€

Integer format

Integers are stored in an internal binary format not identical to
the machine representation. The internal binary format is necessary
to improve performance in bit by bit searching within compare
operations. Integers can be stored in m arbitrary length up to the
machine dependent length IBYTE. The shorter lengths can be used
to save space, but the valid range is reduced.

One value is reserved. INLLL, is regarded as an mdefined
value. It appears for instance on input (character to integer
conversion) if a blank string or if an illegal numeric constant occurs.
If overow occurs at input, a maximum value is set (sigr'r"'IMAX if
stored in length IBYTE). Observe that if shorter storage length is
used, a smaller maximmn value is also used. On output (conversion
to character) an undefined value is translated to a string of null
bytes.

Floating point format

Floating point numbers are stored in an internal binary format
not identical to the machine representation. They cm be stored in
an arbitrary length up to the machine dependent length FBYTEI. (On
some machines OOLBLE PRECISION is not implemented). Shorter
lengths can also be used, to save space, but the precision is then
decreased. To store any meaningful information at least two or
three bytes are required.

Conversion between floating point numbers and characters can
possibly give a slight decrease in significance.

MINER/OB USER MANUAL/3.2/1.0
Columns types and data formats

/K

/'\

l/x

l.l3

1. 3 Access module structure

The MINER/DB software is structured in a number of modules,
which in turn are grouped into well defined layers.

The user interface is the highest layer (2), and it manages the
data transfer from the internal control area to the application
program (or vice verse). In connection with this transfer, a format
conversion of the involved data may be performed.

The row manager is the next layer (1), which among other
things transfers the required rows between a page in the'buffer-pool
and the user interface control area. Facilities for transaction
management and sort/merge are also included.

The page manager is the lowest layer (0), which controls the
g,\ buffer pool in a similar way to virtual memory management. When

a certain page is required, which is not in the buffer-pool (page
fault), the least recently used (LRU) page makes room for the new
page. If the LRU-page is marked updated, it is written back to
disk, before the new page is read into the buffer. The actual direct
access I/O operations are performed via the I/O interface, which is
the connection between MIMER/DB and the operating system.

The single-user system structure is shown in Fig. 4.

In the multi-user system, which is shown in Fig. 5, the user
interface accesses the row manager through a traffic controller
connected to the MINER/DB nucleus. There may be an arbitrary
number of nucleus processes working against the shared memory
buffer-pool. This reveals that MIMER/DB supports multi-threaded
access.

MIMER/D6 usza MANUAL/3.2/1.0
Access module structure

I
Q

Application 1

User Interface
4

'?\.

Page Manager _: Page Manage

II‘. QCOIO'''''''''''0 000 00 Iv
0 0 . .0

Apphcatzon 2

User Interface

OO
OO

OI
I'D‘

OO

0.0.

'1-I
OI IOIO.I.I:O:0.0:I.:O:<I.OIOIIOOIII

:':¥:I:?:1:-.IOII

1.15

_ .

.'Z'I'1-I-1'1‘!-2-I-91‘Z'I'Z~Z'Z~I-.-. . ° ‘ " - - -'-‘-'-‘-'~‘-'-°-‘-----------'-'-‘-‘-0 0'0 0 0 0.0.0.0.0'0'0‘0.0'0'0.0.0'0.0‘0'0.0'0'0'0'0'0

Trafc Controller .-:1

000 0000 0 0 0 ...° 00 000~00 . .0. . 0 0 0 0 0 0'0 0'0'0'0..'.'
00

00000Q O
0 0 0 0 0‘0.0. 0 0 0 0 0 0 0 0 0 0 0 0.0‘0. '0. '

0 0 0 0 .0.
0 '. 000000000.0° 0 0 0

0 0 0 0 0 0 0 00.0 '0.0 0 0‘ .0. .0.0.0.0. O.0.I.I.0 0 \.Q.' .Q,
0 00 0000 0 0 0 0 0 0 0 0 0 0 0 000000 0 0 0 0 0 0 0 0 0 I I 0 09
Q 0‘0. .0.0.0000 0 0 0 0 0 0 0 00 'pO0Il0

Q Q O COO
. 0 0 ' .0‘ 0 0.0.0.0 . 0 4 ' .'0 0 000. . 0 0 0 0 00‘0 .

0 0 0 0 00Q O O. 0000 .
Q Q Q Q QC

O OO Q‘ .0000000 0 0 0 0 0 0 ..00 0 0 00 0 0 0 0 0 0 0 0 00‘‘‘‘‘‘‘. . .0 .0 '0.0.0‘0.0 0 0 0 0 0 0 ‘
Q O Q Q

CO/'\ - '.;.;.;.;.;.;.;.;.;.;.'.~ ' ._ ;

-~» Buffer -53;

Data
Base

O O I O OUCOO
OOOOOOO O0..........0
Q0000

Fig. 5 MIMER/DB Multi-User System

0 0
0 0.0 0.0 0 0.0.0.0'0.0.0‘0'0'0 0.0.g‘¢'.....'.'.......' 90 0. '

‘.00

'1
.0.0O

Pool

ODUO

OilI
IOl..0.0I

I
‘C

OIII
I'D.

.0
Q

I/O Interface £1‘ I/O Interface '

6
IQIIC

O.l.l

O

I

O‘0.0‘O.

0 0

0
OI
O

I
.8I
O0.0
O

0 0 0 0 0 0 0 0 0 0 0 g q .¢....'...'....00 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0|'0'0'0'0'0'0'0'0'0'0'0'q'.‘,'.0.0.O.1‘0.0.0.0.0.05
0 000II . I

.0

'0
0

Applxcatxon 3

I
I

OO
O‘I.O

OOOOO
OI.0.0.0.

‘ _ ‘..

O

0.0
O O

QC

OIIO.‘

I
‘O

7l'
1

A83O__UgagO5

has“UGO:

E96__:_O_E8:_EO_:___2_O2:3Us_U____2v

A_EO:E2_O=8

O_£gQUO_‘COz

“Q5>__£__p_O

A<mOV__oHm_:2C_EDQ35B2“

:t9_§_

2_QE3EEma_::___“___U_

2_g§_J8P_O_u_w"____:__%_

v_cBBm_H_BQ52_8_;__n_

Aezgggm
mggCGONoam“EaNo>n_OU>232_;___n_%V_UgV_CgS_5__m

Gmm_UU<___Q33S“Bay3U3__n_Vzgsg.8”:IQ
QSCOU83B2V____gS%8”:__m

36%_ug_E8:2632303:3EatbU035”vzgsgSm:-m
AEOMHGHQQO:3Qzg_OXQv___gB%“Om:__X

“$25_EU%_UégsgSm_n__:_HU
5_§__U_v_g__S_5QU

v___gB%“O32_8_mO,_ QU*V_z<m_<Zn_

@_O:__m__O8QE_____OU

mom;v____§§____P____“__H____3__m

_AAA‘A
_ I4

_”
_~

/'\

/\

/\
~ /

lOl9

1. 5 Data base security

1.5.1 Access to MIMER/DB

Any program that is to communicate with MINER/DB must first
provide a user identification (userid) and a password by entering

Authorized userids and passwords for accessing MINER/DB are
stored in the *USERDEF system table. Initial entries in this system
table are made when the data base is generated. A user who has

Data Base Administration authority can define a new LE8!‘ by entering
DEFUS2.

A user may have one of following authorities:

'5' - Standard (Ordinary user)

‘X’ - Exclusive (Data BasesAdministrator)

MINER/D8 ussa MANUAL/3.2/1.0
Access to MIMER/DB

A

lO2l

1 . 6 Transaction management

In order to preserve the integrity during concurrent access to a

shared database, operations must be grouped in units called
transactions.

When using the MINER/DB transaction facilities, a databank
named TRANSEB must be defined. TRANSDB acts as a secondary
memory storage for MINER/DB. If the logging facility is required,
the databank LOGDB has to be defined. When LOGDB is existence,
MINER/DB will automatically log every commited update-transaction.

The beginning of a transaction is indicated by entering BEGT R2,
and the end by ENDTR2 requesting either commit or abort.

The transaction manager in MIMER/DB does not use any locking
A protocol in order to preserve integrity. Therefore, dead-lock

/\

/R
»

detection or prevention is not applicable. Instead, an "optimistic"
concurrency protocol is used, which relies for efficiency on the
expectation that conicts between transactions will not occur.

MINER/DB USER MANUAL/3.2/1.0
Transaction management

. /~\ l

DATABAN<

A

f\ 1

V

seem TRANSACTION VER"""3*“°“
(STEP 2)

READ OPERATION

UPDATE opsrmnow

END TRANSACTION
1'RA:~asAc:'nor~i DATABANK

crmxusoe)

/\ oA
I

‘ Y

Fig. 7 Optimistic Concurrency Control

COMMIT
(STEP 3)

1.23

1.25

1.8 How to use MIMER/DB Routines

In this section, we have used several examples, trying to
illustrate how the different routinesin MIMER/DB are connected to
each other. The examples are written in an ADA-like
pseudo-language. Parameters in capital letters am used, when they
denote a character string containing the same information. A
detailed description of each pMIMER/DB routine will be found in
Chapter 2.

1 . 8 . 1 How to start/end processing

/‘K

/'-§

First of all, BEGIN2 must be entered with userid and
password, in order to determine if the user is allowed to use the
data base (LOGON).

Each databank that the user wishes to access, must then be
opened by entering OPEND2, in order to determine the users access
privilege.

Later, when doing operations on a databank, that should be
treated as one transaction, they must be enclosed by entering
BEGTR2 and ENDTR2. Applications using transactions are shown in
Examples 3 and 4.

u s

When all operations on a databank have been finished, the user
may enter CLOSD2, indicating that the databank is not in use.

Finally, before ending the application program, END2 must be
entered, in order to release MINER/DB control (LOGOFF).

MIM-IR/DB USER MANUAL/3.2/1.0
How to user MIME-ZR/DB routines

A

[Example 1

1.27

For each manufacturer, display all drugs and their classification.

+ 0 _ Q 0 Q Q Q O I Q — _ Q - - 0 Q _ Q Q n n c _ Q Q Q _ Q — Q Q - - - . - Q Q Q Q Q Q Q - - - Q Q Q _ -Q

BEGIN2(rcode, userid, password);

CPEN D2(did , DRU GDB , R);

CPENT2(cursorl,did, MANLFACT, R);
PROJE2(cursorl,F',MANID,RO ,base ,prnanid,C, 3);
PROJE2(cursorl , A, MNANE , R0, base ,pmname ,C , 50);

OPENT2(cursor2 , did ,DRU GS , R);
PROJE2(cursor2, F',DNAME”, RO,base,pdname,C , 15);
PROJE-I2(cursor2 , A , CLASS ,RO , base , pclass ,C , 40);5 SELEC2(cursor2,F', MANID,EQ,base,pmanid,C , 3);

/\

/\\
u

SET2 (cursorl ,base);
loop

GET2 (cursorl,base);
exit when cursorl(l)> 0;
---------------------- display 'pmname'
SET2 (cursor2,base);
loop

GET2 (cursor2,base);
s exit when cursor2(l)> 0;
--------------- display 'pdname , pclass'

end loop;
end loop;

' END2;

J

MINER/D8 USER MANUAL/3.2/1.0
How to retrieve data from tables

/'\

/\

f\

/'\
I

1.29

When using MIME-IR/DB, the solution to this problem is to use
PUSH2 to save the current cursor position, when going down to next
level, and POP2 to restore the cursor, when going back up, as
shown in Example 2. -

Example 2

Parts explosion.

11111I1IiililiiiiiIIliII1IIZIIII11lIZIZIQIQIIIIIIIQI1

BE GIN2(rcode , userid , passw ord);

CPEND2(did ,databank , R);

OPENT2(cursor , did , USA GE , R);
PROJE2(cursor ,F', MINOR, R0, base,pminor ,C , 6);
PROJE2(cursor,A,QTY ,R_O,base,pqty ,C,3);
SELEC2(cursor,F',MAJCR,EQ,base,pminor,C,6);
pminor:="Car ";

SET2 (cursor,base);
loop

GET2 (cursor,base);
if cursor(l) = 0
then e

-------------- display 'pminor,pqty'
PUSH2 (cursor);
SET2 (cursor,base);

else
PO32 (cursor);
exit when cursor(l)>U;

end if;
end loop;
END2;

MINER/DB USER MANUAL/3.2/1.0
How to traverse a hierarchic data structure

Example 3

Reduce the 'Tartrazin'-contents of all drugs by 50%, and replace 1t
by the new and harmless colouring rnatter ‘Falu-red‘.

BE GIN2(rcode , userid , password);

CPEND2(did,DRUGDB, S);

')\ CPENT2(cursorl , did , CONTENT, S);
PROJE2(cursorl,F,DRUGID ,RO,base,pdrugid ,C ,3);
PROJEI2(cursorl,A,PWEIGHT ,RW,base,ppweight ,I,2);
SELEIC2(cursorl,F,COf\/POSIT,EQ,base,scomposit,C ,9);

..-‘v

scomposit:="Tartrazin";
/'\

OPENT2(cursor2,did,CONTEINT, S);
PROJE2(cursor2,F,DRUGlD ,WO ,base,pdrugid
PRO.]E2(cursor2,A,CONPOSIT,WO,base,pc:ompos
PROJE2(cursor2, A ,TYPE , W0 , base , ptype
PROJE2(cursor2,A,PWE-IIGHT ,WO,base,ppweight
pcomposi t:="Falu-red";

; ptype :="C";
f loop
1 BEGTR2(rcode);

j SET2 (cursorl,base);
J 1000 .

1 GET2 (cursorl,base);
- exit when cursorl(l)> 0;

ppweight:=ppweight/2;
DELET2(cursorl , base);
INSEIR2(cursor2 , bas e);

»’“ end loop;

ENDTR2(rcode);
exit when rcode = O;

/K end loop;

END2;

1.31

it

‘T19?)4;.O.
l-"‘\H.._..____,_

=-’.>.'95.>.*

MINER/DB USER MANUAL/3.2/1.0
How to manipulate data in tables

/\

2*

7“

»~>

1.33

1.8.5 How to load/drop data in a table

Before doing a load or drop operation on a table, a cursor must
be defined by entering OPENT2. The access option given must be
‘X’ (exclusive).

All rows in a table may then be dropped by entering DROP2.

The load operation works on a row-by-row basis, and must be
fed with data from the application program, and therefore PROJE2
must be entered in order to connect columns with program variables.

By repeatedly entering LOAD2, all rows will be dispatched to
an internal sort/merge routine, which implies that an indication must
be given when all rows have been loaded.

The end-of-load signal is given by entering SEIT2, which means
that the sort/merge will terminate and the sorted rows will be loaded
into the table.

An application dropping all rows, and then re-loading the table
is shown in Example 5.

MINER/DB USER MANUAL/3.2/1.0
How to load/drop data in a table

1.35

1.8.6 How to define/remove a table

Tables are defined on a column-by-column basis by subsequently
entering DEFCO2, as shown in Example 6.

Colurnrs may be removed from a table by entering REMCO2.
When the last column is removed, the table ceases to exist.

1.8.7 How to definelremove an index

A secondary index will be created fcr a column by entering
DEFIX2, as shown in Example 6.

When no longer needed, a secondary index can be dropped by
entering REMIX2.

/\
Example 6

Define the table DRUGS, and create a secondary index for the
column DNAME.

'.

.1III111-1I1-i“IQ1I_IIlI_I1Zl-_Z1Il-“L11_1_‘--“"

BE GIN2(rcode , userid , password);

CPEND2(did ,DR LJGDB , X);

DEF CO2(did ,DRU GS ,DRUGID , ""'" ,C, 3);
DEF-'COZ(did,DRU§,DNANE ," ",C,l5);

‘DEF-'CO2(did ,DRU GS,F'ORM ," " ,C, 8);
7‘ DEF'CO2(did,DRUC5 , STRENGTH ," ",C ,l0);
E’ DEF'CO2(did ,DRU GS ,MANID ," " ,C, 3);

1FiCOZ(did,DRUCB,CLASS ," ",C,4O);

oczr-'1x2(<1w ,DRUGS ,DNA ME);/\
END2;

MINER/DB usea MANUAL/3.2/1.0
How to define/remove an index

1.37

1.8.11 How to copy/restore a databank

A backup copy of a databank will be created by entering
CUJYDZ, as shown in Example 8.

Example 8 .

Create backup copies of DRUG-DB and ADVDB. The backup
databanks are named BDRUGDB and BADVD6 respectively.

E,-x“"""""""""""""“
BE GIN2(rcode , tserid , password);

COP YD2(rc0de , BDRUGDB , DR UGDB);
C(]3YD2(rcode ,BA DV DB , ADVDB);

EN D2;

When a disk-crash has occurred, a databank can be restored by
entering RESTD2, as shown in Example 9.

Example 9

Restore the databanks DRLJGDB and ADVDB from the backup
databanks BDRUGDB and BADVDB. '

I I I I 1 I I I I 1 1 I I Z I I I Z I Z Z I I I I I I I I Q I I I I K I I 1 Z 1 I I I I I I I I I I I I I
.

BE GIN2(r code , userid , password);

RESTD2(rcode ,DRUGDB , BDRUGDB);
A RESTD2(rcode,ADVDB,BADVDB);

EN D2;

MINER/DB USER MANUAL/3.2/1.0
How to CQPY/restore a databank

(<11-

1.39

1.9 Summary of MIMER/DB Routines

Database Control

BEGINZ - Begin MIMER/Db Session
OPEIND2 - Open Databank
BEGTR2 - Begin Transaction
ENDTR2 - End Transation
CLOSD2 - Close Databank
END2 - End MIMER/DB Session

Data Control

OPE-INT2 - Open Table Cursor
PROJE2 - Project Coiu'nn
SELEC2 - Select Rows
SET2 - Set Table Cursor
PUSH2 - Push Table Cursor

A POP2 - Pop Table Cursor
DEOUE2 — Dequeue Table Cursor
CLOST2 - Close Table Cursor

Data Retrieval/Manipulation

GET2 - Get (Next) Row
INSER2 - Insert New Row
UPDAT2 - Update Current Row
DELET2 -S Delete Current Row

* LOAD2 - Load New Rows
* DROP2 - Drop All Rows

Data Definition

* DEFCO2 - Define column
,~\ * REMCO2 - Remove Column(s)

U * DEFIXZ - Define Index
* REMIXZ - Remove lndex(es)

Data Base Definition

DEFAC2 - Define Access
* REMAC2 - Remove Access

** DEF-‘DB2 - Define Databank
** REMDB2 - Remove Databank
** DEIFUS2 - Define User
** REMUS2 - Remove User

Data Base Service

** COPYD2 - Copy Databank
** RESTD2 - Restore Databank

** GENDB2 - Generate System Databank (SYSDB)

* Only for user with 'X‘-privilege on the databank
** Only for user with ‘X’-authority (DBA)

MIMEIR/DB USER MANUAL/3.2/1.0
Summary of MIMER/DB routines

A

/‘\

/\

/~\

2.01

CHAPTER Z

MIMEIR/DB ROUTINE DESCRIPTIONS

The MINER/DB routines are grouped as follows:

Data Base Control

Data Control

Data Retrieval/Manipulation

Data Definition

i Data Base Definition

Data Base Service

MIMER/DB USER MANUAL/3.2/1.0
Routine descriptions

2.03

2.1.1 BEGINZ - Begin MIMER/DB Session

Purpose:

To initiate MIMER/DB for processing.

Format:

secmz (RCODE, UNAME, PASSW)

Arguments:
Q/\

RCODE Iw out - return code:
< 0 - error
= U — ok
> U - backout

UNAME C8 in - user name

PASSW C8 inout - password

Description:

'/“~

Note

T

The user, specified by the argument UNAME, is searched for in
the system table *USERDEF, and verified by the password,
specified by the argument PASSW. The backout return code
will be set when the user name is not found, or when the
password is incorrect. If the verification is successful, internal
control-areas will be initiated, and MIMER/DB is ready for
processing.

The contents of the password argument is always destroyed.

MIMER/DB USER MANUAL/3.2/1.0
BEGIN2 - Begin MIMER/DB session

l 2.05

2.1. 3 BEGTR2 - Begin Transaction

Purpose:

To indicate the beginning of a transaction.

Format:

III
~.A

BEGTR2 (RCODE)

r\
Arguments:

RCODE lw out - return code:

<0-error
=0-ok

Description:

A Note

A

The beginning of a transaction is indicated, i.e. all
update-operations (INSER2,UPDAT2,DELET2), performed before
end-of-transaction (ENDTR2), should be put on an intention-list,
and executed at end-of-transaction during the commit-phase.

The databank TRANSDB must be in existence when the
transaction management facilities are used.

Tables opened with access option ‘X’ will not be handled by
transaction management.

\

MINER/DB USER MANUAL/3.2/1.0
BEGTR2 - Begin transaction

/4

/\

/\

/\\

2.07

2.1.5 CLOSD2 - Close Databank

Purpose:

To close a databank.

Format:

CLOSD2 (DID)

Arguments:

DID hlw inout - databank identifier

DID(l) return code:

<0-error
=0-ok

Description:

The databank associated with the identifier, specified by the
argument DID, is closed and the connected control space is
released for re-use. Subsequently all table cursors connected to
the databank are automatically closed.

MIMER/DB USER MANUAL./3 . 2/1 . 0
CLDSD2 - Close databank

2.09

2.2 Data Control

The following routines are available:

OPENT2 - Open Table Cursor

PROJE2 - Project Column

SELEC2 - Select Rows

SET2 - Set Table Cursor

PUSH2 - Push Table Cursor

A POP2 - Pop Table Cursor

DEQJE-12- Deque Table Cursor

CLOST2 - Close Table Cursor

Note: Base Address

The declarative routines PROJE2 and SELEC2 use an argument
called "base address". The variables used as I/O-areas and for
restriction values in the program will have their addresses

- converted and stored relative to this base address.

Fr When the executive routines SET2, GET2, INSERZ, UPDAT2
and LOAD2, are performed, the argument base address are med
in order to calculate the absolute addresses of the I/O-areas and
the restriction values.

/j The reason for storing relative addresses instead of absolute
‘ addresses is that some host languages may use an address space

for those variables which is not fixed from time to time. This
means, when calling e.g. PROJE2 the base has a certain
address, and when calling e.g. GET2, the base may have
another address.

Note that the I/O-areas and restriction values ITILBC be located
in the space covered by the base address, because a change of
the base address implies the same change for all other addresses
as well.

MINER/DB USER MANUAL/3.2/1.0
Data control

2.11

2.2.2 PROJE2 - Project column

Purpose:

To project a column onto a program I/O-area, i.e. to specify a
binding condition between a column and a variable in the
program.

Format:

A PROJE2 (TID,l_OP,CNAME,TOP,BASE,IOAREA,IOTYPE-I,IOLEN)

2+ Arguments:/'\
TID 41w inout - table cursor

TID(l) return code:
< 0 - error
= 0 - ok

LOP Cl in - logical operator:
‘F’ - first
‘A’ - and
‘E’ - erase

CNAM-I C8 in - column name

TOP C2 in - transfer operator:
‘R0’ - read only
‘W0’ - write only
'RW' - read/write

,2 'WR' - write/read

BASE ref - base address

IOAREA ref - I/O-area location

IOTYPE Cl in - I/O-area type:
'C' - character
‘I’ 2 - integer '

'F" - floating point

IOLEN lw in - I/O-area length (in bytes)

Description:

A projection is connected to the table cursor, specified by the
argument TID, by using a logical operator, specified by the
argument LCP. The projection consists of three parts, first
column name, specified by the argument CNAME, second a
transfer operator, specified by the argument TOP, and third the
base address, location, type, and length of an I/O-area,
specified by the arguments BASE, IOAREA, IOTYPE and IOLEN
respectively .

MIMER/DB usr.-ta MANUAL/3.2/1.0
PROJE2 - Project column

2.13

Description:

A select-condition is connected to the table cursor, specified by
the argument TID, by using a logical operator, specified by the
argument LOP. The condition consists of three parts, first
column name, specified by the argument CNAME, second a
relational operator, specified by the argument ROP, and third
the base address, location, type, and length of the restriction
value, specified by the arguments BASE, RVALLE, RVTYPE
and RVLEN respectively.

;__‘ Notes:

The default option for the table cursor, when no selections are
specified, is no restriction, i.e. all rows are selected.

A Subsequent conditions are connected to each other by means of

/K

/*\

the logical operator, thus making a conjunctive normal form
expression. E.g. the conditions "First A, Or B, And C, Or D"
will be interpreted as: (A or B) and (C. or D), i.e. ‘or’ has
precedence to 'and'. s

When a SET2 operation has been executed on the table cursor,
the logical operator OR cannot be used in the first additional
entry to SELEC2.

I

MINER/DB USER MANUAL/3.2/1.0
SELEC2 - Select rows

2.15

2.2.5 PUSH2 — Push Table Cursor as

Purpose:

To save the table cursor status.

Format:

A
PUSH2 (TID)

/\
Arguments:

TID hlw inout - table cursor

TID(l) return code:

<0-error
=U-Ok

Description:

The current status of the table cursor, specified by the
i argument TID, is pushed onto a stack and saved, thus making it

possible to use the table cursor on a new set, defined by the
same selection conditions, but with new restriction values./\

/k

MINER/DB USER MANUAL./3.2/1.0
PUSH2 - Push table cursor

- —:~

1 »’\

/*\

/—\

2.17

2.2.7 DEQUE2 - Dequeue Table Cursor

Purpose:

To restore the first saved table cursor status.

Format:

DEQUE2 (TID)

Arguments:

TID lslw inout - table cursor

TID(l) return code:

V/\

00°

ll

9-

- BPPOP

stack empty

Description:

The table cursor, specified by the argument TID, is restored to
the previous status, saved by the first PUSH2.

MINER/DB USER MANUAL/3.2/1.0
DEQLJE2 - Deque table cursor

2.19

2.3 Data Retrieval/Manipulation

The following routines are available:

GET2 - Get (Next) Row

INSER2 - Insert New Row

A LPDATEI2- Update Current Row

DELET2 - Delete Current Row

<_‘I-\
LOAD2 - Load New Rows

DROP2 - Drop All Rows

Note: Base Address

The declarative routines PROJE2 and SELEIC2 use an argument
called "base address". The variables used as I/O-areas and for
restriction values in the program will have their addresses
converted and stored relative to this base address.

When the executive routines SET2, GET2, INSER2, LJPDAT2.
,>~ and LOAD2, are performed, the argument base address are used
‘ in order to calculate the absolute addresses of the I/O-areas and

the restriction values. -

The reason for storing relative addresses instead of absolute
/* addresses is that some host languages may use an address space
" for those variables which is not fixed from time to time. This

means, when calling e.g. PROJE2 the base has a certain
address, and when calling e.g. GET2, the base may have
another address. ' T

Note that the I/O-areas and restriction values must be located
in the space covered by the base address, because a change of
the base address implies the same change for all other addresses
as well.

MIMER/DB USER MANUAL/3.2/1.0
Data retrieval/manipulation

2.2].

2.3.2 INSER2 - Insert New Row

Purpose:

To insert a row into a table.

Format:

INSE R2 (TID , BASE)

A Arguments:

TID 4Iw inout - table cursor

TID(l) return code:

V/\

ODD

- error
- ok
- row already exists

BASE ref - base address

Description:

A row is created with all columns having null-values initially.
Then the row is updated, by making a data transfer from the
write-projected I/O-areas, implicitly referenced by the argument
BASE. If the row does not exist, it is inserted into the table.

,-\ Notes:

Within a transaction, the insert-operation is not actually
performed; instead a request is put on an intention-list and
executed at end-of-transaction during the commit-phase.

MIMER/DB USER MANUAL/3.2/1.0
INSER2 - Insert new row

2.3.4 DELET2 - Delete Current Row

Purpose: ‘

To delete current row

Format:

I I I I d I I Z I I I I I I I I I 1 I I I I II
'./'\

. DELET2 (TID)

/'\
_ Arguments:

2.23

ZIIIIZIIIZII

TID ltlw inout - table cursor

' TID(l) return code:

\//\

00°

error
ok
row does not exist

Description:

The current row, referenced by the table cursor, specified by
the argument TID, is deleted.

/\
i Note:

Within a transaction, the delete-operation is not actually
performed; instead a request is put on an intension-list and
executed at end-of-transaction during the commit-phase.

DELET2 may only be entered after a ET2 or an INSER2
operation.

MIMER/DB USER MANUAL/3.2/1.0
DELET2 - Delete current row

2.25

2.3.6 DROP2 - Drop All Rows

Purpose:

To drop all royvs in a table.

Format:

A DR OP2 (no)

A Arguments:

TID 41w inout - table cursor

TID(l) return code:

<0-error
=U—Ok

Description:

A Note

/\\

All rows in the table, referenced by the cursor, specified by
the argument TID, are dropped.

r

The table cursor must be open with access mode ‘X’ (exclusive).

MIMER/DB USER MANUAL/3.2/1.0
DRCP2 - Drop all rows

2.27

2.4.1 DEFCD2 - Define Column

Purpose:

To define a new column in a table.

Format:

$1111IIIII11ZIZZIZZIIIZII1IIIIIIIIII1I1I1IIIII1IIIIII

A DEF-"CO2 (DID,TNAMEI,CNAME,CFLAG,CTYPE,Cl_EN)

*" Arguments:

DID lilw inout - databank identifier

DlD(l) return code:

<0-error
=0-ok

TNAME C8 in - table name

CNAME C8 in - column name

CFLAG C1 in - column flag:

'*' - primary key
' ' - other

_/

CTYPE Cl in - column type:

‘C’ - character
/\ '1‘ - integer

'F" - oating point

CLEN Iw in - column length (in bytes)

Description:

A new column is created with name, key, type and length, as

specified by the arguments CNAME, CFLAG, CTYPE and CLEN
respectively. The column» is qualified by the databank
identifier, and the table name, specified by the argument DID
and TNAh£ respectively. If the table cbes not exist, a new
table containing one column is created.

MIMEIR/DB USER MANUAL/3.2/1.0
DEFCO2 - Define column

.1

2.29

2.4.2 REMCO2 - Remove Column(s)

Purpose:

To remove a column in a table.

Format:

REMCO2 (DID,TNAME,CNAME)

Arguments: '

.P\

DID 41w inout — databank identifier

DID(l) return code:

<0-error
=0-ok

TNAME C8 in - table name

CNAME C8 in - column name

Description:
.

The definition of the column, specified by the argument
,-\ CNAME, is removed. The column is qualified by the databank

identifier, and the table name, specified by the argument DID,
and TNAME respectively. '

/‘\ ‘Notes:

This operation may only be performed by a user who has
X-privilege on the corresponding databank.

No cursors may be opened on the table involved during this
operation.

At present, columns can only be removed when the table is
empty, i.e. contains no data.

All other columns must be removed before removing last
primary key column.

It is not possible to remove any column from a system table.

The possibility of removing a whole table is provided, by setting
CNANE as '*'.

MINER/DB USER MANUAL/3.2/1.0
REMCDZ - Remove colurnn(s)

2.31

2.4.lt REMIX2 - Remove Index(es)

Purpose:

To remove a secondary index on a column.

Format: T

REMIX2 (DlD,TNAME,CNAME)A

Arguments:/\
DID Alw inout - databank identifier

DID(1) return code:

<D—error
=0-ok

TNANE C8 in - table name

CNAME C8 in - column name

Description:

The secondary index on the column, specified by the argument
.,\ CNAME, is removed. The column is qualified by the databank

identifier, and the table name, specified by the arguments DID,
and TNANE respectively .

,\\ NOIES:
0’

This operation may only be performed by a user who has
X-privilege on the corresponding databank.

No cursors may be opened on the table involved during this
operation.

The possibility of removing all secondary indexes in a table is
provided, by setting CNAME as '*'. '

MIMER/DB USER MANUAL/3.2/1.0
REMIX2 - Remove Index(es)

2.5.1 DEFAC2 - Define Access

Purpose:

To define (or redefine) an access privilege specification.

Format:

DEFACZ (RCODE,UNAME,DNAME,AOP)
A

Arguments:
%

if RCODE Iw out - return code:

/\

cacao

V

" BPPOI.‘

- ok
- ok (replaced)

2.33

UNANE C8 in - user name

DNANE C8 in - databank name

AOP Cl in - access option:

‘P’ - private
'R' - read only
'5' - shared
‘X’ - exclusive

e\

Description:

An access privilege specification, which contains user name,
databank name, and access, specified by the arguments
UNAME, DNAME, and ACP respectively, will be inserted into
the system table *ACCESS. If the specification already exists,
the access privilege is replaced.

Notes:

This operation may only be performed bysa user who has
X-privilege on the corresponding databank.

Access privileges may not be defined for the databanks
TRANSDB and LOGDB.

MIMER/DB USER MANUAL/3 . 2/1 . 0
- DEFAC2 - Define access

2.35

2.5.3 DEFDB2 - Define Databank

Purpose:

To define (or redefine) a databank specification.

Format:

DEFDB2 (RCODE,DNAME,AOP,F'NAME,SIZE)

u

4

Arguments:
,/\

RCODE Iw out - return code:
< D - error
= U - Ok

ok (replaced)

V

CD

I

I\
DNAl\/E C8 in - databank name

AOP Cl in - access option:

'B' - backup (private)
'P' - private
‘R’ - read only
'S' - shared
'><‘ - exclusive

F-‘NAME Cx in - physical file name

SIZE Iw in - databank size (number of pages)

Description:

A databank specification, which contains databank name,
general access option, and physical file name, specified by the
arguments DNAME, AOP, and FNANE respecitively, will be
inserted into the system table *DBDEF. If the specification

/\ already exists, the access option and the physical file name
values are replaced. Additionally, if the databank size,
specified by the argument SIZE, is greater than zero, the
physical file is formatted as a new MIMER databank, initially
consisting of the number of pages stated. On the other hand,
if the size value equals zero, the physical file is only certified
to be an existing MIMER databank. i

Notes:

This operation may only be performed by a user who has
X-authority .

The databank involved in this operation may not be open at the
same time.

When defining the databanks TRANSDB and LOGDB, the access
option must be 'P' (private).

MIMER/DB USER MANUAL/3.2/1.0
DEFDB2 - Define databank

ZOS7

2.5.5 DEFUS2 - Define User

Purpose:

To define (or redefine) a user specification.

Format:

-

DEFLJS2 (RCD DE ,UNA ME,AUTH,PASSW)

Arguments:

RCDDE lw out - return code:

V/\

cacao

II
D.

1:-

- 8!'I‘Ol‘

ok (replaced)

UNANE C8 in - user name

ALJTH Cl in - authority:

‘S’ - standard
'X‘ - exclusive

/\ PASSW C8 inout - password

Description:

/-\ A user specification, which contains L58!‘ name, authority, and
\-— password, specified by the arguments UNAME, AUTH, and

PASSW respectively, will be inserted into the system table
*USEIRDEF'. If the specification already exists, the authority
and the password values are replaced.

Notes:

This operation may only be performed by a user who has
X'-authority. There is one exception. Any user may use
DEFUS2 in order to change his own password.

The contents of the password argument is always destroyed.

MIMER/DB USER MANUAL/3.2/1.0
DEFUS2 - Define user

/\

.I*\

/\

/\
J

Data Base Service

following routines are available:

COPYD2 - Copy Databenk

RESTD2 - Restore Databank

2.39

CENDBZ - Generate System Databank

MIMER/DB USER MANUAL/3 . 2/l . 0
Data base service

A

/\
\

\ —

2.41

2.6.2 RESTD2 - Restore Databank

Purpose:

To restore a databank, using a backup-copy together with an

optional log-file.

Format:

RESTD2 (RCODE-I,DNAME,BNAME)

Arguments:

RCODE Iw out - return code:

< O - error
= U - Ok

DNANE C8 in - databank name

BNAMEI C8 in - databank name (backup-copy)

Description:

The backup databank, specified by the argument BNAME, is
copied to the databank, specified by the argument DNAME.
Subsequently, if a log-fileeexists for the databank, all
transactions recorded are applied.

Notes:

This operation may only be performed by a user who has

X-authority . -

The backup databank must have the general access '8' (backup).

MINER/DB USER MANUAL./3.2/1.0
RESTD2 - Restore databank

A.0l

Appendix A .

MIMER/DB ERROR CODES

When an error is detected by a MIMER/DB routine, the
call-error-exit routine EXITCI is entered with a negative
four-digit error-code as argument value. The actions taken in
EXITCl are either installation or application-dependent, and are
further discussed in Appendix B. -

"R The first two digits of the error-code describes in which routine

h

r"\
I

the error was detected, and the last two digits describes the
error itself. l

I

MIMEIR/D8 us EIR MANUA 1./3 . 2/1 . 0

MIMEIR/DB error codes

A.O3

The last two digits of the error-code are specified as follows:

xxll - First argument value incorrect
xxl2 - Second T argument value incorrect
xx 13 - Third; " argum ent value incorrect
xxl4 - Fourtih argument value incorrect
xx 15 - Fifth it argument value incorrect
xxl6 - Sixthr argument value incorrect
xx 17 - Seventh argument value incorrect
xxl8 - Eighth argument value incorrect

xx2l - Requested operation not allowed (illegal sequence)
xx22 - Tried to add OR-condition after SET2
xx23 - Tried to grant privilege on TRANSDB or LO@B
xx2£& - Databank has already been opened
xx25 - Table has already been opened (X-access involved)"‘ xx26 - Tried to remove last primary key incorrectly
xx27 - Tried to exceed maximum number of columns
xx28 - Tried to change a non-empty table
xx29 - Tried to exceed maximum row-length

xx3l - System control-block-area exhausted
xx32 - No access rigwts for requested operation
xx33 - Trie-d to use transaction handling without TRANSDB
xx34 - Transaction management required
xx35 - Operation not allowed, SYSDB opened for read only

xxhl - Databank open error (installation dependent)
XX 0 0 " 0 0 0 0

xxh9 - Datnbank open error (installation dependent)

xx5l - System databank-identifier-area exhausted
xx52 - Tried to open a non-MIMER databank

»_ xxS3 - Tried to open a non-restarted databank
xx5l& — Tried to open a write-protected databank

xx6l - Daiabank disk)-space exhausted
xx62 - LOG-DB disk-space exhausted

_ xx63 - TRANSDB disk-space exhausted

xx7l - System locked (communication-area exhausted)
xx72 - Databank locked by other user(s)
xx73 - Table locked by other user(s)

xxBl - SYSDB corrupted (should not occur)
xx82 - Databank corrupted (should not occur)
xx83 - System stack exhausted (should not occur)
xx84 - Internal error, please submit error report

MIMER/DB USER MANUAL/3.2/1.0
MIMER/DB error codes

1" /I-\

/\

4*‘__

§»'/_\

8.01

Appendix B

MIMER/DB EXIT ROUTINE DESCRIPTIONS

MINER/DB has currently two application exit routines:

EXITAl - Allocation-exit

EXITCI - Call-error-exit

MIMER/DB USER MANUAL/3.2/1.0
MIMER/D8 exit routine descriptions

B.O3

Now, let us consider an example in single-user mode:

Suppose that EXITAI is installed with a default size of the
system contol-block-area set to 2048 words, the buffer-pool size set
to 10240 words, the maximum number of concurrently opened
databanks set to 16, the default access mode for SYSDB set to
update (1), and default physical file-name of SYSDB set to "SYSDB":

l""""""""""""""""""""""""""""
»~ i sueaounmz-: EXITAI

h INTEGER w,v
COMMON /STORE2/ w(2o4s)

i COMMON /STOREl/ vuozao)
' w(1).-=z04s

i/~ v(1)=1024o
v(2)=1s s

v(3>=1
CALL MDRMVB(V(4),0,8l-ISYSDB ,o,s)
RETURN
END

If an application program requires the following environment: a
buffer-pool size of 4l0960words, the access mode for SYSDB set to
read only (0), and the physical file-name of SYSDB to be "COMDB";
the user may link the following private EXITAI-routine:

I I I I I 1 1 1 1 I I Q 1 I I II‘Q Z I I Z Z I I I I I I I 1 I I 1 1 1 l Q I I Z Z I I I I I I 1 I IZ}
SLBROUTINE EXITA1
INTEGER w,v
COMMON /STORE2/ w(204a)
COMMON /STOREl/ v(a09s0)

A w(1)-.=2oas
v(1)=a09s0
v(2)=1e
\/(3)=0
CALL MORMvB(v(4),o,aHc0MDa ,0,s)
RETURN
END

MIMER/DB USER MANUAL./3.2/1.0 i

Application exit routines

f\
I

w

/'\

/\

C.Ol

Appendix C

MACHINE DEPENDENT ROUTINE DESCRIPTIONS

The machine dependent routines are grouped as follows:

Direct Access I/O Routines

Sequential Access I/O Routines

Character String Routines

Data Conversion Routines

Data Move Routines

Special Routines

The I/O routines and some of the special routines are the
interface between MINER and the operating system. The other
routines are used as an extension of the FORTRAN-66 language.
The machine dependent routines may very well be used by other
programs outside the MIMER family, provided that the programming
language is compatable with code generated by the FORTRAN
compiler.

MIMER/DB USER MANUAL./3.2/1.0
Machine dependent routine descriptions

MDRDAD - Direct Access Open

Purpose:

To open a direct access file.

Format:

. /‘-\ MDRDAD (F-'C8,NAME)

_

)'\

» Arguments:

FCB u3Iw inout file control block

C.03

in FCB(l) access option:

v/\
cacao

in

out FC8(l) return code:

- create
— update
- read

FCB(3) number of blocks

<0-error
=0-ok

out FCB(2) file identifier

NAB/E Cx in

Description:

Note

The direct acce fi

file name

ss le associated with the name, specified by

the argument NAME, is opened 'with the access option given in

the file control block s ' ', pecified by the argument FCB

When create option is '

to allocate

given, F'C8(3) denotes the number of
blocks to be physically allocated on disk.

l

MIME R/DB USER MANUA 1./3 . 2/1 . 0
MDR 'DAD - Direct acce§ open

C.U5

MDRDAW - Direct Access Write

Purpose:

To write a block to a direct access file.

Format:

- MDRDAW (FCB , IOAREA)

/\
Arguments:

PCB 3Iw inout file control block "

in F-'C8(2) file indentifier

in FC8(3) relative block number

out FCB(l) return code:

<0-error
=0-Ok

IOA REA ref I /O- area

if-K Description:

Q

\‘,.

The block located in the I/O-area, specified by the argument
IOAREA, is written to the direct access file, specified by the
argument F CB.

e

» ,

MIMER/D8 USER MANUAL/3.2/1.0
MDRDAW - Direct access write

C.07

MDRSIO - Start asynchronous I/O

Purpose:

To start a direct access I/O-operation.

Format: i '

MDRSIO (FCB , ICJAREA)

'7

- Arguments:I\

/\
4

FCB 31w inout file control block

’ in i FCB(l) operation code:

/\

00°

V

- read
- read
- write

in F-'CB(2) file identifier

in FC8(3) relative block number

F'CB(l) access identifier (>0)

IOAREA ref I/O-area

Description:

/'\K)

Note

A direct access I/O-operation is started by using the options
given in the file control block, specified by the argument FCB,
and as cache memory uses the l/O-area, specified by the
argument IOAREA.

On computers where asynchronous I/O is not applicable, this
routine will act as either MDRDAR or MDRDAW.

MIMER/DB USER MANUAL/3.2/1.0
MDRSIO - Start asynchronous I/O

(3.09

SEQUENTIAL ACCESS I/O ROUTINES

The following routines are available:

MDRSAO - Sequential Access Open

. MDRSAR - Sequential Access Read

¢ MDRSAW - Sequential Access Write

MDRSAC - Sequential Access Close

1111111IIIIiIIIIiZIIIIIIIIII$11111IIl{IZII€lI1IIl€III
Z‘

,.»

£3 >‘ /

MIMER/DB USER MANUAL/3.2/1.0
Sequential access I/O routines

I5

.7\

k\

/'\
.-

MDRSAC - Sequential Access Close

Purpose:

To close a sequential access file.

Format:

MDRSAC (FCB)

Arguments:

C.l3

FC8 3Iw inout file control block

in F-'CB(l)=xy

x : print option

=1-yes
0-no

.y : file disposition

= 0 - keep
= 1 - delete

in F'CB(2) file identifier

out F'C8(l) return code:

V/\

coo

Description:

Note

The sequential access file, specified by the argument FC8,
closed .

On some implementations the possibility to print and/or delete the
file might not be supported.

- BPPOI‘

- ok
- ok, but only keep file

MINER/DB USER MANUAL/3.2/1.0
MDRSAC - Sequential access close

C.l5

MDRMVC - Move Characters

Purpose:

To move character string.

Format:

">

?\

MDRMVC (STR'l,OFF-'l,LENl,STR2,0FF'2,LEN2,F'ILl_)

Arguments:

STRl ref first string address
OFFl Iw in first string offset
LENl Iw in first string length

STR2 ref second string address
OFF2 Iw in second string offset
LEN2 Iw in second string length

FILL ref fill character

Description:

./“‘\

/\
‘)

- Note

The first string, specified by the arguments STRl, OFF-'1 and
LENI, is replaced by the second string, specified by the
arguments STR2, OFF-'2 and LEN2. If the first string is longer
than the second string, the highest addressed bytes of the first
string are replaced by the fill character, specified by the
argument FILL. If the first string is shorter than the second
string, the highest addressed bytes of the second string are not
moved.

If the strings are overlapping, and the first string has a higher
starting address than the second string, the result is unpre-
dictable.

MIMER/D8 USER MANUAL/3.2/1.0
MDRMVC - Move characters

G
Av

/\

/\

/'\
_/'

C.l7

MDRMVF - Move Character Fill

Purpose:

Form

To fill a block of memory with a fill character.

at: F

MDRMVF (STRING , OFFSET, LENGTH, FILL)

Arguments:

STRING ref character string address '
OFFSET Iw in character string offset
LENGTH Iw in character string length

Fl]_L ref fill character

Description:

Note

The bytes in the string, specified by the arguments STRING,
OFFSET and LENGTH are replaced by they fill character,
specified by the argument FILL.

MDRMVF is a special case of MDRMVC withLEN2 = 0.

MIMER/DB USER MANUAL/3.2/1.0
MDRMVF - Move character fill

C.l9

MDRCLB - Compare Logical Character Blocks

Purpose:

To compare one block of memory with another.

Format:
2

I11

MDRCLB (STRI, OF'F'l,STR2, OF'F2,LENGTH,COND)
1

A Arguments:

STRl ref first string address
OFF-'1 Iw i in i first string offset

STR2 ref second string address
OFF2 Iw in second string offset

LENGTH Iw in length of first and second string

COND lw out return code:

\//\

cacao .I

first string low
- strings are equal

first string high

Description:

/-\

/'\

Note

The bytes of the first string, specified by the arguments STRI,
OFF-'1 and LENGTH, are compared with the bytes of the second
string, specified by the arguments STR2, OFF2 and LENGTH.
Comparison proceeds until inequality is detected, or all the
bytes of the strings have been examined.

MDRCLB is a special case of MDRCLC with L.ENl = LEN2,
except that the absolute value of COND does not reflect any
position.

MIMER/DB USER MANUAL./3.2/1.0
MDRCLB - Compare logical character blocks

C.2l

MDRSKC - Skip Character

Purpose:

To skip character in character string.

Format:

MDRSKC (STRING, OFFSET, LENGTH ,CHAR ,CCND)

A Arguments:

STRING ref character string address
OFFSET iw in character string offset
LENGTH Iw. in character string length

CHAR ref character

CONE) Iw out return code: = 0 - not found
> O - found

Description:

/K

.

*4-_) Note

The character, specified by the argument CHAR, is compared
with the bytes of the string, specified by the arguments
STRING, OFFSET and LENGTH. Comparison continues until
inequality is detected, or until all bytes of the string have been
compared. In case of inequality, COND is set to the position
of the last processed byte in the string.

If LENGTH is negative, the absolute value of LENGTH is used
as string length, and the bytes of the string are processed
backwards, from the hiq1est addressed byte to the lowest.

MIMER/DB USER MANUAL/3.2/1.0
MDRSKC - Skip character

/\

/\

C.23

MDRSPC - Span Characters

Purpose:
A

To skip a set of characters in character string.

Format:

11111111111111111111111131111IIIZfI1IIIIIII1II1IIII1Z1I$11
‘

MDRSPC (swarms, OF-'F'SET,L_EINGTH,TABLE,MASK ,COND)

Arguments:
 A

STRING ref character string address
OFFSET Iw in character string offset
LENGTH Iw in character string length

TABLE ref table

MASK ref mask byte

COND Iw out return code: = 0 - not found
> 0 - found

Description:
A

’“ The bytes of the string, specified by the arguments STRING,
OFFSET, and LENGTH, are successively used to index into a
byte table, whose zero entry address is specified by the
argument TABLE. The byte selected from the table is ANDed
with the mask byte, specified by the argument MASK. The

~ operation continues until the result of the AND is zero, or until
the bytes of the string are exhausted. If the operation is
terminated with a zero AND result, COND is set to the
position of the last processed byte in the string.

MIMER/DB USER MANUAL/3.2/1.0
MDRSPC - Span characters

C.25

MDRTRC - Translate Characters

Purpose:

To translate character string.

Format:

A’ MORTRC (STRING , OFFSET, LENGTH,TABLE)

.f\
Arguments: '

STRING ref character string address
OFFSET Iw in character string offset
LENGTH Iw in character string length

TABLE ref table

Description:

The bytes of the string, specified by the arguments STRING,
OFFSET and LENGTH, are successively used to index into a
byte table, whose zero entry address is specified by the
argument TABLE. The byte selected from the table replaces
the byte in the string. The operation continues until the bytes

A of the string are exhausted. '

Note: ,

If the string and the table are overlapping, the result is
T, unpredictable . ' F

MIMER/DB USER MANUAL/3.2/1.0
MDRTRCI - Translate characters

C.27

MDRCIC - Convert to Integer from Character

Purpose:

To convert data, from numeric character string representation,
to integer number representation.

Format:

’ MDRCIC (lNTEGV,ST RING,OFFSET,l_ENGTH,COND)

/'\
Arguments:

INTEGV Ix out integer number

STRING ref numeric character string address
OFFSET Iw in numeric character string offset
LENGTH Iw in numeric character string length

v/\
00¢’

I

COND lw out return code: - undefined value
= - Ok s

overflow value

Description:

'/~ The numeric character string, specified by the arguments
STRING, OFFSET and LENGTH, is converted to a rounded
integer number, specified by the argument INTEGV. If
overow occurs, the integer number is set to the maximum
value (IMAX), and COND > D is returned. If the character

-2'-\ string is not numeric, or LENGTH < 1, the integer number is
..- set to the undefined value (INULL), and COND > 0 is returned.

MIMER/DB USER MANUAL/3.2/1.0
MDRCIC - Convert to integer from character

C.29

MDRCFC - Convert to Floating from Character

Purpose: .

To convert data, from numeric character string representation,
to oating point number representation.

Format: F

' MDRCFC (F-LOATV,5TRING,QFF'5ET,LENGTH,CUND

Arguments:

FLOATV Fx out floating point number

STRING ref numeric character string address
OFFSET lw in numeric character string offset
LENGTH Iw in numeric character string length

' COND lw out return code : < 0 - undefined value
= 0 — ok
> 0 - overflow value

Description:

The numeric character string, specified by the arguments
/\ STRING, OFFSET and LENGTH, is converted to a floating point

number, specified by the argument FLOATV. I overflow
occurs, the floating point number is set to the signed maximum
value (FMAX), and COND > 0 is returned. If the character
string is not numeric, or LENGTH < 1, the floating point
number is set to the undefined value (FNLLL), and COND < 0
is returned.

MIMER/DB USER MANUAL/3.2/1.0
MDRCFC - Convert to floating from character

I\-

/\

/'\

.1’ “\

C.3l

MDRCIF - Convert to Integer from Floating

Purpose:

To convert data, from oating point number representation, to
integer number representation.

Format:

MDR CIF i (INTE GV , FLOATV , COND)

Arguments:

INTEC§V Ix out integer number

FLOATY F’ x in floating point number

COND Iw out return code:

V/\

00¢‘

I

undefined value
= - Ok

- overflow value

Description:

The floating point number, specified by the argument FLOATV,
is converted to a rounded integer number, specified by the
argument INTEGV. If overflow occurs, the integer number is
set to the signed maximum value (IMAX), and COND > 0 is
returned. If the floating point number is undefined (FNLLL),
the integer number is set to the undefined value (INLLL), and
COND < 0 is returned.

MIMER/D6 USER MANUAL/3.2/1.0
MDRCIF - Convert to integer from oating

C.33

DATA MOVE RDUTINES

The following routines are available:

MDRMIA - Move to Integer from Attribute
MDRMAI - Move to Attribute from Integer
MDRMFA - Move to Floating from Attribute

A MDRMAF - Move to Attribute from Floating

A Notes:

An attribute byte string is a string which contains an integer
number or a oating point number, not necessary on word
boundary.

An attribute byte string is defined by using three arguments:
ADDRESS, OFFSET and LENGTH. The lowest addressed byte
of the string is determined by adding the value of the argument
OFFSET to the addres of the argument ADDRESS. Note that
the byte offset value is valid even if it is negative. The
number of bytes in the string is given by the value of the
argument LENGTH.

The special-format is an internal representation of integer and
floating point numbers, used in MIMER/DB, which makes it

~,\ possible to use logical compare operations, not only for

/\
~

character strings, but also for integer and floating point
numbers.

MIMER/DB USER MANUAL/3.2/1.0
Data move routines

C.3S

MDRMAI - Move to Attribute from Integer

Purpose:

To move an integer number, from an integer word, to an

attribute byte string, optionally converted to special-format.

Format:

: \ I I I 1 1 I I I I I Q Z Q I 1 Z I I I I Z I I I 1 1 Q I 1 Q I I 1 I 1 1 II i 1 I f j 1 1 Z I I . I Q 1}

MDRMAI (STRING,OFFSET,LENGTl-l,INTEGV,Fl_AG)

_ Q — Q Q — — Q — Q — _ _ Q Q _ — Q _ Q Q Q Q _ Q Q Q Q Q Q — — Q Q — _ Q Q — _ _ Q Q Q Q — _ Q Q - Q _ an

4?\

Arguments:

STRING ref attribute byte string address
OFFSET Iw in attribute byte string offset

LENGTH Iw in attribute byte string length

INTEGV Ix in integer number

FLAG Iw in flag: - = 0 - no conversion
= l - convert to special-

format

Description: .

- The integer number, specified by the argumetINTEGV, is
optionally converted, depending on the value of the argument
FLAG, and possibly compressed to the attribute byte string
length. The resulting value is stored in the string, specified by

’“ the arguments STRING, OFFSET and LENGTH.

MIMER/DB USER MANUAL/3.2/1.0
MDRMAI - Move to attribute from integer

/"\

C.37

MDRMAF - Move to Attribute from Floating

Purpose:
0

To move a floating point number, from a floating point word,to
an attribute byte string, optionally converted to special-format.

Format

MDRMAF (STRING, OFFSET, LENGTH, FLOATV,FLAG

,\ Arguments:

STRING ref attribute byte string address
OFFSET Iw in attribute byte string offset
LENGTH lw in attribute byte string length

FLOATV Fx in floating paint number

FLAG Iw in flag : = 0 - no conversion N

= l - convert to special-format

Description:

The floating point number, specified by the argument FLOATV,
is optionally converted, depending on the value of the argument
FLAG, and possibly compressed to the attribute byte string
length. The resulting value is stored in the string, specified by

)'\

the arguments STRING, OFFSET and LENGTH.

MINER/D6 USER MANUAL/3.2/1.0
MDRMAF - Move to attribute from floating

/'\
/

0../K

/\

/\
.L /

c .39

MDRPDT - Provide Date and Time

Purpose:

To provide date and time from the system-clock.

Format

MDRPDT (STRING)

Arguments:

STRING C16 out - nuneric character string.

Description:

The current date awd time is retrieved from the system-clock,
and edited into the string, specified by the argument STRING,
with the format 'YYYYMMDDHHMMSSth'.

MIMER/DB USER MANUAL./3.2/1.0
MDRPDT - Provide date and time

:_

?\

C.4l

MDRCRA - Compute Relative Address

Purpose:

To compute the byte address of a variable relative to another
variable.

Format

MDRCRA (REl_ADR,ADDRl,ADDR2)

Arguments:

RELADR Iw out relative byte address (see note)

ADDR]. ref first variable

ADDR2 ref second variable

Description:

Note

The address of the first variable, specified by the argument
ADDRI, is subtracted from the address of the second variable,
specified by the argument ADDR2, with the result converted to
reflect the difference in bytes. The result is returned in the
argument REILADR.

A On 16-bit computers, the argument REZLADR is the low-order

/\

part of the double word, where the relative byte address is
returned.

MIMER/DB USER MANUAL/3.2/1.0
MDRCRA - Compute relative address

/'\

m/'-

/\

/'\

CA3

MDRALI - Add Logical interlocked

Purpose:

To perform a logical add operation in interlocked mode.

Format

MDRALI (WORD , VALUE)

Arguments:

WORD Iw lnout word (can be located in shared memory)

VALUE Iw in value

Description:

The word, specified by the argument WORD, is updated by
making a logical add with the value, specified by the argument
VALUE. A possible carry is ignored. The operation is
executed in interlocked mode, thus making it possible to update
counters in shared memory.

MIMEIR/DB USER MANUAL/3.2/1.0
MDRALI - Add logical interlocked

)'\

/%

/\

. /"\

CA5

MDRDEQ -Dequeue Semaphore (Signal)

Purpose:

To perform a signal-operation on a semaphore.

Format

MDRDEQ (SEM)

Arguments:

SEM 2Iw inout semaphore (located in shared memory)

Description:

The semaphore, specified by the argument SEM, will have its
value increased by one. If the previous value was zero and a
semaphore-queue exists, the waiting processes are made
runnable and the queue is removed.

MIMER/DB USER MANUAL/3.2/1.0
MDRDEQ - Dequeue semaphone (signal)

MRALC - Alter case

Purpose:

C.

To change case of alphabetical characters in a character
string.

Format:

/~\ MDRALC(STRING,OFFSET,LENGTH,CASE)

/"\

/\

Arguments:

STRING ref — character string address
OFFSET Iw in — character string offset
LENGTH Iw in — character string length .

CASE Iw in- — case code
= 1 - alter to lower case
= 2 — alter to upper case

Description:

The alphabetical characters of the string, specified.
by the arguments STRING, OFFSET and LENGTH, are converted
to lower or upper case depending on the value of the
argument CASE. This conversion is performed in place
i.e directly in the input string.

Alphabetical characters are by default characters in the
intervals A-2 and a-2. This definition can be changed by
calls to MDRSCT.

In translation to upper case, upper case characters in the
/* input string are normally unchanged, and the same holds for

lower case input when lower case translation

Note:

If LENGTH <= 0 or if CASE < l or CASE > 2 return only.

Note that the MDRSCT may define translation for any byte,
8-bit codes also.

MDRALC — Alter case

MDROTF — Open terminal file
Purpose:

To open the terminal file
Format:

iiiiIt11111111ii itit$11111ii1;1111

’“‘ MDROTF (CODE)

/\

,/\

Z\

Arguments:

CODE Iw out — return code

= -1 — error
else OK

Description:

Open terminal for read/write

Note:

C.

MDROTF - Open terminal file

f\

f\

-.

MDRSCT — Set case translation

Purpose:

C.

To change the definition of the alphabetical character
set used in the MDRALC routine.

Format:
A

MDRSCT(CHAR,TRCHAR,CASE)

Arguments:

CHAR Cl in — character for which translation is to be changed
TRCHAR Cl in — character to which CHAR will be translated in

the new translation definition

CASE Iw in — case code:
= 1 — alter to lower case
= 2 - alter to upper case.

Description: ,

This routine affects the translations which are performed
by the MDRALC routine. MDRALC contains the definition of
the alphabetical set of characters and their translations
for each CASE. A call to MDRSCT changes that definition.

This routine will change the definition of translation
/“‘ character for CHAR to TRCHAR. The CASE parameter specifiesif it is the translation to upper or to lower case that

is to be affected.

Note:

* If CASE < 1 or CASE > 2 return only.

Note that the MDRSCT may define any byte as character,
8-bit codes also.
The most common use of this routine is to define case
translations for national characters

MDRSCT — Set case translations

