The ACE FORTRAN 77 Compiler for the MC68000

Willem Wakker
(c) ACE - Associrated Computer Experts bv,

Nieuwezljds Voorburgwal 314
1012 RV Amsterdam.

ABSTRACT

This report describes the Lmplementation detaills
of the ACE FORTRAN 77 compiler for the MCG68000.
The ACE f77 compiler 1s an upgraded version of the
UNIX f77 compiler. This compiler implements fully
the FORTRAN language as specified i1n the American
National Standard programming language FORTRAN 77,
ANSI X3.9-1878, so only extensions and deviations
to the definition are mentioned.
Information about data-types (sizes and alignment)
will be given, together with a description of the
calling seguence, parameter passing and regilater
usage .

February 10, 1984



-~

=77(1) XENIX Programmer’ s Manual FT7(1)

NAMD
77 Fortran 17 caompiler

SYNOPSIS
£717 [ option 1 ... file

DESCRIPTION
F17 1s the ACE Fortran 77 compiler. It accepls several
types of arguments:

Arguments whose names end with . f' are tLaken to be Fortran
77 source programs; they are compiled, and wach object pro-
gram is lett on the file in the current directory whose name
1s that of the saurce with .0 substituted for .F°

In the same way, -arguments whose names end with Lo oar A
are taken to be C or assembly source programs and are Com -
biled or assembled, producing a Lol file.

The following flag:s are understood.

-

=

1
"
- U

uppress loading and produce .o’ +tiles for each source
1

w Suppress all warning messages .

-wbb6 Only Fortran 66 compatibility warnings are suppressed.

-p Prepare object files for profiling, see prof(1).
-5 Compile the named programs, and leave the assembler-

language output on corresponding files suffixed ~.s'
(No .o’ 1s created).

-0 output
Name the final output file output instead of “a.out .

~-onetrap
Compile DO loups that are performed at least once 1if
reached. (Fortran 77 DO luvops are not performed at all
1f the upper limit is smaller than the lower limit.)

-U Do not convert upper case letters Lo lower case. The
default is to convert Fortran programs to lower case.

u Make the default type of a variable ‘undefined' rather
Lhan using the default Fortran rules.

-12 On machines which support short inteqgers, make the
default integer constants and variables short. (-14 is
the standard value of this option). All logical quan-
tities will he short.

Praonted 2/23/8¢ 22/2/84 1



F1701) XENIX Programmer’'s Manual FT7(1)

- Compilrle code Lo check that subscripts are within
declared array bounds .

-V The Verbose or View switoch., Shows the various passes of
the compiler as they are called by 77, with their
switches and 1ntermediate files.

~0<d>
Invaoke the assemblyv code ontimiser after the assembly
code generatlon. When Lthe 0 1s followed by a numeric
digit, <d>» data registers are (at most) allocated by
the £77 front-end for holding loop variables.

7~ .
- N This swlitch allocates more space for several tables. It
1s normally used after the front-end has given a fatal
compiler error. Usaae: -Ntddd where t 1s one of "q',
"x', '¢’, 'n' (for eguivalence table, external name
~— table, control-structure table and name table) while
ddd 1s the new number of elements this table at least
must have (the fatal compiler error message has given
the current number of entries). When more than one
table has to be enlarged, the option looks like -
Ng300-Nx400".
FILES
file.[fsc] tnput file
flile.o uobject frle
a.out loaded output
fusr/bin/+717 the driver program
/usr/lib/f1Tpassi front-end of the f77 compiler
fusr/lib/int_conv a conversion program for intermediate flles
fusr/lab/pcc? the code generator
/Jusr/lib/ouG8 the assembly code optimizer
/usr/lib/as_conv a conversion program that modifies the assembly
— /usy/1lib/LibFT7.a intrinsic function library
/fusr/1ib/1ibIT7.a Fortran 1/0 library
/1ib/libe . a C librarv, see section 3
/1ib/libm. a C library, see section 3

N SEE ALSO

S.1. Feldman, P.J. Welinberger, A Portable Fortran 77 Caom-
piler
prof(1), cc(1), 1ld(1)

DIAGNOSTICS

The diagnostics produced by 77 i1tself are intended to be

self-explanatory. Occasional messages may be produced by
the loader.

Printed 2/23/8% 22/2/84



1. Introductaion

The ACE f77 compiler for the MCG8000 is an upgraded version
of the UNIX 77 compiler [7]. It implements fully the FOR-
TRAN 77 language as specified in [3]. Users of the f77 com-
piler are advised to get a copy of this definition, since
many common dialects of FORTRAN deviate from this specifica-
tion.

The f77 runtime environment 1s almost completely explained

1n (6], together with the 1interface for C routines and func-
tirons.

2. Data types, si1zes and alignment

The f77 data types are specified in (3], the correspondence

between the f77 data types and C data types are given 1n
paragraph 4.2 of [(7]1. The f77 data types i1nherit (when not
conflicting with [3]) their alignment for the C types.

Note that separately compiled f77 routines must all have the
same assumption about the integer size, so that when one
file 13 complled with the -12 switch, all files must be com-
prled with this switch.

The MC6B8000 data organisation implies that all addresable
data elements are addressed via the address of the byte
which contains the most significant bit of the data element
(s0 the address of the least significant byte of the data

element 1s always equal to or higher than the address of the
data element) .

The addressang scheme of the 68000 also requires that
multi-byte data (2 bytes or 4 bytes) are always accessed on
word (even byte) boundaries. This implies the alignment of
the various data elements.

For more detailed information on the 68000 data organisation
and addressing capabilities, see chapter 2 of [(5].

The following data types are i1mplemented:

character

These values occupy 8 bits (1 byte) and can be aligned
an any byte boundary. The value of a char ranges from
-128 to +127.

LNnteger*?

These values occupy 16 bits (2 bytes) and are (must be)
aligned on word (even byte) boundaries. The value of a
short ranges {rom 32768 to +32767.

February 10, 198¢%



integer
loyical

These values occupy 32 bits (4 bytes) and are (must be)
aligned on word (even byte) boundaries. The value of
an integer ranges from 2147483648 to +2147483647.

Elements of the type real occupy 32 bits (4 bytes) and

are {must be) aligned on word (even byte) boundaries.
All real values are converted to double precision
values for arithmetic operatirons. A real value con-

sists of a sign bit (most saignificant bit), followed by
an 8-bit bilrased exponent and a 23 bit mantissa.

double precision

Elements of the type double precision occupy 64 bits (8
bytes) and are (must be) aligned on word (even byte)
boundaries. A double precision value consists of a
sign bit (most significant bit), followed by an 8-bit
biased exponent and a 55 bit mantissa.

complex

The complex data type consists of two floating point
(real) numbers, the first (lowest address) being the
real part and the second the imaginary part.

double complex

As for the complex, but with each element being a dou-
ble precilision number.

arrays

Elements of an array may be of any of the types men -
tioned above and are stored coniiguously 1n memory. The
(base) address of an array 1s always aligned on a word
(even byte) boundary . Elements of multi-dimensional
arrays are stored i1n column major order.

3. Calling sequence and regaister usage

All parameter passing in f77 15 done by reference (according

to the standard). In normal use, the default register allo-
cation scheme of the code generator 1s used. With the -0
switch, at most six loop-variables are put i1n data regis-
ters.

February 10, 198¢



4 . Additions

and remar

The ACE f77 compiler front-end for the 68000 reflects com-

pletely the standard (3. 1ts implementation 1s fully
descraibed in (7).

Here we only gilve some examples of problems an average f17
programmer will get, when trying to conform to the standard.
This list 1s by no means complete, 1t only gives hints (see
also the list of differences between F66 and f77 in the
appendaix of [7]).

(1) Upper - Lower case
The compiler expects lower case source input. Upper
case 1s converted to lower case except in character
constants. Be careful: a format string, as interpreted
by the run time package, has to be 1n lower case, so

implicit format straings (= character caonstant) or
arrays with format i1nformation, cannot use upper case
letters.

(2) Integer size
The standard size for an 1nteger 1is four bytes. This

does not only effect the size of integer variables, but
also the size of 1nteger constants, and the results of
Lnteger expressions. With the -12 compiler switch this
standard can be set to two bytes. Tt will effect the
size of integer variables, integer constants and the
results of integer expressions, but integer intermeda -
ate expressions will stay four bytes long.

In the MC6B8000 the address of an object 1s the address
of 1ts high order byte. This means that it is not pos-
sible to access a two byte integer value through the
address of a four byte 1nteger. As a consequence: rou-
tines which communicate with other routines, using
1nteger constants or expressions as parameters, have to
be compiled with the same 1nteger size.

(3) Logical size
A logical*1l size 1s nol defined in the standard, and
consequently not supported. The only way to introduce
objects of single byte s1ze 1is through the character*n
construct.

(&) Holleraith
The Hollerith construct from FORTRAN 66 is not availl-
able 1n FORTRAN T77. The f77 compiler supports Holler-

ith 1n data 1nitialisation statements. 1In general Hol-
lerith cannot be used 1n 1nteger expressions, but no

€rror or warning 1s generated. When a Hollerith is used
as 1n:

IVAR = 2Hab or IVAR _EQ. 2hab

February 10, 1984



(6)

(1)

(9)

(10)

(11)

A two byte string constant 135 generated.

The address of the high order byte 1s used for access,
but wilth a move or compare instruction for a single
byte only.

Block structures

The only block structure supported by the standard 1s
the Block If. Other commonly used constructs for Do
loops (like Do ... Enddo, Do While, or Do . Until)
are not supported.

Pre-connected files

Unit FORTRAN 77 FD UNIX Status
0 not known 2 standard error pre-connected
5 read - 0 standard 1input pre-connected
6 write 1 standard output to be opened
% any file y fort.x (0<x<10) to be opened

Do loops

A step size of zero 1s forbidden by the standard, and
not supported in f77.

Statements which change the index variable of the 1loop
are also forbidden, but this 1s possible 1n f77 and
does not generate a warning or error.

Variable addresses

The mapping of local variables onto the private address
space of a routine 1s not straightforward, so variables
which have been declared 1n some order will 1in general
not be assigned touo memory 1n that same order.

The only way to force the allocation of memory in a
certain order 1s through the use of a set of

equivalence statements between individual variables and
the elements of an arravy.

Array order

The order in which elements of a multi-dimensional
array are stored i1n memory is different in f717 and C.

End of record

The end of a record in a formatted file is always given
by the newline character (UNIX: a linefeed or decimal
10) .

It 15 not possible to suppress the automatic generation
of this character at the end of an output record.

Open statement
In addition to paragraph 6.8.1 of [7] and 12.10.1 of
(31]: when no file parameter 1s given and no status

parameter 1s given, status 1s assumed scratch (instead
of old).

February 10, 1984



(1?2) Record length
When a file 1s declared to have records of length r
(recl = r), while only n bytes (n < r) are written per
record, then only n bytes can be read from the last
recovrd of the file (record with the highest sequence
number) .

ln

Invocation and compiler switches

The f77 driver program accepts all switches as given in the
f£17 documentation (71, {al), except those affecting M4,
Katfor and EFL files and programs; the latter ones are not
implemented.

Specials and remarks:

-V The Verbose or View switch. Shows the various passes of
the compller as they ave called by f77, with their
switches and i1ntermediate files.

-0<d>Invoke the assembly code optimiser after the assembly
code generation. When the 0 1s followed by a numeric
digiLt, <d> data regirsters are (at most) allocated by
the f77 front-end for holding loop variables.

-N This switch allocates more space for several tables. It
1s normally used after the front-end has given a fatal
compller error.

Usage: -Ntddd where t 1is one of 'q', 'x', '¢', 'n’ (for
equilivalence table, external name table, control -
structure table and name table) while ddd 1s the new
number of elements this table at least must have (the
fatal compiler error message has given the current

number of entries). When more than one table has to be
enlarged, the option looks like “-NQ300-Nx400".
6. The MOTOROLA 68000 code generator

The code generator produces assembly code for several,

language dependant, front-ends. Most of the typing and
speclfic register usage is dictated by the front-ends.
The code generator produces assembly code, that includes

almost all available instructions and addressing modes

(1ncluding the Address Register Indirect With Index address-
ing mode) .

The UNIX system requires a dynamically growing stack. Unfor-
tunately the 68000 can produce address errors, when address-

1ng outside the stack, that cannot be backed-up. Therefore
provisions have to be made to prevent these errors. For this
purpose, the code generator produces “"tst.b -XX({sp)"”

instructions each time the stack pointer is decremented
procedure entry, and before procedure calls wilth

{on

parame -
fters) . When such a tst.b 1nstruction produces an address
error, the stack segment can be enlarged, and any subsequent

February 10, 1984



stack references cannot cause an error anymorve.

1. The stack layout

On each procedure/function entry the following code is pro-
duced:

tst.b -<disp>(sp) stack test
link (ab) ,#-<disp> install new frame
movem. 1l -<disp>(ab),<reg list> save used registers

While on return the following code is produced

mavem. 1 <reg list>,-disp>(ab) restore used registers
unlk ab
rts

In these pieces of cdde <disp> 1s the total amount of space
(1n bytes) needed for this procedure to store its automat -
1C¢s, 1ts temporary results and to save the registers; <reg
list> 1s a list of registers used (allocated) local to this
function, so effectively only those registers are saved that
are actually used. Both <disp> and <reg 1list> are generated
by the code generator.

Note that the code generator NEVER saves the following
registers: DO, D1, A0, A1, A6 and AT.

This implies the following stack lay-out

new sp -> |--------oooo o |

| temporaries | allocated by code generator

new A6 -> | old A® |

| argument 2 |
old sp -> |-------mooa oo |

All "stack’ wvarlables (automatics, function arguments) are
addressed via A6 (automatics having a negative offset, and

arguments having a positive offset) .

The clean-up vf the stack after a procedure call with param-
eters 1s done by the calling procedure.

February 10, 198¢



8. References

(3] American National Standard programming language FOR-
TRAN, ANSI X3.89-1978.

[9] The MC68000 16-bat mMlCcroprocessor, User's Manual,
Motorola.

[6] 68343 Fast Floating-point reference manual, MGEBKFFP(D1)
July 1981, Motorola.

[7] S.I.Feldman and P.J.Weinberger, A Portable Fortran 17
Compiler, UNIX programmer’ s manual, 7th edition,
2, chapter 21.

volume

[3] UNIX programmer’ s manual, Tth edition, Volume 1.

February 10, 138¢



(1) XENIX Programmer’ s Manual FT7(1)

77 Fortran 77 coampirler

SYNOPSIS

£f77 [ option ] ... file

DESCRIPTION

FT77 1s the ACE Forvrtran 77 compiler. It accepts several
types of arguments:

Arguments whose names end with _f° are taken to be Fortran
77 source programs; they are compiled, and @ach object pro-
gram 1s lett on the file in the current directory whose name
15 that of the source with .07 subsbtituted for . F°

In the same way, arguments whuse names end with .¢' or N
Aare taken to be C ocr assembly source program<s and aAre Ccom-
piled or assembled, producing a .ol file.

The following flags are undevstood.

]
A
- U

uppress loading and produce .o +iles for each source
Ll

T

1
w Suppress all warning messages .

-wb8 Only Fortran G6 compatibility warnings are suppressed.

-p Prepare object files for profiling, see prof(1).
-5 Compile the named programs, and leave the assembler-

language output on corresponding files suffixed s’
(No .0 LS created).

SO output
Name the final output file outout instead of Ta.out .

-onetrip
Compile DO looups that are performed at least once 1f
reached. (Fortvan 77 DO luops are not performed at all
1f the upper limit is smaller than the lower limit.)

-uU Do not convert uppevr case letters Lo lower case. The
default 15 to convert Faortran programs to lower case.
9] Make fthe default type of a varirable ‘undefined’ rather

than using the default Fortram rules.

-12 On machines which support short Lntegers, make the
default 1nteger constants and variables short. (=14 1is
the standard value of this option). All logical guan-
tities will he short.

Prainted 2/23/84 22/2/84 1



F7701) XENT
-C Complle code G
declared array
-V The Verbosse or
the compiler a
switches and 1
~Q4d>
Invoke the ass
code generatlo
diglt, <d> dat
the f77 front-
=N This switch al
Ls normally us
compiler error
x', e, 'n’
—~ table, control
ddd 1s the new
must have (the
the current nu
table has to b
Ng300-Nx400"
FILES
file.[fsc]
file.o
a.out
/fusvr/bin/f17
/usr/lib/f77passt
fusr/lib/int_conv
Jusr/lib/pcc?
/usr/Lib/uviG8
/usr/lib/as_conv
~ /usr/Lib/LibFT7 .4
_ /usr/lib/11blI77.a
/lib/libe.a
/1l1ib/libm.a
~. SEE Al SO
S.I. Feldman, P.J.
piler
prof(1), cc(t), 1ld(

DIAGNOSTICS
The diagnostics
self-explanatory.
the loader.

Prainted 2/23/8¢

produced by

X Programmer’'s Manual FT7(1)
o check that subscriphts are within

bounds |

Viaw switch., Shows the vavrious passes of
s they are called by f77, with their
ntermediate files.
embly conde ontimiser after the assembly
n. When Lhe 0O 1s followed by a numeric
a reglsters acre (At most) allocated by
end for hulding loop variables.
Tocates more space for several tables. It
ed after the front-end has given a fatal
. Usawue: -Ntddd where t is one of ‘'q,
(for egulivalences table, external name
-structure table and name table) while

number of elements this table at least

fatal compiler error message has given
mber of entries). When more than one
e enlarged, the option looks like "-

input file

object firle

loaded output

the dvrliver program

front-end of the 77 compiler

a conversion program for intermediate Flrles

the code generator

the assembly code optimizer

a conversion program that modifies the assembly

1ntrinsic function library

Fortran 1/0 library

C librarv, see section 3

C library, see section 3

Weinberger, A Pourtable Fortran 77 Com-

1)

f77 1tself are i1ntended to be
ODccasi1onal messages may be produced by

]

2

)
v

/2/84

h



3

The ACE FORTRAN 77 Compliler for the MC68000

Willem Wakker

(c) ACE - Assucirated Computer Experts bv,
Mieuwezljds Voorburygwal 314
1012 RV Amsterdam.

ABSTRACT

This veport describes the Lmplementation detalls
of the ACE FORTRAN 77 compiler for the MC68000.
The ACE f77 compiler 1s an upgraded version of the
UNIX f77 compiler. This compiler i1implements fully
the FORTRAN language as specified 1n the American
Nati1onal Standard programming language FORTRAN 77,
ANSI X3.9-1878, s0o only extensions and deviations
tu the definition are mentioned.

[nformation about data-types (sizes and alignment)
wilill be given, together with a description of the
calling seguencae, parameter passing and regraterv
usage.

February 10, 1984



1. Introduction

The ACE f77 compiler for the MC68000 1s an upgraded version
of the UNIX f77 compiler [7]. It implements fully the FOR-
TRAN 77 language as specified 1n [3]. Users of the f77 com-
pLler are advised to get a copy of this definition, since
many common dialects of FORTRAN deviate from this specifica-
tion.

The f77 runtime environment 1s almost completely explained
1n (61, together with the interface for € routines and func-

tionsc.

2. Data types., s1zes and alignment

The f77 data types are specified 1n (3], the correspondence
between the £77 cdata types and C data types are given 1in
pavagraph ¢.2 of [7]. The f77 data types inherit (when not
conflicting with [3]) their alignment for the C types.

Note that separately compirled f77 routines must all have the
same assumption about the integer size, so that when one
frle 15 compiled with the -12 switch, all files must be com-
plLled with this switch.

The MC68000 data organisation implies that all addresable
data elements are addressed v1a the address of the byte
which contains the most significant bit of the data element
(s0 the address of the least significant byte of the data
element 1s always equal to or higher than the address of the
data element) .

The addressing scheme of thé 68000 also requires that
mulbtiL-byte data (2 bytes or 4 bytes) are always accessed on
word (even byte) boundaries. This 1mplies the alignment of

the various data elements.

For more detailed 1nformation on the 68000 data organisation
and addressing capablrlities, see chapter 2 of ([(5].

The following data types are i1implemented:
character

These values occupy 8 bits (1 byte) and can be aligned
nn any byte boundary. The value of a char ranges from
-128 to +127.

Lnteger*?2
These values occupy 16 bits (2 bytes) and are (must be)

aligned on word (even byte) boundaries. The value of a
short ranges {from - 32768 to +32767.

February 10, 198¢



Lnteger
logical

These values occupy 32 bits (& bytes) and are (must be)
aligned on word (even byte) boundaries. The value of
an integer ranges from -2147483648 to +2147483647.

real

Elements of the type real occupy 32 bits (& bytes) and

are {must be) aligned on word (even byte) boundaries.
All real values are converted to double preclrsion
values for arrthmetic operatirons. A real value con-
sists of a sign bit (most significant bit), followed by

an B8-blit brased exponent and a 23 blt mantissa.
double precision

Flements of the type double precision occupy 64 bits (8
bytes) and are (must be) aligned on word (even byte)
boundaries. A double precision value consists of a
sign bit {most significant bit), followed by an 8-bit
brased exponent and a 55 bilit mantissa.

complex
The complex data type consists of two floating point
(real) numbers, the first (lowest address) being the

real part and the second the imaginary part.

double complex

As for the complex, but with each element being a dou-
ble precislion number.

arrays

Elements of an array may be of any of the types men -
tioned above and are stored conilguously 1n memory. The
(base) address of amn array 1s always aligned on a word
(even byte) boundary . Elements of multi-dimensional
arrays are stored in column major order.

3. Calling sequence and regaster uJdsage

All parameter passing 1in f77 15 done by reference (according

to the standard). In normal use, the default register allo-
catiron scheme of the code generator 1L1s used. Wirth the -0
switch, at most six loop-variables are put 1n data regis-
ters.

February 10, 198%4



4. Additions and remarks
The ACE f77 compller front-end for the 68000 reflects com-
pletely the standard (31, 1ts implementation 1s fully

described 1n (717.

Here we only give some examples of problems an average f717
programmer will get, when trying to conform to the standard.
This list 1s by no means complete, 1t only gives hints (see
also the list af differences between F66 and f77 in the
appendix of [71).

(1) Upper - Lower case
The compiler expects lower case source input. Upper
case 1s converted to lower case except 1n character

constants. Be careful: a format-string, as interpreted
by the run time package, has to be 1n lower case, s0

implicit format strings (= character constant) or
arrays with format information, cannot use upper case
letters.

(2) Integer size
The standard si1ize for an 1nteger 1s four bytes. This

does not anly effect the si1ze of 1nteger varliables, but
also the size of 1nteger constants, and the results of
Lnteger expressirons. With the -12 compliler switch thyis
standard can be set to two bytes. It will effect the
si1ze of 1nteger variables, Lnteger constants and the
results of 1nteger expressians, but integer intermedi-
ate expressions will stay four bytes long.

In the MC68000 the address of an object 1s the address
of 1ts high order byte. This means that 1t 1is not pos-
sible to access a two byte integer value through the
address of a four byte 1Lnteger. As a consequence: rou-
tines whlich communicate wlith other routines, using
integer constants or expressions as parameters, have to
be compiled with the same 1nteger size.

(3) LogLrcal size
A logical*l size 1s not defined in the standard, and
consequently not supported. The only way to i1ntroduce
objects of single byte si1ze 1s through the character*n
construct.

(6) Hollerith
The Hollerith construct from FORTRAN 66 1is not avail-

able 1n FORTRAN 77. The f77 compller supports Holler-
1th 1n data 1nitialisation statements. In general Hol-
lerith cannot be used 1n Lnteger expressions, but no
error or warning 1s generated. When a Hollerith 1s used
as 1n:

IVAR = 2Hab or IVAR .EQ. 2hab

February 10, 198¢



(6)

(9}

(10)

(11)

1 htwo byte string constant 135 generated.
he address of the high order byte 15 used for access,
but wilth a move or compare Lnstruction tor a single

byte only.

Block structures

The only block structure supported by the standard 1s
the Block If. Other commonly used constructs for Do
loops (like Do ... Enddo, Do While, or Do B Until)
are not supported.

Pre-connected files

Jnit FORTRAN 77 FD UNIX Status
0 not known 2 standard error pre-connected
S read 0 standard i1nput pre-connected
6 write 1 standard output to be opened
x any file y fort.x (0<x<10) to be opened
Do loops
A step si1ze of zero 1s forbidden by the standard, and

not supported 1n f77.

Statements which change the 1ndex variable of the loop
are alsn forbirdden, but this 1s possible 1n f77 and
does not generate a warning oOr error.

Varirable addresses

The mapping of local variables onto the private address
space of a routine 1s not stralghtforward, so variables
which have been declared 1n some order will 1in general
not be assigned to memory 1n that same order.

The only way to force the allocation of memory in a
certain order 13 through the use of a set of
equlvalence statements between 1ndividual variables and
the elements of an array.

Array order
The order 1in which elements aof a multi-dimensional
array are stored 1n memory 13 different 1n f77 and C.

End of record

The end of a record in a formatted file is always given
by the newline chavacter (UNIX: a linefeed or decimal
10) .

It 1s not possible to suppress the automatic generation
of this character at the end of an output record.

Open statement

In addition to paragraph 6.8.1 of [7] and 12.10.1 of
(31: when no Flle parameter Ls gLven and no status
parameter 1s given, status 1s assumed scratch (instead
of old) .

February 10, 1984



(12) Record length
When a file is declared to have records of length r
(recl = r), while only n bytes (n < 1r) are written per
record, then only n bytes can be read from the last
record of the fi1le (record with the highest sequence
number) .

Invocation and compiler switches

i

The f77 driver program accepts all switches as given 1in the
£77 documentation (71, [a1), except those affecting M4,
katfour and EFL files and programs; the latter ones are not
implemanted.

Specials and remarks:

-V The Verbose aoar View switch. Shows the various passes of
the complrler as they ave called by f77, with thelr
switches and i1ntermediate files.

-0<d>Invoke the assembly code optimiser after the assembly
code generation. When the 0 1s followed by a numeric
digLk, <d> data registers are f(at most) allocated by
the f7{ front-end for holding loop varliables.

-N This switch allocates more space for several tables. [t
1s normally used after the front-end has given a fatal
compller error.

Usage: -Ntddd where t 1s one of 'q°', 'x', ‘¢, 'm’ (for
equlvalence table, external name table, control-
structure table and name table) while ddd 1s the new
number of elements this table at least must have (the
fatal compller error message has given the current

number of entries). When more than one table has to be
enlarged, the option looks like "-NQ300-Nx400".
6. The MOTOROLA 68000 code generator
The code generator produces assembly code for several,
language dependant, front-ends. Most of the typing and
speclfic register usage 1s dictated by the front-ends.
The code generator produces assembly code, that includes

almost all avallable Lnstructions and addressing modes

(1ncluding the Address Register Indirect With Index address-
1ng mode) .

The UNIX system requlres a dynamlically growing stack. Unfor-
tunately the 68000 can produce address errors, when address-

1ing outside the stack, that cannot be backed-up. Therefore
provisions have to bhe made to prevent these errors. For thuis
purpase, the code generator produces “tst.b -XX(sp)"©

Lnstructions each time the stack poirnter is decremented (on
procedure entry, and before procedure calls with parame-
ters) . When such a tst. b 1nstruction produces an address
error, the stack segment can be enlarged, and any subsequent

February 10, 1398¢



stack references cannout cause an error anymove.

xI. The stack lavout

On each procedure/functron entry the following coude 1s pro-
duced:

tst.b -<disp>(sp) stack test
lLink (aBb) ,#-<disp> install new frame
movem. 1l -<disp>(ab), <reg list> save used registers

While on return the following code 1is produced

movem.l <reg list>, -disp>(ab) restore used reglsters
unlk ah
rts

In these pieces aof code <disp> 1s the total amount of space
{1n  bytes) needed for this procedure to store 1ts automat-
1cs, 1ts temporary results and to save the registers; <reg
list> 1s a list of registers used (allocated) local to this
function, so effectively only those registers are saved that
are actually used. Both <disp> and <reg list> are genevrated
by the code generator.

Note that the code generator NEVER saves the followiling
vreglrsters: 00, D1, AO0, A1, A6 and AT7.

This 1mplies the following stack lay-out

new sp -> [-------oooooo--- |

| temporaries | allocated by code generator

new A6 -> | old A8 |

old sp -> |------------- ==
All "stack’ wvariables (automatics, function arguments) are
addressed via A6 (automatics having a negaftlive offset, and

arguments having a positive offset) .

The clean-up of the stack after a procedure call with param-
eters 1s done by the calling procedure.

February 10, 198¢



8. References

(3] American National Standard programming language FOR-
TRAN, ANSI X3.9-1378.

(9] The MC68000 16-b1lt MLCroprocessor, User' s Manual,
Motorola.

(6] 68343 Fast Floating-point reference manual, M6BKFFP(D1)
July 1381, Motorola.

[7] S.I.Feldman and P.J.Weinberger, A Portable Fortran 77
Compiler, UNIX programmer’ s manual, 7th edition, volume
2., chapter 21.

{91 UNIX programmer’ s manual, 7th edition, Volume 1.

Febbruary 10, 1398%¢



