
The ACE FORTRAN 77 Compiler for the MCBBOOO

willem wakkerl

(c) ACE ~ Associated Computer Experts ov,
Nieuwezijds Voorburgwal 31k

1012 RV Amsterdam.

K A_Fi_'5iI_B_e_§_i_I.

This report desErioes the implementation details
V/\ of the ACE FORTRAN 77 compiler for the MCBBOOO.

‘ The ACE F77 compiler is an upgraded version of the
A UNIX F77 compiler. This compiler implements fully

the FORTRAN language as specified in the American
National Standard programming language FORTRAN 77,
ANSI X3.9—1978, so only extensions and deviations
to the definition are mentioned.

InFormation about data—types (sizes and alignment)will be given, together with a description of thecalling sequence, parameter passing and register
usage.

/\
1
\_.

/""\

February 10, 1984



"77(l)

NAFH1

1'77 F(J1't'1‘a|‘x Y7 Ct(nnpl.!.<.-'1!‘

SYNOPSIS
$77 [ option ] . . file ..

DESCRI PTION

XENIX Programmer's Manual F77(1)

F77 is [hm ACE Fortran 77 compiler. It accepts severaltypes of arguments:

A1
77 '54

9 ram is let

In 11 )‘u=: '5 ame

K

T

"guments whose names end with ‘.f' are taken to be Fortran
. :»urce programs; thev are compiled. and each object pro-t on the file in the current directory whose name

' is that of the source with .o' substituted For '.F'.
way,~arguments whose names end with ‘.o' or .s'

" .: xn t; be~ C ox" J asennbl.v 5CHJY4IE p1w)g1'an\s ;anci 31W+ t:on\~iled ox as
are t1ke H

’ to ‘ .. TPmh.ed, producino d .u' file.
he Following Flags are understood.

1'3

"inU‘)

P‘C
E-'U

1"U
*1

II:

w Suppre

ss loading and produce “.o' files for each source

S25". I-11.1. w&1‘l'1ing messages.

-w65 Only Fortran G6 compatibility warnings are suppressed.
~p Prepare object files for profiling, see pro{(1).
~3 Compile the named programs, and leave the assembler—language output on corresponding Files suffixed ‘.s'.

/'\
(No .o' is created).

~o output
‘ Name the final output file output instead of “a.out'.

~onetriD
t

_ Compile DO loops that are performed at least once ifreached. (Fortran 77 DO loops are not performed at allif the upper limit is smaller than the lower limit.)
-U Do not convert upper case letters to lower case. Thedefault is to tonvert Fortran programs to lower case.

u Make the default tvne of a variable “undefined' ratherthar: usiru; theecdefatlt Fcn”trar|"rules.
I2 On machines which support short integers, make thedefault integer constants and variables short. (~14 isthe standard value of this option). All logical quan-tities will he short.

t

Printed 2/23/84 22/2/84
1



F7711) XENIX Programmer's Manual F77(1)

~~C Compile code to check that subscripts are within
declared array bounds.

-V The Verbose or View switch. Shows the various passes of
the compiler as they are called by f7Y, with their
switches and intermediate Files.

~O<d>
Invoke the assembly code nnrimiser after the assembly
code qeneration. when the O is Followed by a numeric
didit. <d> data registers are (at most) allocated by
the F77 front~end For holdinq loop variables./\

~N This switch allocates more space for several tables. It
is normally used after the front~end has given a Fatal
compiler error. Usaoe; —Ntddd where t is one of ‘Q’,‘x’, 'c', 'n' (For equivalence table, external name/\ table, control-structure table and name table) while
ddd is the new number oF elements this table at least
must have (the fatal compiler error message has given
the current number of entries). when more than one
table has to be enlarged, the option looks like "~
Nq300—Nx&U0".

FILES
file.[fsc] input file
File.o ob3ect File
a.out loaded output
/usr/bin/F77 the driver program
/usr/lib/f77pass1 Front—end of the {T7 compiler
/usr/lib/intmconv a conversion program for intermediate Files
/usr/lib/pcc2 the code generator
/usr/lib/0G8 the assembly code optimizer
/usr/lib/asmconv a conversion program that modifies the assembly’\ /usr/lib/libF77.a intrinsic Function library/usr/lib/libI77.a Fortran I/O library/lib/libc a C library. see section 3/lib/libm.a C library, see~section 3

/\~ SEE ALSO
3.1. Feldman, P.J. weinberqer, A Portable Fortran 77 CQm¢piler
prof(1). cc(1). ld(1)

DIAGNOSTICS
The diaqnostics produced by f7? itself are intended to be
selF—exnlanatory. Occasional messaqes may be produced bythe loader.

Printed 2/23/81. P2/2/84 2



.. 2 ._

1. Introduction..,_, _---- _—~—- ._ Qqp —— e——— -*' -—c--

The ACE f7? compiler for the MC68000 is an upgraded version
of the UNIX f7? compiler [7]. It implements fully the FOR~
TRAN 77 language as specified in [3]. Users of the f7? com»
piler are advised to get a copy of this definition, since
many common dialects of FORTRAN deviate from this specifica-
tion.

T

The f7? runtime environment is almost completely explained
in [6], together with the interface for C routines and func~
tions.

-2 . Reta .t.u.;>.e:-_>.. _s..lZBt="> and -8 -1_.c1_s.0.men.§

The f77 data types are specified in [3], the correspondence
between the f77 data types and C data types are given in/~ paragraph 4.2 of [7]. The F77 data types inherit (when not
conflicting with [3]) their alignment for the C types.

Note that separately compiled f7? routines must all have the
same assumption about the integer size, so that when onefile is compiled with the -12 switch, all files must be com»
piled with this switch.

The MC68000 data organisation implies that all addresable
data elements are addressed via the address of the byte
which contains the most significant bit of the data element
(so the address of the least significant byte of the data
element is always equal to or higher than the address of the
data element).

The addressing scheme of the 68000 also requires that
multi—byte data (2 bytes or 4 bytes) are always accessed on
word (even byte) boundaries. This implies the alignment of
the various data elements. .

For more detailed information on the 58000 data organisation
and addressing capabilities, see chapter 2 of [5].
The following data types are implemented;

character

These values occupy 8 bits (1 byte) and can be aligned
on any byte boundary. The value of a char ranges from
~128 to +127.

intvwge1"*2

These values occupy 16 bits (2 bytes) and are (must be)
aligned on word (even byte) boundaries. The value of a
short ranges from ~3?760 to +-32767.

February 10, 1984



-3-

integer
logical

real

These values occupy 32 bits (k bytes) and are (must be)
aligned on word (even byte) boundaries. The value of
an integer ranges from ~21L7483B4B to +21k7L836L7.

Elements of the type real occupy 32 bits (4 bytes) and
are (must be) aligned on word (even byte) boundaries.
All real values are converted to double precision
values for arithmetic operations. A real value con-

/ ‘ sists of a sign bit (most significant bit), followed by
an 8-bit biased exponent and a 23 bit mantissa.

double precision
/‘\ Elements of the type double precision occupy 64 bits (8

bytes) and are (must be) aligned on word (even byte)
boundaries. A double precision value consists of a

sign bit (most significant bit), followed by an 8—bit
biased exponent and a 55 bit mantissa.

complex  

The complex data type consists of two floating point
(real) numbers, the first (lowest address) being the
real part and the second the imaginary part.

double complex

/'\

As for the complex, but with each element being a dou~
ble precisjmni number.

arrays

/"'\

Elements of an array may be of any of the types men~
tioned above and are stored contiguously in memory. The
(base) address of an array is always aligned on a word
(even byte) boundary. Elements of multi—dimensional
arrays are stored in column major order.

Q. alling sequence and register usage

All parameter passing in f77 is done by reference (according
to the standard). In normal use, the default register allo-
cation scheme of the code generator is used. with the -o
switch, at most six loop—variables are put in data regis—
ters

February 10, 1984



.. L .

,1_~_ . Add iii OILS .;1.!1<;i. .1'.§>.I.r1_a._1'k S.

The ACE f77 compiler front~end for the 68000 reflects com-
pletely the standard [3], its implementation is fully
described in [7]-
Here we only give some examples of problems an average f77
programmer will get, when trying to conform to the standard.
This list is by no means complete, it only gives hints (see
also the list of differences between F66 and F77 in the
appendix of [7]).

fl (1) Upper — Lower case
 

The compiler expects lower case source input. Upper
case is converted to lower case except in character
constants. Be careful: a format string, as interpreted
by the run time package, has to be in lower case, so/\ implicit format strings (= character constant) or

i arrays with format information, cannot use upper case
) letters.

(2) Integer size
.

The standard size for an integer is four bytes. This
does not only effect the size of integer variables, but
also the size of integer constants, and the results ofinteger expressions. with the ~12 compiler switch this
standard can be set to two bytes. It will effect the
size of integer variables, integer constants and theresults of integer expressions, but integer intermedi-
ate expressions will stay four bytes long.

In the MCBBUUO the address of an object is the address
of its high order byte. This means that it is not pos-
sible to access a two byte integer value through the/\ address, of a four byte integer. As a consequence: rou-

T tines which communicate with other routines, usinginteger constants or expressions as parameters, have to
be compiled with the same integer size.

/\ (3) Logical size
z

, A logical*1 size is not defined in the standard, and
consequently not supported. The only way to introduce
objects of single byte size is through the character*n
innnstruct.

(4) Hollerith
The Hollerith construct from FORTRAN 66 is not avail-
able in FORTRAN 77. The f77 compiler supports Holler—ith in data initialisation statements. In general Hol-lerith cannot be used in integer expressions, but noerror or warning is generated. when a Hollerith is used
as in:

IVAR = 2Hab OT IVAR .EO. 2hab

February 10, 1984



/\.

/\

/\

_ 5 -4

4 1A~o \)ytk? stiing <;ornsta:\t 1.5 Qpenolwiteui.
The address of the high order byte 15 used for access,
but with a move or compare instruction for a single
byte only.

T

5) Block structures
The only block structure supported by the standard is
the Block If. Other commonly used constructs for Do
loops (like Do ... Enddo, Do while, or Do ... Until)
are not supported. i

(6) Pre—connected Files

Unit FORTRAN 77 FD UNIX Status

U not known 2 standard error pre—connected
S read O standard input pre~connected
6 write 1 standard output to be opened/\ x any file y fort.x (O<x<10) to be opened

(7) Do loops
A step size of zero is forbidden by the standard, and
not supported in f77.
Statements which change the index variable of the loop
are also Forbidden, but this is possible in f77 and
does not generate a warning or error.

8) Variable addresses
The mapping of local variables onto the private address
space of a routine is not straightforward, so variables
which have been declared in some order will in general
not be assigned to memory in that same order.
The only way to force the allocation of memory in acertain order is through the use of a set of
equivalence statements between individual variables and
the elements of an array.

9) Array order
The order in which elements of a multi—dimensional
array are stored in memory is different in f7? and C.

(10) End of record
The end of a record in a formatted file is always given
by the newline character (UNIX: a linefeed or decimal
10).
It is not possible to suppress the automatic generation
of this character at the end of an output record.

(11) Open statement
 

In addition to paragraph 6.8.1 of [7] and 12.1U.1 of[3]: when no file parameter is given and no status
parameter is given, status is assumed scratch (instead
OF OlU).

February 10, 1984



-- B -.

(12) Record length
when a file is declared to have records of length r
(reel = r), while only n bytes (n < r) are written per
record, then only n bytes can be read from the last
record of the file (record with the highest sequence
number).

5. Invocation and compiler switches

The f7? driver program accepts all switches as given in the
f7? documentation ([7]. [9]). except those affecting M4,
watfor and EFL files and programs; the latter ones are not
lmplémutéd.
Specials and remarks:

~v The Verbose or View switch. Shows the various passes of
the compiler as they are called by f77, with their
switches and intermediate files.

~0<d>Invoke the assembly code optimiser after the assembly
code generation. when the 0 is followed by a numericdigit, <d> data registers are (at most) allocated by
the f77 front~end for holding loop variables.

-N This switch allocates more space for several tables. It
is normally used after the front~end has given a fatal
compiler error.

‘

Usage: —Ntddd where t is one of ‘q’, 'x', 'c', 'n' (for
equivalence table, external name table, control-
structure table and name table) while ddd is the new
number of elements this table at least must have (the
fatal compiler error message has given the current
number of entries). when more than one table has to be
enlarged, the option looks like "-Nq300~Nx400".

Q. The MOTOROLA 68000 code generator

The code generator produces assembly code for several,
language dependant, front-ends. Most of the typing and
specific register usage is dictated by the front-ends.
The code generator produces assembly code, that includes
almost all available instructions and addressing modes
(including the Address Register Indirect with Index address~
ing mode).

The UNIX system requires a dynamically growing stack. Unfor—
tunately the 68000 can produce address errors, when address~
ing outside the stack, that cannot be backed—up. Therefore
provisions have to be made to prevent these errors. For this
purpose, the code generator produces "tst.b —XX(sp)"
instructions each time the stack pointer is decremented (on
procedure entry, and before procedure calls with parame~
ters). when such a tst.b instruction produces an address
error, the stack segment can be enlarged, and any subsequent

February 10, 1984



/~ * automatics I

‘..._...._ _ _ _ _ _ _ ...__....-.._.....-

5‘

.-. 7 ,__

stack references cannot cause an error anymore.

1- Fhe 5€8Ck.l“l0Q£

On each procedure/function entry the following code is pro~
CJUCGCII

tst.b »<disp>(sp) stack testlink (a6),#—<disp> install new frame
movem.l -<disp>(a6),<reg list> save used registers

while on return the Following code is produced

; movem.l <reg list>,~disp>(a6) restore used registers
unlk a6
rts

In these pieces of code <disp> is the total amount of space/\ (in bytes) needed for this procedure to store its automat~ics, its temporary results and to save the registers; <reglist> is a list of registers used (allocated) local to thisfunction, so effectively only those registers are saved that
are actually used. Both <disp> and (reg list> are generated
by the code generator.
Note that the code generator NEVER saves the followingregisters: D0, D1, A0, A1, A6 and A7.

This implies the following stack lay—out

new sp ~> '-—’ - — - ~ - — — ~ ~ ~ — ~ — ~—‘
saved registers

_-._.--_-‘._.....,-----@--___1.-_.

-_.-----_.—--__----->.-._.~....--

\‘--.---u.->-----...-_--.._-._~_-_.-.
new A6 -> old A6

-u-—-1‘-iq-.-._-—-___-Q-Q-.-.-4-|

return address
’

argument 1 '
\if-__-~¢-__—--_-_--»-1--.-_~._

argument 2 ‘i
old so —> \~-- — — — — — — - — -- ~~~~~-

All 'stack' variables (automatics, function arguments) are
addressed via A6 (automatics having a negative offset, and
arguments having a positive offset).
The clean—up of the stack after a procedure call with param-eters is done by the calling procedure.

February 10, 1984

‘ temporaries allocated by code generator



.- 8 ,.

/\

f'\.

f\

Q. References

[3] American National Standard programming language FOR-
TRAN, ANSI X3.9—1978.

[5] The MCBBUOU 16-bit microprocessor, User's Manual,
Motorola.

[6] 683L3 Fast Floating—point reference manual, M68KFFP(D1)
July 1981, Motorola.

[7] S I Feldman and P.J.weinberger, A Portable Fortran 77
Compiler, UNIX programmer's manual, 7th edition, volume
2, chapter

[9] UNIX programmer's manual, 7th edition, Volume 1.

February 10, 1384



U

~

Q

I

=7?(1) XENIX Programmer's Manual F77(1)

21
1*»

Z
M

tie um _HerY7? Foi"'"r1 Y7 C‘ pl!
SYNOPSIS

$77 [ option ] . . File .

O

{Tl

"U1

RIPTION
F77 .11; ti‘:
types of arguments:

(.8

>
F)

F11

Fortran 77 tomoiler. It accepts several

Arguments whose names end with i.F' are taken to be Fortran
77 source programs; they are tompileo, and each object pro-
gram is left on the file in the current directory whose nameis that or the source with .o' substituted For '.F'.
In the same way, arguments whose names end with ‘.c' or i.s'are taken to be C or ussemhlv source prourame and are oom~

 piled or asnemhled, produoino a .o' File.
The Following Flags are understood.

1'1

~13U‘)

Q
* Ml J

-5

i"’U
(PU

ress loading and produce “.o' files For each source

¥ .

u rips all 1 " ‘pp en . warnizg messages.

-w66 Only Fortran G5 oompatibilitv warnings are suppressed.
-p Prepare object Files For profiling, see grof(1).
-3 Compile the named programs, and leave the assembler-

language output on corresponding files suffixed ‘.s'.
( ' o ls F“

/K -o out

Nu . ' .’ sleatéd).

put
, Name the Final output €ile output instead of ‘a.out'.

—onetr LD
Compile DO loops that are Derformed at least once if/~ reached. (Fortwwuw 77 DO loops dI%erH3C performed at allif the upper limit is smaller than the lower limit.)

-U Do not convert upper case letters to lower case. Theefault is to convert Fnrtran programs to lower case.U

u Make the de¥ault tvme oF a variable 'undeFined' rather
than USlq the default Fortran rules.

-I2 On machines which support short integers, make the "default inteqer constantq and variables short. (-I4 isthe standard value of this option). All looical Quan-tities will he short.

Printed 2/23/8% 22/2/84
1



O
5&-

I

F77(1) XENIX Proqrammer's Manual F77(1)

-(I CornpJ_],@ i;i)r;le to <:he<;k that $uD$\;1‘l.;.)t.~5 are within
declared arrav hounds.

-v The verbose or View switch. Shows the various passes of
the compiler as thev are called Dv £77. with their
switches and intermediate Files.

~O<d>
Invoke the assemhlv Code nnrimiser after the assemhlv
code Generation. when the O is Followed bv a numeric
diqit, <d> data registers are (at most) allocated bv
the F77 ¥ront~end For holdino loop variables.

~N This switch allnnates more space ror several tables. It
is normally used aFter the Front~end has given a Fatal
compiler error. Usaue; —Ntddd where t is one o¥ ‘Q’,
‘x’, 'c', 'n' (For equivalence tahle, external name

.7\ table, control—structure table and name table) while
ddd is the new numher oF elements this table at least
must have (the fatal compiler error message has given
the current number of entries). when more than one
table has to be enlarged, the option looks like "-
No300~Nx&OU".

FILES
file.[¥sc] input File
File.o object File
a.out loaded output
/usr/bin/F77 the driver program
/usr/lip/¥77pass1 Front~end of the F77 compiler
/usr/lib/int_conv a conversion program For intermediate Files
/usr/lib/pcc2 the code generator
/usr/lib/oG8 the assembly code optimizer
/usr/lib/as_conv a conversion program that modifies the assemblyr\ /usr/lip/lioF77 a intrinsic ¥unction library
/usr/lib/lioI77 a Fortran I/O liprarv
/lip/lioc.a C librarv. see section 3

/lib/libm.a C librarv, see section 3

/'\ SEE A\..‘§O
3.1. Feldman, P.J. weinoerqer, A Portable Fnrtran 77 CQm@

pller
DroF(1). cc(1). ld(1)

DIAGNOSTICS
The diaqnostics produced ov F77 itselF are intended to be
sel€—explanatorv. Occasional messaqes mav be produced bv
the loader.

Printed 2/23/84 22/2/84 2



2'

0

/3.

/\

/\

tr\

The ACE FORTRAN 77 Compiler For the MCSBUOD

 willem wakker

(c) ACE — Associated Qomputer Experts pv,
Nieuwezijds Voorhurgwal 314

1012 RV Amsterdam.

ABSTRACT

This report describes the implementation details
of the ACE _FORTRAN 77 compiler for the Mcsaooo.
The ACE F77 compiler is an upgraded version of the
UNIX F77 compiler. This compiler implements fully
the FORTRAN language as speciFied in the American
National Standard programming language FORTRAN 77,
ANSI X3.9~1978, so only extensions and deviations
to the definition are mentioned.

T

InFormation aoout data-types (sizes and alignment)will be given, together with a description of the
calling seduenun, parameter passing and register
usage.

February 10, 1984



3

_ 2 ...

l- lotnoeuqtlen
The ACE £77 compiler Tor the MC68000 is an upgraded version
oF the UNIX 977 compiler [7]. It implements Fully the FOR~
TRAN 77 language as speciFied in [3]. Users of the F77 com-
piler are advised to get a copy of this definition, since
many common dialects of FORTRAN deviate Trom this specifica-
tion.
The £77 runtime environment is almost completely explained
in [6], together with the interFace For C routines and Func~
tlOt’\S. i

/K g. Data types, ¢lZES and alignmentJ= ¢ q-1---n-_<_|—u1uu@ W _ - —._ +l_ ,

The F77 data types are specified in [3], the correspondence
sbetween the £77 data types and C data types are given in
paragraph 4.2 o? [7]. The F77 data types inherit (when not

/~ con¥licting with [3]) their alignment For the C types.

Note that separately compiled F77 routines must all have the
same assumption about the integer size, so that when one
File is compiled with the -I2 switch, all Files must be com-
piled with this switch. V

The MCSSOOU data organisation implies that all addresable
data elements are addressed via the address oF the byte
which contains the most significant bit of the data element
(so the address of the least significant byte oF the data
element is always equal to or higher than the address of the
data element).

The addressing scheme of the 68000 also requires that
multi~byte data (2 bytes or A bytes) are always accessed on
word (even byte) boundaries. This implies the alignment of/\ the various data elements.

9'

For more detailed information on the 68000 data organisation
and addressing capabilities, see chapter 2 of [5]." The following data types are implemented:

character

These values occupy 8 bits (1 byte) and can be aligned
on any byte boundary. The value o¥ a char ranges From
-128 to +127. i

integer*2

These values occupy 16 bits (2 bytes) and are (must be)
aligned on word (even byte) boundaries. The value of a

short ranges from -».32768 to +32767.'

February TO, 1984



A

I

- 3 -

integer
.1.CaglC.'Z-ll

real

'\

These values occupy 32 bits (4 bytes) and are (must be)
aligned on word (even byte) boundaries. The value o?
an integer ranges from -2147483648 to +2147483647.

Elements of the type real occupy 32 bits (4 bytes) and
are (must be) aligned on word (even byte) boundaries.
All real values are converted to double precision
values For arithmetic operations. A real value con-

,~ sists of a sign bit (most signiFicant bit), followed by
an 8-bit biased exponent and a 23 bit mantissa.

double precision
/'\ Elements 0? the type double precision occupy 54 bits (8

bytes) and are (must be) aligned on word (even byte)
boundaries. A double precision value consists of a

sign bit (most significant bit), Followed by an 8-bit
biased exponent and a 55 bit mantissa.

complex i

1

The complex data type consists of two floating point
(real) numbers, the First (lowest address) being the
real part and the second the imaginary part.

double complex

As For the complex, but with each element being a dou-
ble precision number.

/K arrays

r\  

Elements of an array may be o¥ any of the types men-
tioned above and are stored contiguously in memory. The
(base) address of an array lS always aligned on a word
(even byte) boundary. Elements of multi-dimensional
arrays are stored in column major order.

Q. Calling sequence and register usage

All parameter passing in F77 is done by reference (according
to the standard). In normal use, the de¥ault register allo-
cation scheme oF the code generator is used. with the -o
switch, at most six loop-variables are put in data regis-
ters

February 10, 1984



A

-4-

5. Additions and remarks

The ACE F77 compiler Front-end For the 68000 reflects com-
pletely the standard [3], its implementation lS Fully
described in [7].
Here we only give some examples of problems an average T77
programmer will get, when trying to conform to the standard.
This list is by no means complete, it only gives hints (see
also the list of diFFerences between F66 and F77 in the
appendix of [7]).
(1) Upper ~ Lower case

)g The compiler expects lower case source input. Upper
case is converted to lower case except in character
constants. Be careful: a ¥ormat‘string, as interpreted
by the run time package, has to be in lower case, so
implicit Format strings (= character constant) or/\ arrays with Format information, cannot use upper case
letters.

(2) Integer size ,

The standard size Tor an integer is Four bytes. This
does not only eFFect the size oF integer variables, but
also the size of integer constants, and the results of
integer expressions. with the —I2 compiler switch this
standard can be set to two bytes. It will eFFect the
size oF integer variables, integer constants and the
results o¥ integer expressions, but integer intermedi-
ate expressions will stay Four bytes long.

In the MC58000 the address of an object is the address
of its high order byte. This means that it is not pos-
sible to access a two byte integer value through the
address o¥ a Four byte integer. As a consequence: rou-/\ tines which communicate with other routines, using
integer constants or expressions as parameters, have to
be compiled with the same integer size.

(3) Logical size/\ A logical*1 size is not defined in the standard, and
consequently not supported. The only way to introduce
objects of single byte size is through the character*n
construct. .

(4) Hollerith »

The Hollerith construct from FORTRAN 66 is not avail-
able in FORTRAN 77. The £77 compiler supports Holler—
ith in data initialisation statements. In general Hol—lerith cannot be used in integer expressions, but no
error or warning is generated. when a Hollerith is used
as in:

IVAR = 2Hab or IVAR .EQ. 2hab

February 10, 198A



I‘

- 5 -

4 two byte string constant is generated.
The address of the high order byte is used For access.
but with a move or compare instruction For a single
byte only.

(5) Block structures
The only block structure supported by the standard is
the Block IF. Other commonly used constructs For Do
loops (like Do ... Enddo, D0 while, or Do ... Until)
are not supported.

(6) Pre~connected Files

*}~ Unit FORTRAN 71 FD uwrx Status

U not known 2 standard error pre—connected
S read O standard input pre—connected
6 write 1 standard output to be opened/\ K any File y Fort.x (0<x<1O) to be opened

(7) Do loops
A step size of zero is Forbidden by the standard, and
not supported in F77.
Statements which change the index variable of the loop
are also Forbidden, but this is possible in F77 and
does not generate a warning or error.

(8) variable addresses
The mapping of local variables onto the private address
space of a routine is not straightforward, so variables
which have been declared in some order will in general
not be assigned to memory in that same order.
The only way to Force the allocation of memory in a
certain order is through the use of a set of/\ equivalence statements between individual variables and
the elements of an array.

(9) Array order
The order in which elements o¥ a multi—dimensional/\ array are stored in memory is di?¥erent in F77 and C.

(10) End of record
The end of a record in a formatted File is always given
-by the newline character (UNIX: a linefeed or decimal
10).
It is not possible to suppress the automatic generation
of this character at the end of an output record.

(11) Open statement
In addition to paragraph 6.8.1 of [7] and 12.10.) of[3]: when no File parameter is given and no status
parameter is given, status is assumed scratch (instead
oF old).

February TU, 1984



-0

... 6 ..

l

(12) Record length
when a File is declared to have records oF length r
(recl = r), while only n bytes (n < r) are written per
record, then only n bytes can be read From the last
record oF the File (record with the highest sequence
number).

§- lnvesatlen and cempller switshes

The F77 driver program accepts all switches as given in the
F77 documentation ([7], [9]). except those a¥¥9Cti09 M4.
Natfuf and EFL Files and programs; the latter ones are not
lmplémnted.

?*~ specials and remarks:

—V The verbose or View switch. Shows the various passes 0F
the compiler as they are called by F77. with their
switches and intermediate Files.

/K
-O<d>Invoke the assembly code optimiser aFter the assembly

code generation. when the O is Followed by a numeric
digit, <d> data registers are (at most) allocated by
the F77 Front~end For holding loop variables.

—N This switch allocates more space For several tables. It
is normally used aFter the Front—end has given a Fatal
compiler error.
Usage: —Ntddd where t is one oF 'q', 'x', 'c', 'n' (For
equivalence table, external name table, control-
structure table and name table) while ddd is the new
number oF elements this table at least must have (the
Fatal compiler error message has given the current
number oF entries). when more than one table has to be
enlarged, the option looks like "-Nq300-Nx400".

,/\
§. The MOTOROLA 68000 code generator

The code generator produces assembly code For several,
language dependant, Front-ends. Most oF the typing and
speciFic register usage is dictated by the Front—ends.
The code generator produces assembly code, that includes
almost all available instructions and addressing modes
(including the Address Register Indirect with Index address~
ing mode).

The UNIX system requires a dynamically growing stack. UnFor—
tunately the 68000 can produce address errors, when address~
ing outside the stack, that cannot be backed—up. ThereFore
provisions have to be made to prevent these errors. For this
purpose, the code generator produces "tst.b -XX(sp)"
instructions each time the stack pointer is decremented (on
procedure entry, and beFore procedure calls with parame-
ters). when such a tst.b instruction produces an address
error, the stack segment can be enlarged, and any subsequent

February 10, 198A



r

P

I

...»- .~_

:r~
-

/\

/'\

1

_ 7 -

gtagk fQFQfGHCeS cannot cause an error anymore.

1. [he stacg laLogt

On each procedure/Function entry the €ollowing code is pro~
GUCEUI

tst.p -<disp>(sp) stack test
link (a6),¢-<disp> install new Frame
movem.l —<disp>(a6),<reg list> save used registers

while on return the Following code is produced

movem.l <reg list>,~disp>(a6) restore used registers
unlk a6
rts

In these pieces of code <disp> is the total amount of space
in bytes) needed For this procedure to store its automat-

ics, its temporary results and to save the registers; <reglist> is a list of registers used (allocated) looal to this
function, so effectively onl tho
are actually used. Both <disp> and <reg li

P . -.
y se registers are saved that

ist> are generated
by the -ode geneiatoi.
Note that the code en
registers: D0. D1, A0, A1, A6

g erator NEVER saves the Following
and A7.

This implies the ¥ollowing stack lay~out

new sp -> T - ~ - — — - -— — — — ~ ~ - — —-“

new A6 -> I old A6

Old sp -> 7-1 - - - ~ ~ - - - — '- --»---~

y saved registers 1

4»-Q41‘;-Q---—-_<1¢-’q_~<u_-_@

; temporaries
1 allocated by code generator

--.»--Q-.-_—@1~_-.-_---_’—»

l automatics
_~@-<1-<—-4--@1¢<‘-_-4-¢@

\
I

1

\

i ¢- - -. an Q Q Q Q. —| _- _- _. -- _- .-. - ¢

1 return Z-.1dClI‘€SS ,

\
i‘-_-_-.-_-<._-___-.----_...-_

} argument 1
§

T argument 2
T

All 'stack' variables (automatics, Function arguments) are
addressed via A6 (automatics having a negative o¥Fset, and
arguments having a positive oFFset).

The clean—u € * * ~ * ' -p o the stack aFte1 a proceduie call with param-
eters is done oy the calling procedure.

February 10, 1984



i
O

I
§

"/\

/./"\

/\

/'\

_ 8 -

Q.‘ References

[3] American National Standard programming language FOR-
TRAN, ANSI X3.9-1978.

[5] The MC68000 16-bit microprocessor. User's Manual,
Motorola.

[6] 68343 Fast Floating-point re€erence manual, M68KFFP(D1)
July 1981, Motorola.

[7] S.I.Feldman and P.J.weinberger, A Portable Fortran 77
Compiler, UNIX programmer's manual, 7th edition, volume
2, chapter 21.

£9] UNIX programmer's manual, 7th edition, Volume 1.

February 10, 1884


