Mimer/DB

Mimer Database Manager User Guide
Updated for Mimer/DB Version 3.2.8

9740-00

Diab Data AB

Box 2029 S-183 02 TABY
SWEDEN

MIMER DATA BASE MANAGER
(MIMER/DB)

Reference Manual

Version 3.2
January 1984

C MIMER INFORMATION SYSTEMS AB, 1984. All rights reserved.

2.2 Data Control = ecececceccccccccaacaaa- 2.09
2.2.1 OPENT2 - Open Table Cursor = <cccc-a- 2.10
2.2.2 PROJE2 - Project Column = ccccea-- 2.11
2.2.3 SELEC2 - Select Rows = ccccccacaaa- 2.12
2.2.4 SET2- - Set Table Cursor = = cccceceaa- 2.14
2.2.5 PUSH2 - Push Table Cusor @ = = <ccccaa- 2.15
2.2.6 POP2 - Pop Table Cursor = = cccccaa-- 2.16
2.2.7 DEQUE2 - Dequeue Table Cursor @ =--cece--- 2.17
2.2.8 CLOST2 - Close Table Cursor = «ccca--- 2.18

2.3 Data Retrieval/Manipulation @~ =00 cccccacoo-. 2.19
2.3.1 GET2 - Get (Next) Row = ecccccee--a 2.20
2.3.2 INSER2 - Insert New Row = ecceacaaaao 2.21
2.3.3 UPDAT2 - Update Current Row = ~cceee-a- 2.22
2.3.4 DELET2 - Delete Current Row = =<«cccca--- 2.23
2.3.5 LOAD2 - Load Rows = eccccceccecaaa 2.24
2.3.6 DROP2 - Drop All Rows = ccceccccaceea 2.25

2.4 Data Definition @ === cccecceccececccccacaaa. 2.26
2.4.1 DEFCO2 - Define Column = <ccccaaa-a 2.27
2.4.2 REMCO2 - Remove Column(s) @ = ==cceccea-- 2.29
2.4.3 DEFIX2 - Define Index @ = <cccccaaa- 2.30
2.4.4 REMIX2 - Remove Index{(es) @ = = «cecccccea- 2.31

2.5 Data Base Definition @ === ceccececcccacacaaa- 2.32
2.5.1 DEFAC2 - Define Access = = = cccccccac--- 2.33
2.5.2 REMAC2 - Remove Access = eccccecaca- 2.34
2.5.3 DEFDB2 - Define Databank = ecceacaaa- 2.35
2.5.4 REMDB2 - Remove Databank = = = «ccccaaao 2.36
2.5.5 DEFUS2 - Define User = ~eeececccccccacacaa. 2.37
2.5.6 REMUS2 - Remove User = = <cccocccccaaoaao 2.38

2.6 Data Base Service = = = cececccccccccccccacccacaaaaaa 2.39
2.6.1 COPYD2 - Capy Databank = ~--c-cc-ae--- 2.40
2.6.2 RESTD2 - Restore Databank @ = =cecccaaaaa- 2.41
2.6.3 GENDB2 - Generate System Databank @ ------ 2.42

Appendix page

A. MIMER/DB ERROR CODES A.0l1

B. MIMER/O8 EXIT ROUTINE DESCRIPTIONS --—-—-- B.01

Application Exit Routines essceeeeea—e B.02
EXITAl - Allocation-exit ——mmecccencaae B.02
EXITC1 - Call-errar-exit = cecmccmmcaee- B.02

Installation Exit Routines B.03
EXITB1 - Begin-exit B.03
EXITEl - End-exit B.03

MIMER/DB USER MANUAL/3.2/1.0

Contents

1.01

CHAPTER 1
MIMER/DB GENERAL DESCRIPTION

1.1 Introduction

MIMER/DB is a multi-user relational data base management
system with an active data dictionary to control data access, usage,
and security. MIMER/DB was developed at Uppsala University Data
Centre (UDAC) in Sweden and it is now the nucleus of a family of
products which as application programs, access the data base. These
products include:

A query language

-MIMER/QL, an English type query language suitable for end
users which has simple commands for accessing the data quickly and
also for interactively building and extending the data base records.

A prototyping language and program generator

-MIMER/PG, which eliminates the need for coding in primitive
languages such as COBOL. MIMER/PG includes a report generator
for rapidly preparing reports to any specification.

A screen handler system

-MIMER/SH, for quick and easy formatting of data entry and
query screen menus.

An information retrieval system
-MIMER/IR, for large data and text search applications.
Utility programs
-used to execute frequent operations on the data base, such as

back-up and recovery operations, and to carry out statistical analysis
of disk usage, analysis of buffer pool usage etc.

MIMER/DB USER MANUAL/3.2/1.0
Introduction

1.03

1.2 Physical Storage Structure

1.2.1 Databanks

. MIMER/DB works with storage units called databanks. A
MIMER data base may contain an arbitrary number of databanks. A
databank corresponds to an ordinary direct access file as far as the
operating system is concerned. It consists of commonly sized pages
addressable by a relative page number. The size of the pages used
in MIMER/DB is installation dependent. A large block size is
desirable for sequential access but a small size is preferable for
multi-index searching. Note that if you do change the block size for
an installation, it is necessary to reload all the applications. This is
a lot of work!

A databank contains an arbitrary number of tables. All the
contents in a table are stored in one databank, whereas one
databank may contain several tables. The structure of a databank is
shown in Fig. 1.

In MIMER/DB data transfer between primary and secondary
memory is done on a page by page basis. Every databank has a
bitmap which is used to indicate which pages are used, and which
pages are free. Thus the bitmap is a directory of space utilization.
If MIMER/DB needs a new page in a databank, this page is marked
"used' in the bitmap. If a page is detached, e.g. when deleting
data, it is marked "free" in the bitmap. This means that the
databank grows and shrinks, depending upon user needs, without the
user having to state a maximum size for each table to be stored in
the databank.

When creating a databank the first page will become the
bit-map and the second will be the "root" page. The root page is
effectively a master directory of all the tables in the databank. If
the databank is very large, additional bitmap pages maybe used and
these will be connected to the first one. In a similar way, if the
root page does not have enough entries, addtional root pages are
created, connected to the the first. This implies that there is no
limit to the number of tables within a databank. All other pages in
a databank are either free or used for indexes or data.

MIMER/DB USER MANUAL/3.2/1.0
Databanks

1.05

1.2.2 Tables

As mentioned earlier, a databank contains a number of tables.
According to the terminology of relational data bases, every table is
a "n-ary relation", i.e. it contains a number of "tuples" (rows or
records), each one consisting of n "attributes" (columns of fields).

The disk storage structure of a table is shown in Fig. 2 and is
represented by a so called B*-tree.

In MIMER/D8, the B*-tree consists of an index section and a
data section. The rows of a table are stored in the data section,
i.e. in the leaf nodes of the tree. The index section of the tree,
i.e. where the non-leaf nodes of the tree are stored, is a roadmap
to enable rapid location of the required node on the next level.
Inside all nodes, data are stored sorted on the key values. This
makes it possible to use a fast binary search algorithm to find a
certain row, or to find the place where a row should be inserted.
When inserting new rows, the tree grows and when deleting rows,
the tree gets smaller quite automatically. The MIMER/DB algorithm
for maintaining the B*-tree structure will give an average of 83%
(5/6) used space in each node. This implies that continuous
reorganization is done automatically by MIMER/DB, and periodical
reorganizations are aobsalete.

A table is entered via the root page of the databank containing
the table. The root page is the directory of the tables in the
databank and contains page number references to the roots of the
B*-tree structures. .

MIMER/DB USER MANUAL/3.2/1.0
Tables

)/

1.07

ROOT PAGE

K10 &

7

FREE SPACE
....—__l

PAGE POINTER

K4 KB |K10 K13K13 B

|
{K2|K3{ K4 KS{K6|K7|K8 K9{K1d KlJKlgkll K14 Kl"Kl%Kl" <181 Kzg

Fig. 2 Table Structure (B*-tree)

1.09

PHASE 1 nl Tka FREE PAGES: #3,#4

#2|KY K2|K3IK4

PHASE 2 #1 K4

#2|KYK2|K3|K4

#3| K1 K2 ##4 |K3IK4

PHASE 3 /21 K2IK4
#31K1{K2 #4 |K3IK4

- #2|KY K2|K3|K4

PHASE 4 /3 K2|K4 FREE PAGE: #2

i#3 [K1|K2 ##4 |K3|K4

Fig. 3 B*-tree Transformation (Split)

1.11

Valid numeric constants:

12
l.E-S
-33.523
6E22 .
Invalid:
2.5 E must be followed by an integer value
E33 E must be preceded by a decimal value
125A3 Letter among the digits
2,4 Use decimal, point comma not valid

Character format

Characters are stored one to a byte in the same way as the
internal machine representation (ASCII, EBCDIC etc). This means
that the logical storage order is in accordance with the repre-
sentation, and implies that for ASCII the digits are sorted before the
letters, whereas in EBCDIC it is the other way round. A string of
null-bytes is regarded as undefined.

Integer format

Integers are stored in an internal binary format not identical to
the machine representation. The internal binary format is necessary
to improve performance in bit by bit searching within compare
operations. Integers can be stored in an arbitrary length up to the
machine dependent length IBYTE. The shorter lengths can be used
to save space, but the valid range is reduced.

One value is reserved. INULL, is regarded as an undefined
value. It appears for instance on input (character to integer
conversion) if a blank string or if an illegal numeric constant occurs.
If overflow occurs at input, a maximum value is set (sign*IMAX if
stored in length IBYTE). Observe that if shorter storage length is
used, a smaller maximum value is also used. On output (conversion
to character) an undefined value is transiated to a string of null
bytes.

Floating point format

Floating point numbers are stored in an internal binary format
not identical to the machine representation. They can be stored in
an arbitrary length up to the machine dependent length FBYTE. (On
some machines DOUBLE PRECISION is not implemented). Shorter
lengths can also be used, to save space, but the precision is then
decreased. To store any meaningful information at least two or
three bytes are required.

Conversion between floating point numbers and characters can
possibly give a slight decrease in significance.

MIMER/DB USER MANUAL/3.2/1.0
Columns types and data formats

1.13

1.3 Access module structure

The MIMER/DB software is structured in a number of modules,
which in tum are grouped into well defined layers.

The user interface is the highest layer (2), and it manages the
data transfer from the internal control area to the application
program (or vice versa). In connection with this transfer, a format
conversion of the involved data may be performed.

The row manager is the next layer (1), which among other
things transfers the required rows between a page in the buffer-pool
and the user interface control area. Facilities for transaction
management and sort/merge are also included.

The page manager is the lowest layer (0), which controls the
buffer pool in a similar way to virtual memory management. When
a certain page is required, which is not in the buffer-pool (page
fault), the least recently used (LRU) page makes room for the new
page. If the LRU-page is marked updated, it is written back to
disk, before the new page is read into the buffer. The actual direct
access 1/O operations are performed via the /O interface, which is
the connection between MIMER/DB and the operating system.

The single-user system structure is shown in Fig. 4.

In the multi-user system, which is shown in Fig. 5, the user
interface accesses the row manager through a traffic controller
connected to the MIMER/DB nucleus. There may be an arbitrary
number of nucleus processes warking against the shared memory
buffer-pool. This reveals that MIMER/DB supports multi-threaded
access.

MIMER/DB USER MANUAL/3.2/1.0
Access module structure

Application 1

User Interface

Data
Base

Fig. 5

Application 2

User Interfac_e

Application 3

1.15

User Interface

Traffic Controller

0000
........

Row Manager

Page Manager

Row Manager

I/O Interface

Page Manager};

I/O Interface

Buffer
- Pool _

A

MIMER/DB Multi-User System

1.17

(Pamo[[8 853308 OU) ej8Ald - d
(Ajuo peal) peal - Y
(doap ‘peoj 3daoaxa suojjetado a3ldm pus peal) pedeys - S

(suotyeiedo (ie) aAIsN[oxa - X
pemoj[e 850308 jo adk]
aweu >ueqejed

awsu Jasn

piomssed papo)

Jasn AJsuipio - §
(vgQ) Jojeaisjujwps eseq B1Bp - X
Ajuoyine

(A11eudajuy pasn) A313uepi
awsuJosn Jo U011BII§1jUap!

9]qis83008-UON

Jas)
a9
Jasn)

jueqejep jo awseu [edisAyd
(s)ueqelep g

§89008 UBD ZQLS3IY PuB ZAAJOD Ajuo) ajsald dmjoeq >ueqejeqg - 9
(SS3DIV» 21q8) 03 19j3J) ajeatad jueqejep Jas) - d

(Ajuo pesaJ) peal sjueqejep J9sM - Y

(doup ‘peoj 3daoxa suojjedado ajldm pue pead) paJisys jueqejep JasM) - S
(suoijeaado [[8) BAISN[IXD jueqejep Jasn - X

sueqejep jo adAkj
Aauapt >ueqgeleq
sjueqeiep jo aweu (831607

$830J8 [BJ3UAIY

uojdizosaQg

1 J S$S300V

8 O=» YNvavlivd

8 O« ¥3asn SS3JIV+

8 O (QYOMSSVYd)

1 J H1NVY

v 0 ONY3SN

8 O= y3asn 43QY35N*-

xx 3 FNASAH

1 J SS303JV

v O OoN8d

g8 O« YINvav1lvd 43060«
uwnjo) alqe]

9ASAS Jueqeieq jo uonedjjoeds z7°p°1

1.19

1.5 Data base security
1.5.1 Access to MIMER/D8

Any program that is to communicate with MIMER/DB must first
provide a user identification (userid) and a password by entering
BEGIN2. :

Authorized userids and passwords for accessing MIMER/DB are
stored in the *USERDEF system table. Initial entries in this system
table are made when the data base is generated. A user who has
Data Base Administration authority can define a new user by entering
DEFUS2.

A user may have one of following authorities:
S' - Standard (Ordinary user)

X' - Exclusive (Data Base Administraﬁor)

MIMER/DB8 USER MANUAL/3.2/1.0
Access to MIMER/D8

1.21

1.6 Transaction management

In order to preserve the integrity during concurrent access to a
shared database, operations must be grouped in units called
transactions.

When using the MIMER/DB transaction facilities, a databank
named TRANSDB must be defined. TRANSDB acts as a secondary
memary storage for MIMER/DB. If the logging facility is required,
the databank LOGDB has to be defined. When LOGDB is existence,
MIMER/DB will automatically log every commited update-transaction.

The beginning of a transaction is indicated by entering BEGTRZ,
and the end by ENDTR2 requesting either commit or abort.

The transaction manager in MIMER/DB does not use any locking
protocol in order to preserve integrity. Therefore, dead-lock
detection or prevention is not applicable. Instead, an "optimistic"
concurrency protocol is used, which relies far efficiency on the
expectation that conflicts between transactions will not occur.

MIMER/DB USER MANUAL/3.2/1.0
Transaction management

BEGIN TRANSACTION
READ OPERATION
UPDATE OPERATION
END TRANSACTION

Fig. 7

DATABANK

=
N

VERIFICATION
(STEP 2)

COMMIT
(STEP 3)

TRANSACTION DATABANK
(TRANSDB)

1

>

WRITE-SET |

READ-SET

Optimistic Concurrency Control

1.23

—

1.25

1.8 How to use MIMER/DB Routines

In this section, we have used several examples, trying to
ilustrate how the different routines in MIMER/DB are connected to
each other. The examples are written in an ADA-like
pseudo-language. Parameters in capital letters are used, when they
denote a character string containing the same information. A
detailed description of each MIMER/DB routine will be found in
Chapter 2.

1.8.1 How to start/end processing

First of all, BEGIN2 must be entered with userid and
password, in order to determine if the user is allowed to use the
data base (LOGON).

Each databank that the user wishes to access, must then be
opened by entering OPEND2, in order to determine the users access
privilege.

Later, when doing operations on a databank, that should be
treated as one transaction, they must be enclosed by entering
BEGTR2 and ENDTR2. Applications wing transactions are shown in
Examples 3 and 4.

When all operations on a databank have been finished, the user
may enter CLOSD2, indicating that the databank is not in use.

Finally, before ending the application program, END2 must be
entered, in order to release MIMER/DB control (LOGOFF).

MIMER/DB USER MANUAL/3.2/1.0
How to user MIMER/DB routines

1.27

Example 1
For each manufacturer, display all drugs and their classification.
fecmcccmcnccccc e e e ccaana e .
BEGIN2(rcode, userid, password)
OPEND2(did ,DRUGDB,R);

OPENT2(cursorl,did, MANWFACT,R)
PROJE2(cursorl,F,MANID,RO,base,pmanid,C, 3);
PROJE2(cursorl, A,MNAME,RO,base,pmname,C, 50);

OPENT2(cursor2,did ,DRUGS,R);
PROJE2(cursor2,F,DNAME, RO, base,pdname,C,15);
PROJE2(cursor2,A,CLASS,RO,base, pclass,C, 40);
SELEC2(cursor2,F,MANID,EQ,base,pmanid,C, 3);

SET2 (cursorl,base);
loop
GET2 (cursorl,base);
exit when cursorl(l)> 0;
display 'pmname'

SET2 (cursor2,base);
loop
GET2 (cursor2,base);
exit when cursor2(1)> 0;
display 'pdname,pclass'

end loop;
end loop;

END2;

MIMER/D8 USER MANUAL/3.2/1.0
How to retrieve data from tables

1.29

When using MIMER/DB, the solution to this problem is to use
PUSH2 to save the current cursor position, when going down to next

level, and POP2 to restore the cursor, when going back up, as
shown in Example 2. :

Example 2

Parts explosion.

BEGIN2(rcode, userid ,password);
OPEND2(did,databank,R);

OPENT2(cursor,did,USAGE,R);
PRQJIE2(cursor,F,MINOR,RQO, base,pminor,C,§);
PROJE2(cursor,A,QTY ,RO,base,pqty ,C,3);
SELEC2(cursor,F,MAJOR,EQ,base,pminor,C, 6);
pminor:="Car ";

SET2 (cursor,base)
loop
GET2 (cursor,base)
if cursor(l) = O
then
-------------- display 'pminor,pqty
PUSH2 (cursor);
SET2 (cursor,base);
else
POP2 (cursor);
exit when cursor(l)>0;
end if;
end loop;
END2;

MIMER/D8 USER MANUAL/3.2/1.0
How to traverse a hierarchic data structure

1.31

Example 3

Reduce the 'Tartrazin-contents of all drugs by 50%, and replace it
by the new and harmless colouring matter Falu-red'.

BEGIN2(rcode, userid,, password);
OPEND2(did,DRUGDSB, S);

OPENT2(cursorl,did,CONTENT, S);
PROJE2(cursorl,F,DRUGID ,RO,base,pdrugid ,C,3);
PROJE2(cursorl, A,PWEIGHT ,RW,base,ppweight ,I,2);
SELEC2(cursorl,F,COMPOSIT,EQ,base,scomposit,C, 9);
scomposit:="Tartrazin";

OPENT2(cursor2,did, CONTENT, S);
PROJE2(cursor2,F,DRUGID ,WO,bsse,pdrugid ,C,3);
PROJE2(cursor2,A,COMPOSIT, WO, base,pcomposit,C, 8);
PROJE2(cursor2, A, TYPE , WO, base, ptype ,C,1)
PROJE2(cursor2,A,PWEIGHT ,WO,base,ppweight ,I,2);
pcomposi t:="F alu-red";
ptype ="C"
loop
BEGTR2(rcode);
SET2 (cursorl,base);
loop .
GET2 (cursorl,base);
exit when cursorl(l)> 0;
ppweight:=ppweight/2;
DELE T2(cursorl,base);
INSER2(cursor2,base);
end loop;

ENDTR2(rcode);
exit when rcode = 0;
end loop;

END2;

MIMER/D8 USER MANUAL/3.2/1.0
How to manipulate data in tables

1.33

1.8.5 How to load/drop data in a table

Before doing a load or drop operation on a table, a cursor must
be defined by entering OPENT2. The access option given must be
'X' (exclusive).

All rows in a table may then be dropped by entering DROP2.

The load operation works on a row-by-row basis, and must be
fed with data from the application program, and therefore PROJE2
must be entered in order to connect columns with program variables.

By repeatedly entering LOAD2, all rows will be dispatched to
an internal sort/merge routine, which implies that an indication must
be given when all rows have been loaded.

The end-of-load signal is given by entering SET2, which means
that the sort/merge will terminate and the sorted rows will be loaded
into the table.

An application dropping all rows, and then re-loading the table
is shown in Example 5.

MIMER/DB USER MANUAL/3.2/1.0
How to load/drop data in a table

1.35

1.8.6 How to define/remove a table

Tables are defined on a column-by-column basis by subsequently
entering DEFCO2, as shown in Example 6.

Columns may be removed from a table by entering REMCOZ2.
When the last column is removed, the table ceases to exist.
1.8.7 How to define/remove an index

A secondary index will be created far a column by entering
DEFIX2, as shown in Example 6.

When no longer needed, a secaondary index can be dropped by
entering REMIX2.

Example 6

Define the table DRUGS, and create a secondary index far the
column DNAME,

BE GIN2(rcode,userid, password);
OPEND2(did,DRUGDSB, X)%

DEF CO2(did,DRUGS,DRUGID ,™",C, 3)
DEFCO2(did,DRUGS,DNAME ," ",C,15)%
' DEFCO2(did ,DRUGS,FORM ;" ".C, 8)
DEFCO2(did DRUGS, STRENGTH ," ".C ,10)
DEFCO2(did DRUGS,MANID " ".C, 3)
DEFCO2(did DRUGS, CLASS nn'C 40);

DEFIX2(did ,DRUGS ,DNAME);
END2;

B R L L L L L R R R R R e el o

MIMER/DB USER MANUAL/3.2/1.0
How to define/remove an index

1.37

1.8.11 How to copy/restore a databank

A backup copy of a databank will be created by entering
COPYD2, as shown in Example 8.

Example 8

Create backup copies of DRUGDB and ADVDS. The backup
databanks are named BORUGDB and BADVDB respectively.

-r --- 3
BEGIN2(rcode, userid, password);

COP YD2(rcade ,BDRUGDS , DRUGDB);
COPYD2(rcode,BADVDB,ADVDB);

END2;

When a disk-crash has occurred, a databank can be restored by
entering RESTD2, as shown in Example 9.

Example 9

Restore the databanks DRUGDB and ADVDB from the backup
databanks BORUGDB and BADVDS8. :

T ESGEaaeR R DT R RN — X

BEGIN2(rcode, userid, password);

RESTD2(rcode ,DRUGDB,BDRUGDB);
RESTD2(rcode, ADVDB,BADVDB)

END2;

MIMER/D8 USER MANUAL/3.2/1.0
How to copy/restore a databank

1.9

Summary of MIMER/DB Routines

Database Control

BEGIN2
OPEND2
BEGTR2
ENDTR2
CLOSD2
END2

Data Control

OPENT2
PROJE2
SELEC2
SET2
PUSH2
POP2
DEQUE?2
CLOST2

Begin MIMER/Db Session
Open Databank

Begin Transaction

End Transation

Close Databank

End MIMER/DB Session

Open Table Cursor
Project Column
Select Rows

Set Table Cursor
Push Table Cursor
Pop Table Cursor
Dequeue Table Cursor
Close Table Cursor

Data Retrieval/Manipulation

*
*

Data Definition

*
*
*
*

GET2
INSER2
UPDAT2
DELET2

LOAD2
DROP2

DEFCO2
REMCQ2
DEFIX2
REMIX2

Get (Next) Row
Insert New Row
Update Current Row
Delete Current Row

Load New Rows
Drop All Rows

Define column
Remove Column(s)
Define Index
Remove Index(es)

Data Base Definition

*
*

L o

*%
E o d
¥

DEFAC2
REMAC2

DEFDB2
REMDB2
DEFUS2
REMUS2

Define Access
Remove Access

Define Databank
Remove Databank
Define User
Remove User

Data Base Service

** COPYD2 - Copy

ko

** GENDB2 - Generate System Databank (SYSD8)

RESTD2

Databank
Restore Databank

1.39

* Only for user with 'X'-privilege on the databank

** Only for user with 'X'-authority (DBA)

MIMER/D8 USER MANUAL/3.2/1.0
Summary of MIMER/DB routines

2.01

CHAPTER 2

MIMER/DB ROUTINE DESCRIPTIONS

The MIMER/DB routines are grouped as follows:

Data Base Control

Data Control

Data Retrieval/Manipulation
Data Definition

Data Base Definition

Data Base Service

MIMER/DB USER MANUAL/3.2/1.0
Routine descriptions

2.03

2.1.1 BEGIN2 - Begin MIMER/DB Session
Purpose: A
To initiate MIMER/DB for processing.

Format:

- - W W ® D W T W D W W W W R W e

Arguments:
RCODE Iw out - return code:
<0 - error
=0 - ok
> 0 - backout
UNAME C8 in - user name
PASSW C8 inout - password
Description:

The user, specified by the argument UNAME, is searched for in
the system table *USERDEF, and verified by the password,
specified by the argument PASSW. The backout return code
will be set when the user name is not found, or when the
password is incorrect. If the verification is successful, internal
control-areas will be initiated, and MIMER/DB is ready for
processing.

Note:

The contents of the password argument is always destroyed.

MIMER/DB USER MANUAL/3.2/1.0
BEGIN2 - Begin MIMER/DB session

2.05

2.1.3 BEGTR2 - Begin Transaction

Purpose:
To indicate the beginning of a transaction.

Format:

L R el e e R L R T

Arguments:

RCODE Iw out - return code:
<0 - error
=0 - ok

Description:

The beginning of a transaction is indicated, i.e. all
update-operations (INSER2,UPDAT2,DELET2), performed before
end-of-transaction (ENDTR2), should be put on an intention-list,
and executed at end-of-transaction during the commit-phase.

Note:

The databank TRANSDB must be in existence when the

transaction management facilities are used.

Tables opened with access option 'X' will not be handled by
transaction management.

MIMER/D8 USER MANUAL/3.2/1.0
BEGTR2 - Begin transaction

2.07

2.1.5 CLOSD2 - Close Databank

Purpose:

To close a databank.

Format:

Arguments:
DID 4Iw inout - databank identifier
DID(1) return code:
<0 - error
=0 - ok
Description:

The databank associated with the identifier, specified by the
argument DID, is closed and the connected control space is
released for re-use. Subsequently all table cursors connected to
the databank are automatically closed.

MIMER/DB8 USER MANUAL/3.2/1.0
CLOSD2 - Close databank

2.09

2.2 Data Contraol

The following routines are available:

OPENT2 - Open Table Cursor

PROJE2 - Project Column
SELEC2 - Select Rows

SET2 - Set Table Cursor
PUSH2 - Push Table Cursor

POP2 - Pop Table Cursor
DEQUE2 - Deque Table Cursor
CLOST2 - Close Table Cursor

Note: Base Address

The declarative routines PROJE2 and SELEC2 use an argument
called "base address'. The variables used as I/O-areas and for
restriction values in the program will have their addresses
converted and stored relative to this base address.

When the executive routines SET2, GET2, INSER2, UPDAT2
and LOAD2, are performed, the argument base address are used
in order to calculate the absolute addresses of the I/O-areas and
the restriction values.

The reason for storing relative addresses instead of absalute
addresses is that some host languages may use an address space
for those variables which is not fixed from time to time. This
means, when calling e.g. PROJE2 the base has a certain
address, and when calling e.g. GET2, the base may have
another address.

Note that the [/O-areas and restriction values must be located
in the space covered by the base address, because a change of

the base address implies the same change for all other addresses
as well,

MIMER/DB USER MANUAL/3.2/1.0
Data control

)’

)

2.11
2.2.2 PROJE2 - Project column
Purpase:
To project a column onto a program [/O-area, i.e. to specify a

binding condition between a column and a variable in the
program.

Format:

- .. ® D - ®®® DD DD W T W W W W W W W W W W W DWW w

Arguments:
TID 4Iw inout - table cursor
TID(1) returmn code:
<0 - error
=0 - ok
LoerP Clin - logical operator:
F' - first
'‘A' - and
'E' - erase
CNAME C8 in - column name
TOP C2 in - transfer operator:
'RO' - read only
'WQ' - write only
'RW' - read/write
'WR' - write/read
BASE ref - base address
ICAREA ref - 1/O-area location
IOTYPE Cl in - [/O-area type:
'C" - character
T - integer
'F' - floating point
IOLEN Iw in - 1/O-area length (in bytes)
Description:

A projection is connected to the table cursor, specified by the
argument TID, by using a logical operator, specified by the
argument LOP. The projection consists of three parts, first
column name, specified by the argument CNAME, second a
transfer operator, specified by the argument TOP, and third the
base address, location, type, and length of an [/O-area,
specified by the arguments BASE, IOAREA, IOTYPE and IOLEN
respectively.

MIMER/DB USER MANUAL/3.2/1.0
PROJE2 - Project column

2.13

Description:

A select-condition is connected to the table cursor, specified by
the argument TID, by using a logical operator, specified by the
argument LOP. The condition consists of three parts, first
column name, specified by the argument CNAME, second a
relational operator, specified by the argqument ROP, and third
the base address, location, type, and length of the restriction
value, specified by the arguments BASE, RVALUE, RVTYPE
and RVLEN respectively.

Notes:

The default option for the table cursor, when no selections are
specified, is no restriction, i.e. all rows are selected.

Subsequent conditions are connected to each other by means of
the logical operator, thus making a conjunctive normal form
expression. E.g. the conditions "First A, Or B, And C, Or D"
will be interpreted as: (A or B) and (C or D), i.e. 'or has
precedence to 'and'.

When a SET2 operation has been executed on the table cursor,
the logical operator OR cannot be used in the first additional
entry to SELEC2.

MIMER/D8 USER MANUAL/3.2/1.0
SELEC2 - Select rows

2.15

2.2.5 PUSH2 - Push Table Cursor

Purpose:

To save the table cursor status.

Format:
PUSH2 (TID)
Arguments:
TID 4lw inout - table cursor
TID(1) return code:

< 0 - error
=0 - ok

Description:

The current status of the table cursor, specified by the
argument TID, is pushed onto a stack and saved, thus making it
possible to use the table cursor on a new set, defined by the
same selection conditions, but with new restriction values.

MIMER/D8 USER MANUAL/3.2/1.0
PUSH2 - Push table cursor

2.17
2.2.7 DEQUE2 - Dequeue Table Cursor

Purpose:
To restore the first saved table cursor status.

Format:

PR R R LR PR P R EE EEE R TR YR X R R R R N L L X R R

Arguments:
TID 4lw inout - table cursor
TID(1) return code:
<0 - error
=0 - ok
> 0 - stack empty
Description:

The table cursor, specified by the argument TID, is restored to
the previous status, saved by the first PUSH2.

MIMER/DB USER MANUAL/3.2/1.0
DEQUE2 - Deque table cursor

2.19
2.3 Data Retrieval/Manipulation

The following routines are available:

GET2 - Get (Next) Row
INSER2 - Insert New Row
UPDATE2- Update Current Row
DELET2 - Delete Current Row

LOAD2 - Load New Rows

DROP2 - Drop All Rows

Note: Base Address

The declarative routines PROJE2 and SELEC2 use an argument
called "base address". The variables used as 1/O-areas and for
restriction values in the program will have their addresses
converted and stored relative to this base address.

When the executive routines SET2, GET2, INSER2, UPDAT2
and LOAD2, are performed, the argument base address are used
in order to calculate the absolute addresses of the 1/O-areas and
the restriction values. :

The reason for storing relative addresses instead of absolute
addresses is that some host languages may use an address space
for those variables which is not fixed from time to time. This
means, when calling e.g. PROJE2 the base has a certain
address, and when calling e.g. GET2, the base may have
another address. ‘

Note that the I/O-areas and restriction values must be located
in the space covered by the base address, because a change of
the base address implies the same change for all cther addresses
as well,

MIMER/DB USER MANUAL/3.2/1.0
Data retrieval/manipulation

2.21

2.3.2 INSER2 - Insert New Row

Purpose:
To insert a row into a table.

Format:

Arguments:
TID ' 4Iw inout - table cursor
TID(1) retum code:
< 0 - error
=0 - ok
> 0 - row already exists
_BASE ref - base address
Descriptions

A row is created with all columns having null-values initially.
Then the row is updated, by making a data transfer from the
write-projected 1/O-areas, implicitly referenced by the argument
BASE. If the row does not exist, it is inserted into the table.

Notes:

Within a transaction, the insert-operation is not actually
performed; instead a request is put on an intention-list and
executed at end-of-transaction during the commit-phase.

MIMER/DB USER MANUAL/3.2/1.0
INSER2 - Insert new row

2.23

2.3.4 DELET2 - Delete Current Raow

Purpose:

To delete current row.

Format:
DELET2 (TID)
Arguments:
TID 4Iw inout - table cursor
TID(1) return code:
<0 - error
=0 - ok
> 0 - row does not exist
Description:

The current row, referenced by the table cursor, specified by
the argument TID, is deleted.

Note:

Within a transaction, the delete-operation is not actually
performed; instead a request is put on an intension-list and
executed at end-of-transaction during the commit-phase.

DELET2 may only be entered after a GET2 or an INSER2
operation.

MIMER/DB USER MANUAL/3.2/1.0
DELET2 - Delete current row

2.25

2.3.6 DROP2 - Drop All Rows

Purpose:
To drop all rows in a table.

Format:

Al il e KK R R R R e e R

el el R e B R e R R I g S

Arguments:
TID 4Iw inout - table cursor
TID(1) return code:
<0 - error
=0 - ok
Description:

All rows in the table, referenced by the cursor, specified by
the argument TID, are dropped.

Note:

The table cursor must be open with access mode 'X' (exclusive).

MIMER/DB USER MANUAL/3.2/1.0
DROP2 - Drop all rows

2.27

2.4.1 DEFCO2 - Define Column

Purpose:

To define a new column in a table.

Format:

- - W W W W T R W D D L W D D W W W W -

Arguments:
DID 4Ilw inout - databank identifier
DID(1) return code:
< 0 - error
=0 - ok
TNAME C8 in - table name
CNAME C8 in - column name
CFLAG Cl in - column flag:
'#!' . primary key
' ' < other
CTYPE Cl in - column type:
'C - character
'T - integer
' - floating point
CLEN Iw in - column length (in bytes)
Description:

A new column is created with name, key, type and length, as

specified by the arguments CNAME, CFLAG, CTYPE and CLEN
respectively. The column is qualified by the databank
identifier, and the table name, specified by the argument DID
and TNAME respectively. If the table does not exist, a new
table containing one column is created.

MIMER/DB8 USER MANUAL/3.2/1.0
DEFCO2 - Define column

2.29

2.4.2 REMCO2 - Remove Column(s)

Purpose:
To remove a column in a table.

Format:

- - T T W W W e W W W E e

- TG o D W W W W W D W WG W W - - ™ -

Arguments:
DID 4Iw inout - databank identifier
DID(1) return code:
<0 - error
=0 - ok
TNAME C8 in - table name
CNAME C8 in - column name
Description:

The definition of the column, specified by the argument
CNAME, is removed. The column is qualified by the databank
identifier, and the table name, specified by the argument DID,
and TNAME respectively. ‘

Notes:

This operation may only be performed by a user who has
X-privilege on the corresponding databank.

No cursors may be opened on the table involved during this
operation.

At present, columns can only be removed when the table is
empty, i.e. contains no data.

All other columns must be removed before removing last
primary key column.

It is not possible to remove any column from a system table.

The possibility of removing a whole table is provided, by setting
CNAME as '#',

MIMER/DB USER MANUAL/3.2/1.0
REMCO2 - Remave column(s)

2.31

2.4.4 REMIX2 - Remove Index(es)

Purpose:
To remove a secondary index on a column.

Format:

- P - W W W W W W W D W D W S)W W N D WD W W W

Arguments:
DID 4Iw inout - databank identifier
DID(1) return code:
<0 - error
=0 - ok
TNAME C8 in - table name
CNAME C8 in - column name
Description:

The secondary index on the column, specified by the argument
CNAME, is removed. The column is qualified by the databank
identifier, and the table name, specified by the arguments DID,
and TNAME respectively.

Notes:

This operation may only be performed by a user who has
X-privilege on the corresponding databank.

No cursors may be opened on the table involved during this
operation.

The possibility of removing all secondary indexes in a table is
provided, by setting CNAME as '*'.

MIMER/DB USER MANUAL/3.2/1.0
REMIX2 - Remove Index(es)

2.33
2.5.1 DEFAC2 - Define Access

Purpose:

To define (or redefine) an access privilege specification.

Format:
DEFAC2 (RCODE,UNAME,DNAME,AQP)
Arguments:
RCODCE Iw out - return code:
<0 - error
=0 - ok
> 0 - ok (replaced)
UNAME C8 in - user name
DNAME C8 in - databank name
AOP Cl in - access option:
P - pri\}ate
'R' - read only
3! - shared
'X' - exclusive
Description:

An access privilege specification, which contains user name,
databank name, and access, specified by the arguments
UNAME, DNAME, and AOP respectively, will be inserted into
the system table *ACCESS. If the specification already exists,
the access privilege is replaced.

Notes:

This operation may only be performed by a user who has
X-privilege on the corresponding databank.

Access privileges may not be defined for the databanks
TRANSDB and LOGODB.

MIMER/OB USER MANUAL/3.2/1.0
DEFAC2 - Define access

2.35
2.5.3 DEFDB2 - Define Databank
Purpose:
To define (or redefine) a databank specification.

Format:

P L e e R R PP R R P P PP R R R R R R R P R R R R E R L R X X}

Arguments:
RCODE Iw out - return code:
<0 - error
=0 - ok
> 0 - ok (replaced)
DNAME C8 in - databank name
AOP Cl in - access option:
B' - backup (private)
P' - private
'R' - read only
'S' - shared
'X' - exclusive
FNAME Cx in - physical file name
SIZE Iw in - databank size (number of pages)
Description:

A databank specification, which contains databank name,
general access option, and physical file name, specified by the
arguments DNAME, AOP, and FNAME respecitively, will be
inserted into the system table *DBDEF. If the specification
already exists, the access option and the physical file name
values are replaced. Additionally, if the databank size,
specified by the argument SIZE, is greater than zero, the
physical file is formatted as a new MIMER databank, initially
consisting of the number of pages stated. On the other hand,
if the size value equals zero, the physical file is only certified
to be an existing MIMER databank.

Notes:

This operation may only be performed by a user who has
X-authority.

The databank involved in this operation may not be open at the
same time,

When defining the databanks TRANSDB and LOGDB, the access
option must be 'P' (private).

MIMER/D8 USER MANUAL/3.2/1.0
DEFDB2 - Define databank

)

2.37
2.5.5 DEFUS2 - Define User

Purpose:

To define (or redefine) a user specification.

Format:
DEFUS2 (RCODE,UNAME,AUTH,PASSW)
Arguments:
RCODE Iw out - return code:
< 0 - error
=0 - ok
> 0 - ok (replaced)
UNAME C8 in - user name
AUTH Cl in - authority:
'S - standard
'X' - exclusive
PASSW C8 inout - password
Description:

A user specification, which contains user name, authority, and
password, specified by the arguments UNAME, AUTH, and
PASSW respectively, will be inserted into the system table
*USERDEF. If the specification already exists, the authority
and the password values are replaced.

Notes:

This operation may only be performed by a user who has
X-authority. There is one exception. Any user may use
DEFUS2 in order to change his own password.

The contents of the password argument is always destroyed.

MIMER/D8 USER MANUAL/3.2/1.0
DEFUS2 - Define user

2.39

2.6 Data Base Service

The following routines are available:

COPYD2 - Copy Databank
RESTD2 - Restore Databank

GENDB2 - Generate System Databank

MIMER/DB USER MANUAL/3.2/1.0
Data base service

2.41
2.6.2 RESTD2 - Restore Databank
Purpose:

To restore a databank, using a backup-copy together with an
optional log-file.

Format:
RESTD2 (RCODE,DNAME,BNAME)
Arguments:
RCOOE Iw out - return code:
<0 - error
=0 - ok
DNAME C8 in - databank name
BNAME C8 in - databank name (backup-copy)
Description:

The backup databank, specified by the argument BNAME, is
copied to the databank, specified by the argument DNAME.
Subsequently, if a log-file exists for the databank, all
transactions recorded are applied.

Notes:

This operation may only be performed by a user who has
X-authority. :

The backup databank must have the general access 'B' (backup).

MIMER/DB USER MANUAL/3.2/1.0
RESTD2 - Restore databank

-ty ~*

A.01

Appendix A
MIMER/DB8 ERROR CODES

When an error is detected by a MIMER/DB routine, the
call-error-exit routine EXITCl is entered with a negative
four-digit error-code as argument value. The actions taken in
EXITC1 are either installation or apphcatmn—dependent, and are
further discussed in Appendix B.

The first two digits of the error-code describes in which routine
the error was detected, and the last two digits describes the
error itself.

MIMER/DB USER MANUAL/3.2/1.0
MIMER/DB error codes

A.03

The last two digits «f the error-code are specified as follows:

xx1ll - First argument value incorrect
xx12 - Second argument value incorrect
xx13 - Third: argument value incorrect
xx14 - Fourth argument value incorrect
xx15 - Fifth: argument value incorrect
xx16 - Sixth: argument value incorrect
xx1l7 - Seventh argument value incorrect

xx18 - Eighth argument value incorrect

xx21 - Requested operation not allowed (illegal sequence)
xx22 - Tried to add OR-condition after SET2

xx23 - Tried to grant privilege on TRANSDB or LOGDB
xx24 - Databank has already been opened

xx25 - Table has already been opened (X-access involved)
xx26 - Tried to remove last primary key incorrectly
xx27 - Tried to exceed maximum number of columns
xx28 - Tried to change a non-empty table

xx29 - Tried to exceed maximum row-length ‘

xx31 - System control-block-area exhausted

xx32 - No sccess rights for requested operation

xx33 - Tried to use transaction handling without TRANSDB
xx34 - Tranmsaction management required

xx35 - Opefation not allowed, SYSDB opened for read only
xx41 - Databank open error (installation dependent)

XX o o - e e oo

xx49 - Databank open error (installation dependent)

xx51 - System databank-identifier-area exhausted

xx52 - Triéd to open a non-MIMER databank

xx53 - Tridd to open a non-restarted databank

xx54 - Trikd to open a write-protected databank

xx61 - Databank disk-space exhausted

xx62 - LOGDB disk-space exhausted

xx63 - TRANSDB disk-space exhausted

xx71 - System locked (communication-area exhausted)
xx72 - Databank locked by other user(s)

xx73 - Table locked by other user(s)

xx81 - SYSDB corrupted (should not occur)

xx82 - Databank corrupted (should not occur)

xx83 - System stack exhausted (should not occur)
xx84 - Internal error, please submit error report

MIMER/D8 USER MANUAL/3.2/1.0
MIMER/DB error codes

B.0l1

Appendix B
MIMER/DB EXIT ROUTINE DESCRIPTIONS

MIMER/DB has currently two application exit routines:

RRELELELLLEAL bbbl ikl bbb ddade il +
) EXITAl - Allocation-exit
)
EXITC1 - Call-error-exit
X V)
L~

MIMER/DB USER MANUAL/3.2/1.0
MIMER/DB exit routine descriptions

B8.03

Now, let us consider an example in single-user mode:

Suppose that EXITAl is installed with a default size of the
system contol-block-area set to 2048 words, the buffer-pool size set
to 10240 words, the maximum number of concurrently opened
databanks set to 16, the default access mode for SYSDB set to
update (1), and default physical file-name of SYSDB set to "SYSDB'"

SUBROUTINE EXITAl
INTEGER w,V
COMMON /STORE2/ W(2048)
COMMON /STORE1l/ V(10240)
- W(1)=2048

V(1)=10240

V(2)=16

V(3)=1

CALL MDRMVB(V(4),0,8HSYSDB ,0,8)
RETURN

END

If an application program requires the following environment: a
buffer-pool size of 40960 words, the access mode for SYSDB set to
read only (0), and the physical file-name of SYSDB to be "COMDB";
the user may link the following private EXITAl-routine:

SUBROUTINE EXITAL
INTEGER w,vV
COMMON /STORE2/ W(2048)
COMMON /STORE1l/ V(40960)
W(1)=2048

V(1)=40960

V(2)=16

V(3)=0

CALL MDRMVB(V(4),0,8HCOMDB ,0,8)
RETURN

END

MIMER/DB USER MANUAL/3.2/1.0
Application exit routines

-

-

c.ol

Appendix C
MACHINE DEPENDENT ROUTINE DESCRIPTIONS

The machine dependent routines are grouped as follows:

Direct Access 1/O Routines
Sequential Access 1/O Routines
Character String Routines
Data Conversion Routines
Data Move Routines

Special Routines

The 1/O routines and some of the special routines are the
interface between MIMER and the operating system. The other
routines are used as an extension of the FORTRAN-66 language.
The machine dependent routines may very well be used by other
programs outside the MIMER family, provided that the programming
lanquage is compatable with code generated by the FORTRAN
compiler.

MIMER/DB USER MANUAL/3.2/1.0
Machine dependent routine descriptions

c.03

MDRDAOQO - Direct Access Open

Purpose:

To open a direct access file.

Format:

P bbbt adiedeaddiadediededed i ittt

Arguments:
FCB 31w inoﬁt file control block
in FCB(1) access option: ,
< 0 - create
= 0 - update
> 0 - read
in FCB(3) number of blocks to allocate
out FCB(1) return code:
<0 - error
=0 - ok
out FCB(2) file identifier
NAME Cx in file name
Description:

The direct access file associated with the name, specified by
the argument NAME, is opened with the access option given in
the file control block, specified by the argument FCB.

Note:

When create option is given, FCB(3) denotes the number of
blocks to be physically allocated on disk.

MIMER/D8 USER MANUAL/3.2/1.0
MDRDAQO - Direct access aopen

C.05

MDRDAW - Direct Access Write

Purpose:

To write a block to a direct access file.

Format:

- S W W S W W W D W W D e W W e W D e N e W@

Arguments:
FCB 3Iw inout file control block
in FCB(2) file indentifier
in FCB(3) relative block number
out FCB(1) return code:
<0 - error
=0 - ok
IOAREA ref I/O-area
Description:

The block located in the 1/O-area, specified by the argument
IOAREA, is written to the direct access file, specified by the
argument FCB.

MIMER/DB USER MANUAL/3.2/1.0
MDRDAW - Direct access write

C.07

MDRSIO - Start asynchronous I/0

Purpaose:
To start a direct access I/O-operation.

Format:

- W W > T W D WS S W W W W W W W W W W W W G W D D W U D W DWW W W@ w® -

- @ > - > D P W W D W W W T W W U T W W U R W W W W D U W WE @ ®® - -

Arguments:
FC8 3w inout file control block
in FCB(1) operation code:
<0 - read
= 0 - read
> 0 - write
in FCB(2) file. identifier
in FCB(3) relative block number
FCB(1) access identifier (>0)
IOAREA ref I/O-area
Description:

A direct access [/O-operation is started by using the options
given in the file control block, specified by the argument FCB,
and as cache memory uses the I[/O-area, specified by the
argument IOAREA.

Note:

On computers where asynchronous /O is not applicable, this
routine will act as either MDRDAR or MDRDAW.

MIMER/DB USER MANUAL/3.2/1.0
MDRSIO - Start asynchronous [/O

c.09

SEQUENTIAL ACCESS I/O ROUTINES

The following routines are available:

MDRSAQ - Sequential Access Open
. MDRSAR - Sequential Access Read
MDRSAW - Sequential Access Write

MDRSAC - Sequential Access Close

MIMER/D8 USER MANUAL/3.2/1.0
Sequential access I/O routines

C.13

MDRSAC - Sequential Access Close

Purpose:

To close a sequential access file.

Format:

Arguments:
FCB 3lw inout file control block
in FCB(1)=xy:

x ¢ print option
=0 -no
=1 - yes

y ¢ file dispaosition
= 0 - keep
= 1 - delete

in FCB(2) file identifier
out FCB8(1) return cade:
<0 - error
=0 - ok
> 0 - ok, but only keep file
Description:

The sequential access file, specified by the argument FCB, is
closed.

Note:

On some implementations the possibility to print and/or delete the
file might not be supported.

MIMER/DB USER MANUAL/3.2/1.0
MDRSAC - Sequential access close

C.15

MDRMVC - Move Characters

Purpose:
To move character string.

Format:

- - ®-R®E®®E G T E WD DD D WD WD D DD WD - w----

- - @ w w E W w W E E E W E W W E W W EW E TET P WE T EEEEw.- - .-

Arguments:
STR1 ref first string address
OFF1 Iw in first string offset
LEN1 Iw in first string length
STR2 ref second string address
OFF2 Iw in second string offset
LEN2 Iw in second string length
FILL ref fill character

Description:

The first string, specified by the arguments STR1l, OFFl and
LEN1, is replaced by the second string, specified by the
arguments STR2, OFF2 and LEN2, If the first string is longer
than the second string, the highest addressed bytes of the first
string are replaced by the fill character, specified by the
argument FILL. If the first string is shorter than the second
string, the highest addressed bytes of the second string are not
moved.

Note:

If the strings are overlapping, and the first string has a higher
starting address than the second string, the result is unpre-
dictable.

MIMER/OB USER MANUAL/3.2/1.0
MDRMVC - Move characters

c.17

MDRMVF - Move Character Fill

Purpose:
To fill a block of memary with a fill character.

Format:

- . - - W D W W D W U W W W W P D S W W W W W -

Arguments:
STRING ref character string address ’
OFFSET Iw in character string offset
LENGTH Iw in character string length
FILL ref fill character

Description:

The bytes in the string, specified by the arguments STRING,
OFFSET and LENGTH are replaced by the fill character,
specified by the argument FILL.

Note:

MDRMVF is a special case of MDRMVC with LEN2 = 0.

MIMER/D8 USER MANUAL/3.2/1.0
MDRMVF - Mave character fill

C.19

MDRCLB - Compare Logical Character Blocks

Purpose:
To compare one block of memory with another.

Format:

LR X R R R R R R R R Rk kR i,

Arguments:
STR1 ref first string address
OFF1 Iw in first string offset
STR2 ref second string address
OFF2 Iw in second string offset
LENGTH Iw in length of first and second string

COND Iw out return code: < 0 - first string low
= 0 - strings are equal
> 0 - first string high

Description:

The bytes of the first string, specified by the arguments STR1,
OFF1 and LENGTH, are compared with the bytes of the second
string, specified by the arguments STR2, OFF2 and LENGTH.
Comparison proceeds until inequality is detected, or all the
bytes of the strings have been examined.

Note:

MDRCLB is a special case of MDRCLC with LEN1 = LEN2,
except that the absolute value of COND does not reflect any
position.

MIMER/DB8 USER MANUAL/3.2/1.0
MDRCLB - Compare logical character blocks

c.2l

MDRSKC - Skip Character

Purpose:

To skip character in character string.

Format:
") MDRSKC (STRING,OFFSET,LENGTH,CHAR,COND)
- Arguments:
STRING ref character string address
OFFSET Iw in character string offset
LENGTH Iw. in character string length
CHAR ref character
COND Iw out return code: = 0 - not found
> 0 - found
Description:
The character, specified by the argument CHAR, is compared
with the bytes of the string, specified by the arguments
— STRING, OFFSET and LENGTH. Comparison continues until
inequality is detected, or until all bytes of the string have been
compared. In case of inequality, COND is set to the position
of the last processed byte in the string.
Ly Note:

If LENGTH is negative, the absolute value of LENGTH is used

as string length,

and the bytes of the string are processed

backwards, from the highest addressed byte to the lowest.

MIMER/DB USER MANUAL/3.2/1.0
MDRSKC - Skip character

c.23

MDRSPC - Span Characters

Purpose:
To skip a set of characters in character string.

Format:

Arguments:
STRING ref character string address
OFFSET Iw in character string offset
LENGTH Iw in character string length
TABLE ref table
MASK ref mask byte

- not found

COND Iw out returm code: =0
> 0 - found

Description:

The bytes of the string, specified by the arguments STRING,
OFFSET, and LENGTH, are successively used to index into a
byte table, whose zero entry address is specified by the
argument TABLE. The byte selected from the table is ANDed
with the mask byte, specified by the argument MASK. The
operation continues until the result of the AND is zero, or until
the bytes of the string are exhausted. If the operation is
terminated with a zero AND result, COND is set to the
position of the last processed byte in the string.

MIMER/D8 USER MANUAL/3.2/1.0
MDRSPC - Span characters

C.25

MDRTRC - Translate Characters

Purpose:
To translate character string.

Format:

Arguments:
STRING ref character string address
OFFSET Iw in character string offset
LENGTH Iw in character string length
TABLE ref table

Description:

The bytes of the string, specified by the arguments STRING,
OFFSET and LENGTH, are successively used to index into a
byte table, whose zero entry address is specified by the
argument TABLE. The byte selected from the table replaces
the byte in the string. The operation continues until the bytes
of the string are exhausted. '

Note:

If the string and the table are overlapping, the result is
unpredictable. '

MIMER/DB USER MANUAL/3.2/1.0
MDRTRC - Translate characters

C.27
MDRCIC - Convert to Integer from Character

Purpose:

To convert data, from numeric character string representation,
to integer number representation.

Format:

Arguments:

INTEGY Ix out integer number

STRING ref numeric character string address

OFFSET Iw in numeric character string offset

LENGTH Iw in numeric character string length

COND Iw out return code: < 0 - undefined value
=0 - ok

> 0 - overflow value

Description:

The numeric character string, specified by the arguments
STRING, OFFSET and LENGTH, is converted to a rounded
integer number, specified by the argument INTEGV. If
overflow occurs, the integer number is set to the maximum
value (IMAX), and COND > 0 is returned. If the character
string is not numeric, or LENGTH < 1, the integer number is
set to the undefined value (INULL), and COND > 0 is returned.

MIMER/D8 USER MANUAL/3.2/1.0
MDRCIC - Convert to integer from character

C.29

MDRCFC - Convert to Floating from Character

Purpase:

To convert data, from numeric character string representation,
to floating point number representation.

Format:

- > m n e W W D W U W TS W D W W W W W W W U W W T W W DU DWW ®w® -

- - > W e ™ W S W P W AP TP W W W W W W W W

Arguments:

FLOATV Fx out floating point number

STRING ref numeric character string address
OFFSET Iw in numeric character string offset
LENGTH Iw in numeric character string length
COND Iw out return code : < 0 - undefined value
= 0 - ok
> 0 - overflow value

Description:

The numeric character string, specified by the arguments
STRING, OFFSET and LENGTH, is converted to a floating point
number, specified by the argument FLOATV. I overflow
occurs, the floating point number is set to the signed maximum
value (FMAX), and COND > 0 is returned. If the character
string is not numeric, or LENGTH < 1, the floating point
number is set to the undefined value (FNWLL), and COND < 0
is returned.

MIMER/DB USER MANUAL/3.2/1.0
MDRCFC - Convert to floating from character

c.J21

MDRCIF - Convert to Integer from Floating

Purpose:

To convert data, from floating point number representation, to
integer number representation.

Format:

habadadaia il R e R R R e R I S S

Arguments:

INTEGV Ix out integer number

FLOATV Fx in floating point number
COND Iw out return code: < 0 - undefined value
=0 - ok

> 0 - overflow value

Description:

The floating point number, specified by the argument FLOATV,
is converted to a rounded integer number, specified by the
argument INTEGV. If overflow occurs, the integer number is
set to the signed maximum value (IMAX), and COND > 0 is
returned. If the floating point number is undefined (FNULL),
the integer number is set to the undefined value (INULL), and
COND < 0 is returned.

MIMER/DB USER MANUAL/3.2/1.0
MDRCF - Convert to integer from floating

C.33

DATA MOVE ROUTINES

The following routines are available:

yr-m=-e--- mececsececescccccesaccsccmesaracaccmanacaenad

MDRMIA - Move to Integer from Attribute
MDRMAI Maove to Attribute from Integer
MDRMFA - Move to Floating from Attribute
MDRMAF - Move to Attribute from Floating

Notes:

An attribute byte string is a string which contains an integer
number or a floating point number, not necessary on word
boundary.

An attribute byte string is defined by using three arguments:
ADDRESS, OFFSET and LENGTH. The lowest addressed byte
of the string is determined by adding the value of the argument
OFFSET to the address of the argument ADDRESS. Note that
the byte offset value is valid even if it is negative. The
number of bytes in the string is given by the value of the
argument LENGTH.

The special-format is an internal representation of integer and
floating point numbers, used in MIMER/DB, which makes it
possible to use logical compare operations, not only far
character strings, but also for integer and floating point
numbers.

MIMER/DB8 USER MANUAL/3.2/1.0
Data move routines

C.35

MDRMAI] - Move to Attribute from Integer

Purpose:

To move an integer number, from an integer word, to an
attribute byte string, optionally converted to special-format.

Format:

Py T e T E R L R PR R R E R LR L L B R E L X Ak X]

Arguments:
STRING ref attribute byte string address
OFFSET Iw in attribute byte string offset
LENGTH Iw in attribute byte string length
INTEGV Ix in integer number
FLAG Iw in flag: = 0 - no conversion
= 1 - convert to special-
format
Description:

The integer number, specified by the argumet INTEGV, is
optionally converted, depending on the value of the argument
FLAG, and possibly compressed to the attribute byte string
length. The resulting value is stored in the string, specified by
the arguments STRING, OFFSET and LENGTH.

MIMER/DB USER MANUAL/3.2/1.0
MDRMAI - Move to attribute from integer

C.37

MDRMAF - Move to Attribute from Floating

Purpose:

To move a floating point number, from a floating point word,to
an attribute byte string, optionally converted to special-format.

Format

- - - = > W T - W D e W D A W WD D W W A W W W W W W W W W W W W W

Arguments:
STRING
OFFSET Iw
LENGTH Iw
FLOATV Fx
FLAG Iw

Description:

ref
in
in
in

in

attribute byte string address
attribute byte string offset
attribute byte string length

floating paint number

0 - no conversion
1 - convert to special-format

flag :

The floating point number, specified by the argument FLOATV,
is optionally converted, depending on the value of the argument
FLAG, and possibly compressed to the attribute byte string
length. The resulting value is stored in the string, specified by
the arguments STRING, OFFSET and LENGTH.

MIMER/DB USER MANUAL/3.2/1.0

MDRMAF - Move to attribute from floating

C.39

MDRPDT - Provide Date and Time
Purpose:
To provide date and time from the system-clock.

Format

P L L L E R R R R R R R R P T L R R P R

Arguments:
STRING Cl16 out - numeric character string.
Description:

The current date and time is retrieved from the system-clock,

and edited into the string, specified by the argument STRING,
with the format 'YYYYMMDDHHMMSStH'.

MIMER/DB8 USER MANUAL/3.2/1.0
MDRPOT - Provide date and time

C.41

MDRCRA - Compute Relative Address

Purpose:

To compute the byte address of a variable relative to another
variable.

Format

O Xk Ll L L L T R

Arguments:

RELADR Iw out relative byte address (see note)

ADDR1 ref first variable
ADDR2 ref second variable
Description:

The address of the first variable, specified by the argument
ADDR1, is subtracted from the address of the second variable,
specified by the argument ADDR2, with the result converted to
reflect the difference in bytes. The result is returned in the
argument RELADR.

Note:
On 16-bit computers, the argument RELADR is the low-order

part of the double word, where the relative byte address is
returned.

MIMER/D8 USER MANUAL/3.2/1.0
MDRCRA - Compute relative address

C.43

MDRALI - Add Logical Interlocked

Purpose:
To perform a logical add operation in interlocked mode.

Format

- W W D WD D W D D W WD W D W W W D W

Arguments:
WORD Iw Inout word (can be located in shared memory) .
VALUE Iw in value

Description:

The word, specified by the argument WORD, is updated by
making a logical add with the value, specified by the argument
VALUE. A possible carry is ignored. The operation is
executed in interlocked mode, thus making it possible to update
counters in shared memory.

MIMER/DB USER MANUAL/3.2/1.0
MDRALI - Add logical interlocked

C.45

MDRDEQ -Dequeue Semaphore (Signal)
Purpose:
To perform a signal-operation on a semaphore.

Format

'Arguments:
SEM 2lw imout semaphore (located in shared memory)
Description:

The semaphore, specified by the argument SEM, will have its
value increased by one. If the previous value was zero and a
semaphore-queue exists, the waiting processes are made
runnable and the queue is removed.

MIMER/D8 USER MANUAL/3.2/1.0
MDRDEQ - Dequeue semaphone (signal)

MDRALC - Alter case

Purpose:

To change case of alphabetical

string.

Format:

-

MDRALC (STRING, OFFSET,LENGTH, CASE)

Arguments:
STRING
OFFSET 1Iw
LENGTH 1Iw

CASE Iw

Description:

ref
in
in

in -

character string address
character string offset
character string length ,

case code
=1 - alter to lower case
2 - alter to upper case

characters in a character

The alphabetical characters of the string, specified
by the arguments STRING, OFFSET and LENGTH, are converted
to lower or upper case depending on the value of the
argument CASE. This conversion is performed in place
i.e directly in the input string.

Alphabetical characters are by default characters in the
intervals A-Z and a-z. This definition can be changed by

calls to MDRSCT.

In translation to upper case, upper case characters in the
input string are normally unchanged, and the same holds for

lower case input when lower case translation.

Note:

If LENGTH <= 0 or if CASE < 1 or CASE > 2 return only.

Note that the MDRSCT may define translation for any byte,

8-bit codes also.

MDRALC - Alter case

MDROTF - Open terminal file
Purpose:
To open the terminal file

Format:

MDROTF (CODE)

Arguments:
CODE Iw out - return code

= -1 - error
else OK

Description:
Open terminal for read/write

Note:

MDROTF - Open terminal file

MDRSCT - Set case translation

Purpose:

To change the definition of the alphabetical character
set used in the MDRALC routine.

Format:
[~ MDRSCT(CHAR ,TRCHAR,CASE)
Arguments:
[~
CHAR Cl in character for which translation is to be changed
TRCHAR Cl1 in character to which CHAR will be translated in
the new translation definition
CASE Iw in case code:
= 1 - alter to lower case
= 2 - alter to upper case
Description:
This routine affects the translations which are performed
by the MDRALC routine. MDRALC contains the definition of
the alphabetical set of characters and their translations
for each CASE. A call to MDRSCT changes that definition.
This routine will change the definition of translation
— character for CHAR to TRCHAR. The CASE parameter specifies
if it is the translation to upper or to lower case that
is to be affected.
Note:
CA~

If CASE < 1 or CASE > 2 return only.

Note that the MDRSCT may define any byte as character,

8-bit codes also.

The most common use of this routine is to define case
translations for national characters.

MDRSCT - Set case translations

