~ | ABCenix

C-Kerait 4.2(030) PRERELEASE % 2, 5 March 85

)
/\
Tahle of Contents
. higs
— 1. UNIX KERMI
1.1. The Unix File Systea
1.2. Cossand Line Dperatian
{.3. Interactive Operation
1.4, C-Kerait undar Berkelay or Systza I1I/V Unix;
1.9, C-Kerait on the DEC Pro-3xx with Venix 1.9
1.6, C-Kerait Restrictions and Xnown Bugs

[
{

~d o L e e

-

Nay 27 19:22 1983 ckerai.dac Page |

1. UNIX KERMIT

Prograe: Frank da Cruz, Bill Catchings, Jeff Damens, Coluabia University;
Hera Fischer, Litton Data Systess, van Nuys CA; contributions by
sany others.

Lanquage: C

Documentation:

Frank da Cruz, Colusbia University; Hers Fischer, Litton Data Sys-
‘ teas, Van Nuys CA.
Version: 4,2
Date: March 1985

DRAFT

NOTE -- This source for this documentation is written as input for the
Scribe text toraatter. It needs to become input for two text +foreat-
ters - Scribe and Nroff, the former for inclusion in the Kersit User
Guide, and the latter for Unix san pages. This aight be done by defin-
ing 2oruatt1nq aacros in M4, which generate the appropriate Scribe and
Nroff coseands +for sectioning, itemization, description, etc.
(Volunteers?)

C-Kerait 1is a cospletely new implesentation of Kermit, writien sodularly and
transportably in L. The protacol state transition table is writtea in wart, a
(not proprietary} lex-like preprocessor for . § sten-degendent primitive func-
ticns are isalated into seBaritely'tnupxled sodules so that the progras should
be g?sxly portable asong Unix systeas and also to non-Unix systeas that have C
cospilers.

Unix Kerait Capabilities At A Glance:

Local operation: Yes
Local operation: Yes
Remote operatiaon: Yes
Login scripts: Yes
Transfer text files: Yes
Transfer binary files: Yes
Wildcard send:) Yes
File transfer interruption: Yas
Filenase collision avoidance: Yes
Can tise out: Yes
Bth-bit prefixing: . Yes
Repeat count pretixing: Yes
Alternate block checks: Yes
Tersinal eaulation: Yes
Coaaunication settings: Yes
Transait BREAK: es
Suﬁpurt for dialout aodeas: Yes
{BM aainframe cosaunication: Yes
Transaction logging: Yes
Session logging: Yes
Debug logging: Yes
Packet logging: Yes
Act as server: Yes
Talk to server; Yes
Advanced server functions: Yes
Local file lana?ecent: Yes
Coamand/Init files: fes

UUCP and aultiuser line locking: Yes
File attributes: No
Cosaand aacros: No
Raw file transait: No

C-Kerait provides traditional Uniz comeand line operation as well as inter-
active coasand proepting and execution. The tommand line optians pravide ac-
ce§s~to‘a lxnxgal supset of C-Kermit's capabilities: the interactive coaeand
sat is far richer.

On srstens with dialout wodess, C-Kersit can use cossand files and lcgin
scripts to essentially duplicate the file transfer functionality of uuco asang
feterogeneous onerating. systess, including by the use of schejuled {e.g. late
night) unattended operation.

i1, The Unix File Systea

Consult your Uniy manual for details about the file systea under vyour versian
of Unix, For the purposes of Kersit, several things are worth briefly noting.
Unix files qenerally have lowercase nases. Unix airectories are tree-struc-
tured. Directcry levels are separated by °/* characters. Faor exaaple,

LXN

'Hiy 27 19:22 1983 ckerai.doc Page 2

fusr/fao/bar

denotes the file bar in the directory /usr/foo. Wiidcard or *meta® chiracters
allow groups of files to be specified. ‘¢ aatches any string; *?° satches any
single character.

Wnen C-Kerait 1s invoke¢ with files spacified on the Unix cosmand line, the
Unix shei! tBourne Shell, C-Shell, etci expands meta characters, and in this
case, a wider variety is available. For exaaple,

kerait -s {(/ckdx-zA*.Achd

is expanded by the Berkeley C-Shell into a list of all the files in the user's
home directory (i/) that start with the characters “ck®, followed by a single
character x, vy, or z, followed by zero or more characters, followed by a dot,
follawed by ane of the characters c or h. Internally, the C-Kersit prograa it-
self expands only the "#" and *?" aeta characters.

Unix files are linear streass of 8-bit bytes. Text filas consist of 7-Bit AS-
CIl characters, with the high bit off (0), and lines separated by the Unix
newline character, which is iinefeed (LF, ASCIL 10}, This distinquishes Unix
text files from those on aost other ASCII systams, in which lines are separated
by a carriage-return linefeed sequence (CRLF, ASCII LI followed by ASCII 10).
Binary files are likely to contain data in the hign bits of the file bytes, and
are not treated in terss of lines.

When transferring files, C-kersit will convert between upger and lower case
filenames and betweer LF and CRLF line tersinators autosatically, unless told
to do otherwise. When binary tiles aust be transferred, the prograa aust e
instructed nct ta perfora LF/CRLF conversion (-i on the comaand line or ‘“set
file type" intaractively; see below).

1.2, Consand Line Operation

The C-Kerait cosaand line syntax has been changed froa that of earlier releases
of Unix Kerait to confora to the °Proposed Synfax Standards for Unix Systea
Comsands® put forth by Kathy Hemenway and Helene Araitage of AT4T Bell
Laboratories in Unix/World, Vol.l, No.J, 1984, The rules that apply are:

- Command nases aust be between 2 and 9 characters (“kersit® is él.

- Cosmand names aust include lower case letters and digits only.

- An option nase is a single character,

- Options are delimited by '-". A .

- Options with na arqusents say be grouped (bundled) behind one
deliaiter.

- Option-arquaents cannot be optieonal. S

- Arqueents imsediately follow options, separated by whitespace.

- The order of options does not aatter. , o

- '=" preceded and followed by whitespace ameans standard input.

A group of bundled options say end with an option that has an arguasent.
The following notation is used in comaand descriptiens:
0 A Unix file specification, possibly containing the *wildcard® charac-

ters '# or '?° ('#' satches all character striags, i patchas any
single character),
o

nl A Uniy file specificatiocn which aay not contain "¢ or "7,

rfn A reaote file specification in the remcte systea's own syntax, wnich
say denote a single 4ile or a qroup of files.

rinl A resmote file specification which should denote only a single file.

n A decisal nuaber between 0 and 4.

c A decimal nuaber between 0 and 127 rapresentiag the value of an ASCII
character.

o A decimal nusber between 0 and 31, or else exactly 127, representing

the value of an ASCII control character.
Al Any field in sguare braces is optional.
ix,y,za Alternatives are listed in curly bracas.
C-¥erait coasand line options may sggciéy either actions or settings, If
C-kernit is invoked with a coemand line that specities no actions, then it will
issue a proept and begin interactive dialog. Action cptiens specity either
pratocal transactions or terminal connection.

-5 fn Send the specified file or files. It fn contains wildcard (aeta)
characters, the Unix shell expands it into a list. If ¢n is '-" then

" May 27 19:22 1985 ckersi.doc Page 3

kerait sends fros standard input, which asust cose from a file:
kerait -s - ¢ foa.bar

or a parallel process:
Is -1 0 kernoit -5 -

You cannot use this sechanisa to send terminal typein. If vou want to
send 3 file whose name is °-° you can precede it with a path name, as
in

kerait -s ./-
-r Receive a file or files. Wait passively for files to arrive.

-k Receive (passively) a file or files, sending thes to standard output.
This option can be used in several ways:

kerait -k o
Displays the incosing files an your screen; to be used anly in
*local aode” {see belowl.

kerait -k) fnl
Sends the incoming file or files to the named file, fnl. [f aore
than one file arrives, all are concatenatzd together into the
single file fnl.

kerait -k 4 cossand)
Pipes the incoming data (single or aultiple files) to the indicatad
command, as in

kerait -k @ sort » sorted.stuff

-a fnl If you have specified a file transfer option, you say specify an alter- .
nate name for a single file with the -a option. For example,

kerait -s foo -a bar

sends -the file foo telling the receiver that its nase is bar. If aore
than one file arrives or is sent, only the first file is affected by
the -a option:

kerait -ra haz
stores the first incoming file under the name baz.
-X Begin server operation. May be used in either local or resote sode.

Refore proceeding, a few words about reaota and local operation are necessary.
C-Kersit is “local® if it is running on PC or workstation that you are using
directly, or if it is runnin? on a aultiuser systea and transferring files aver
an external comeunication fine -- not your job's contralling terminal or con-
sole, C-Kermit is reeote if it is running on a sultiuser system and transter-
ring files over its awn controlling tersinal's coasunication line, connected to
your PC or workstaticn.

I you are running C-Kerait on a PC, it is in local mode by default, with the
*back port® designated for file transfer and tersminai connection. If you are
running C-Kerait on a aultiuser (timesharing! systea, it is in reacte acde un-
less you explicitly point it at an external line for file transfer or tarainal
connection, The following cosmand sets C-Kerait's “modz*:

-1 dev Line -- Specify a tersminal line to use for file transfer and terainal
connection, as in

kerait -1 /dev/ttyid

When an external line is being used, you sight also need some additional op-
tions for successful comaunication with the resote systea:

-b n Baud -- Specify the baud rate for the line given in the -l option, as
in
kerait -1 /dev/ttyid -b 9600

Thie aption shculd always be included witn the -1 option, since the
speed of an external line 15 not necassarily what you expect.

-p X Parity -- e,0,a,5,n (even, odd, mark, space, or nonel. ¥ parity is
other than none, then the Sth-bit prefixing sechanisa will be used for
transterring 3-o1t binary data, provided the apposite Kerait agrees.
The default parity is none. .

-t Specifies half duplex, line ‘turnaround with KON as the handshake

.th 27 19:22 1985 ckersi.doc Page 4

character,

The following cossands eay be used only with a C-Kerait which is local -- ei-
ther by default or else because the -1 option has been specified.

-g rén Actively request a resote server to send the named file or files; rfn
is a file specification in the resote host's own syntax. If fn happens
to contain any special shell characters, like ‘&', these sust be
quoted, as in

kersit -g x0#.47
-+ Send a ‘finish’ command to a remote server,

-t Establish a tersinal connection aver the specified or default cos-
aunication line, before any protocol transaction takes place. Get back

to the local systes by typing the escape character (norsally
Control-Backsiash) followed by the letter 'c'.

-n Like -c, but after a protocol transaction takes place; -c and -n may
go}h be used in the same comaand. The use of -n and -c is illustrated
elow.

On & tisesharing systes, the -1 and -b cptions will also have to be included
with the -r, -k, or -s options if the other Kerait is on a resote systea.

If C-ferait is in local sode, the screen {stdout) is continously updated to
show the progress of the lile transer. A dot is printed for every four data
packets, other Rackets are shown by tyge {e.g. ‘'S’ for Send-Init), ‘T’ is
printed when there's a timeout, and "X’ for each retranssission. In addition,
you aay type (to stdin) certain “interrupt® commands during file transfer:

Control-F: Interrupt the current File, and.?o on to the next {(if anyl.
Control-8: Interrupt the entire Batch of files, terainate the transaction.
Control-R: Resend the current packet

Control-A: Display a status report for the current transaction.

These interrupt characters differ from the ones used in other Kermit iaspleaen-
tations to avoid conflict with Unix shell interrupt characters. With-Systoa
III and Systes V implesentations of Unix, interrupt comsands must be preceeded
by the escape character (e.g. control-d).

Several other coesmand-line options are provided:

-i Specifies that files should be sent or received exactly "as is® with no
conversions. This option is necessarv for transaitting binary files.
It may also be used to slightly boost efficiency in Unix-to-Umix trans-
ters of text files by elisinating CRLF/newiine conversion.

- Write-Protect -- Avoid filenase collisions for incoming files.

-q Quiet -- Suppress screen update during file transfer, for instance to
allow a file transter to proceed in the background.

-4 Jebug -- Recard debuq%inq inforaation in the ¢ile debug.log in the cur-
rent directory. Use this ogtiun it you beliesve the program 1s ais-
behaving, and show the resulting log to your local kerait saiatainer,

-h Help -- Display a brief cynopsis of the coseand iine opticns.
The comsand line aay contain ao more than one protocei action optien.

Files are sent with their own nases, except that lowercase letters are raisad
to upper, ﬂathnales are stripped off, tilde (‘Q'} characters changed to 'Y°,
and 1f the file name beqins with a period, an ‘X' is inserted betore it. In-
cosing files are stored under their own names except that uppercase letters are
lowered, and, if -w was specified, a "generation number® is appended to the
name it it has the same name is an existing file which would otherwise oe over-
written, [f the -a option is included, then the same rules apply to its ar-
ueent. The file transfer display snows any transforaations perforsed upon
ilenanes.

During transeission, files are encoded as follows:
- Control characters are converted to prefixad printables.

- Sequences of repaated characters are collapsed via repeat counts, if
the other Kerait is also capable of repeated-character ccapression.

- 14 Earity is being used on the comeunication line, data characters
with the 8th (parity) bit on are specially pretixed, provided the
other Kereit is capabie of 8th-Dit prefixing (if nect, 8-bit binary
tiles cannot be successfully transterred’.

- Conversion is done between Unix newlines and carriage-return-linzfeed

" May 27 19:22 1985 ckersi.doc Page S
sequences unless the -i option was specified.

Coamand Line Examples:
kerait -1 /dev/ttyiS -b 1200 -cn -r

This cosaand connects you to the systes on the other end of ttyid at 1290 baud,
where you presusatly 1log in and run Kermit with a 'send’ command. Atier you
escape back, C-Keramit waits for a file lor files) to arrive, When the file
tranffer %s cospleted, you are again connected to the reaote system so that you
can logout.

kerait -1 /dev/ttyi4 -b 1800 -cntp & -r -a foo

This comsand is like the preceding one, except the remote systea in this case
uses half duplex comsunication with mark parity. The first file that arrives
is stored under the nase foa.

kerait -1 /dev/ttyié -b 9600 -c 4§ tek

This example uses Kerait to connect your terminal to the systea at the aother
end of ttyié. The C-Karmit tersinal connection does not provide any Rarticular
tersinal eaulation, so C-Kermit's standard i/0 is piped througn a4
(hypothetical) progras called tek, which perforas (say) Tektronix esulation.

kerait -1 /dev/ttyib -b 9400 -nf

This cosmand would be used to shut down a remote server and then connect to the
resote systea, in order to log out or to aake further use of it. The -n option
is invoked after -+ (-c would have Deen invoked beforel.

kerait -1 /dev/ttyié -b 9600 -qg foo.5% %

This cosmaand causes C-Kerait to be invoked in the backgqround, getting a group
of files froa 3 resote server (note the quoting ot the ‘#' characteri. No dis-
play occurs on the scraen, and the keyboard is not sampled for interruption
comsands. This allows other work to be done while file transters proceed in
the background.

kerait -1 /dev/ttyié -b 9600 -g foo.d* » fop.iog ¢ /dev/null &

This comsand is like the previous ane, except the file transfer disglay has
been redirected to the file.fou,lo?. Standard input is also redirected, to
prevent C-Kersit froa sampling it for interruption coamands.

kerait -iwx

This comeand starts up C-Kerait as a sarver. Files are transaitted with no
newline/carriage-return-linefeed conversicn; the -i aption is necessary tor bi-
nary file transfer and useful for Unix-to-Unix transfers. Incoaing files that
have the same names as existing files are given new, unique nases.

kerait -1 /dev/ttyis -b 600

This coasand sets the comaunication line and speed. Since no action is
specified, C-Kerait issues 1 prun?t and enters an interactive dialog with you.
Any settings given on the coamand line reaain in forca during the dialeg, un-
less explicitly changed.

kerait
This comsand starts up Keramit interactively with all default settings.

A final exaaple shows how Unix Kerait might be used to send an entire directory
tree from one Unix system to another, using the tar prograas as FKersit's stan-
dard input and output. On the crginating systzs, in this case the remote, type
{(for instance):

tar ¢t - /usr/fdc 3 kersit -is -

This causes tar to send the directory /usr/fdc (and ail its files and all its
subdiractories and all their files...) to standard output inst2ad of t0 a tape;
kerait receives this as standard input and sends :t as a binary file. On ths
receiving systam, in this case the local one, tvpe (for instancel:

"May 27 19:22 1985 ckerai.doc Page &

kerait -il /dev/ttyiS -b 9600 -k § tar xf -

Kerait receives the tar archive, and sends it via standard output to its own
copy of tar, which extracts from it a replica of the original directory tree.

Exit Status Codes:

Kerait returns an exit status of zero, except when 3 fatal error is encoun-
tered, where the exit status is set to one. With background operation l(e.g.,
‘%’ on invoking coamand line), driven by scripted interactive cosmands
{redirected standard input and/or take filesi, any failed interactive cossand
(such as failed dial or script attempt) causes the fatal error exit.

{.3. Interactive Operation

C-Kermit's interactive cosmand proapt is *C-Kersmit>*. In response to this
prospt, you may type any valid comsand. C-Kersit executes the coesand and then
prospts you for another cosaand. The process continues until you instruct the
progria to terainate.

Cossands begin with a keyword, normally an English verb, such as *seng®. You
say oait trailing characters from any keyword, so long as you specity sut-
ficient characters to distinguish it fros any other keyward valid in that
field. Certain coamonly-used keywords (such as *send”, ‘receive*, ‘connect®)
have special non-unigue abbreviations (°s® for “send®, °r® for ‘receive’, "t
for “connect®).

Certain characters have special functians in interactive coasands:

? Question sark, typad at any point in a comsand, will produce i sessage
explaining what is possible or expected at that point. Depending on
th§‘cpnt$x2,lthe aessage say he a brief phrase, a aenu of keywards, or
a list of files.

ESC (The Escape or Altaode key) -- Request cnaeletian of the current
keyword or filename, or insertion of a default value. The result will
be a beep if the requested oparation fails.

DEL (The Delete or Rubout key) -- Delete the previous character froa the
cosaand. You eay also use BS {Backspace, Control-H) for this function,

W (Control-¥) -- Erase the rightaost word from the cosmand line.
gl (Control-U) -- Erase the antire cossand.
iR (Control-R) -- Redisplay the current cosaand.

SP ({Space) -- Deliaits fields ikeywords, filenames, nusbers) within a cos-
sand. HT (Horizontal Tah) eay also be used for this purpose.

CR (Carriage Return) -- Enters the comaand for execution. LF (Lineteed)
ar FF (torafeed) may alsc be used for this purpose.

6 (Backslash) -- Enter any of the above characters into the coseand,
literally. To enter a backslash, type two backslashes in a row (G0).

You smay t{pe the editing characters (DEL, iiN, etc) repestedly, to delete all
the way back to the proapt. No action will be pertorsed until the cossand is
entered hy tyfxng carriage return, iinafeed, or forafesd. If you eake any ais-
takes, you will receive an inforastive error message and i nes proapt — Adke
lideral use of '?' and ESC to feel your way through the coasands. One imper-
tant coseand is *help® -- you should use it the first tise vou run C-Kersit.

Interactive C-Kerait accepts coasands froa files as well as from the keyboard.
When you enter interactive sode, C-Kerait looks for the file .kerarc 1n your
hose or current directory (first it looks in the homa directory, thea ia the
current one) and executes any comeands it finds there, These coasanas aust be
in interactive forsat, not Unix comsand-line foraat. A ‘take* cosaand is alse
provided for use at anv time during an interactive session. Coamand f{les aay
be nested to any reasonable denth,

Here is a brief list af C-Kerait interactive coasands:
! Execute a Unix shell comsand.
bye Terainate and log out a remote Kerait cerver.
close Close a log fils,
connect Establish a terainal connection to a reacta systes.
cwd Change Working Directory.
- dial Dial a telephone nuaber,
directory Display a airector{ listing.
echo Dispiay ar%uaents iterally.
_exit Exit from the progras, closing any cpen logs.
finish Instruct a resote Kerait server to exit, but not log out.
get Get files from a remote Kerait sarver.

" May 27 19:22 1985 ckersi.doc Page 7

help Display a he!g aessage for a given comaand.)
102 Open 4 log file -- debugging, packet, session, transaction.
quit Same as ‘exit’. ' _
receive Passively wait for files to arrive,
resote Issue file management coasands to a resote Kerait server.
script Execute a login script with a reaote systes.
send Send files. ,
cerver Begin server operation.
set Set various paraaseters.
show Display values or ‘set’ paraasters.
space Dispiay current disk space usage.
statistics Display statistics about most recent transaction.
take Execute cossands from a file.

The ‘set’ paraseters are:)
block-check Level of packet error detection.
delay How long to wait before sending first packet.
duplex Spacify which side echoes during ‘connect’.
end-of-packet Terainator for outbound packets. ,)
escape-character Character to prefix ‘escape cossands® during ‘connect’.
file Set various file paraseters.
flow-control Cossunication line full-duplex flow cantrol.
handshake Cossunication line half-duplex turnaround character.
line Comsunication line device name,)
sadea-dialer Type of aodes-dialer on comsunication line.
packet-length Maxisua length for packets,
pad-character Character to use for inter-packet padding.
padding How such inter-packet padding to use.
paritz Cossunication line character parity,
prospt Change the C-Kerait prograa’s prospt.
speed Coesunication line speed.
start-of-gacket Control character to sark beginning of packets.
tiseout Timer interval to detact lost packets.

The ‘resote’ cossands are:
cwd thange reaote warking directory.
delete Delete remote files.
directory Displaz a listing of remote file names.
help Request help froam a remote server.
host Issue a coemand to the remote nost in its own coamand language
space Display current disk space usage on resote systes.
tyge Display a resote file on your screen.
who Display who's logged in, or get inforaation about 2 user.

Most of these commands are described adequately in the Kermit User Suide. Spe-
cial aspects of certain Unix Kerait comsands are described belaw.

THE "SEND‘ CORMAND
Syatax: send fn - or - send fni rinl

Send the file or files dencted by fn to the other Kerait, which should be run-
ning as a server, or wnich shculd be given the ‘receive’ cosmand. Each file is
sent under its own nase (as described above, or as specified by the 'sat file
nases’ comsand). If the second form is used, i.e. with #nl denoting a single
Unix file, rfnl say be specitisd as a nase to send it under. The "send’ coa-
aand aay be abbreviated to 's’, even though ‘s’ is not a unique abbreviation
for a top-level C-Kerait comsand.

The wildcard (seta) characters '#' and 7' are accepted in #n. [f 7" is to he
included, 1t sust he prefixed by '8’ to averride its noraal function of provid-
ing help. '+’ patches any string, ‘7' satthes any single character. Other
notations for file groups, like 'Aa-zlug'. are not available in interactive
commands (though of courss thez are available on the coamand lina). When #n
contains '# or '?’ characters, there is a liait to the nusber of files that
can be satched, which varies froa systes to systea, If you get the lessa?e
*Too sany files aatch® then you'll have to amake & sore judicious selection. If
fn was of the fora

usr/longnamse/anotherlongnase/+

then C-Kermit's string space will ¢ill up rapidly -- try doing 4 cwd (s=e
below) to the path in question and reissuing the coamand.

Nate -—- C-Kerail sends only frce the current or specified directorv. It does
not traverse directory trees. I+ the source dirsctory contains subairzctories,
they will be skipped. Conversely, C-Kermit does nct create directories wnen
receiving files. If yau have a need to go this, you can pige tar through
C-Kerait, as shown in the exasple an page 3, or under Systes 1Il/V Unix you can
use cpio.

Another Mote -- C-Xersit does not skip aver “invisible® files that aatch the
file specification; Unix systems usually treat files whose names start with a
dot (like .login, .cshrc, and .kerarc) as invisible.

" May 27 19:22 1985 ckerai.doc Page B

THE 'RECEIVE’ COMMAND
Syntax: receive - or - receive fnl

Passively wait for files to arrive from the other Kersit, which aust be given
the 'send’ cossand -- the ‘receive’ cosmand does nat work in conjunction with a
server (use ‘'get’ for that), If #nl is specified, store the first incoming
file under that nase., The 'receive’ coamand aay be abbreviated to 'r'.

THE ‘GET’ COMMAND:
Syntax: get rin

or: get
rin
nl

Request a resote Kersit server to send the nased file or files. Siace a resote
file specification {or list) aight contain spaces, which norsally delimit
fields of a C-Kerait command, an alternate fors of the comsand is provided to
allow the inbound file to be given a new naae: type 'get’ alone on a line, and
¥uu will ?e proapted separately for the reeote and local file specifications,
or exasple

C-Keraitsget
Reaote file specification: foa
Local name to store it under: dar

As with ‘receive’, if sore than one file arrives 2s a result of the "get’ com-
aand, only the first will be storad under the alternate nase given b{ nl; the
resaining files will be stored under their own nases if possible, If a 7" is
to be included in the remote file specification, you sust prefix it with '@’ ta
suppress its noraal function of providing help.

THE 'SERVER' COMMAND:

The ‘server’ cosaand places C-Kersit in “server sode* an the currently selected
communication line. All further coamands asust arrive as valid Kermit packets
froa the Kersit on the other end of the line. The Unix Kerait server can
respond to the following coamands:

Coarand Server Respanse
get Sends files
send Receives files
bye Atteapts to log itself out
finish Exits to level troe which it was invoked
reaote directory Sengs directory lising
reacte delete Reaaves files
reaote cwd Changes working directory
resote type Sends files to your screen
resote scace Reports about its disk usage
resote who Shows who's logged in
reaote host Executes a Unix shell cossand
resote help Lists these capahilities

Note that the Unix Kerait server cannot always respond to a BYE comsand. It
will attespt to do so using *kill{0,3}*, but this will not work on all systess
or under all conditicns. For instance, the C-Shell changes vour procsss group,
so that the process id of 0 does not refer to what you aignt expect.

I+ the Kerait server is directed at an external line (i.e, it is in “local
aode®) then the consale say be used for other work if you have 'set fils dis-
glay of$'; norsally the program expects the console to be used to observe file
ransfers and enter status queries or interruption cossands. The way to get
C-Kerait into backqround operation froa interactive ccasand level varizs froa
systea to systea (e.?. on Berkeley Unix you would halt the progras with 4l and
then usa the C-Shell 'bg’ comsand to continue it in the background). The aacre
coason method is to invoke the prograa with the desired coamand line arguaents,
including *-q", and with a terainating "%*. :

¥hen the Unix Kermit server is given a ‘remote host’ comsand, it executes it
using the shell invoked ugon lagin to the reapte systes, e.g. tha Bourne sheil
gr the Berkeley C-Shell. {Nota -- this is in distinction to the local *!*
shell escape, which always uses the Bourne shell; see delow).

THE "REMOTE', 'BYE', AND 'FINISH' COMMANDS:

C-Kerait may itself request services froa a reaote Kerait server. [n addition
to the ‘send’ and 'get comsands, the following may also be used:

o

Bay 27 19:22 1985 ckerai.doc Page 9

resote cwd KdirectoryA) S)
I the optional resote directory specification is included, you will be
grunpted on a separate line for a password, which will not echo as you

ype it.

reaote delete rén delete resote file or files.
reaote directory Arfnd directory listing of resote files.
resote host comsand cossand in reacte host's own cossand lanquage.

resote space disk usage report from remate host.

resote type ArfnA display reaote file aor files on the screen.
resote who Auserd display inforaation about who's logged in.
reapote help display resote server’'s capabilities.

bye and finish: i
When connected to a resote Kerait server, these comsands cause the
reaote server to terainate; 'finish’ returns it to Kerait or systea
coseand level (depending on the isplesentation or how the progras was
invoked); ‘bye’ also requests it to log itself out.

THE ‘LOG" AND ‘CLOSE’ COMMANDS:
Syntax: log adebugging, packets, session, transactionsd A fnl A

C-Kerait's progress may be logged in various ways. The 'log’ comsand opens @

the ‘close’ cossand closes it. In addition, all open la?s are closed by
the 'exit’ ano ‘quit’ commands. & nase say be specified for a log file; if the
nase is caitted, the file is created with a default nase as shown below.

log debquing o ')
This produces a voiuainous log of the internal workings of C-Kersit, of use
to Kermit developers or eaintainers in tracking down suspected bugs in the
C-Kersit progras. Use of this feature dramatically slows down the Kerait
protocol. Default name: debug.iog.

log packets
g This produces a record of all the packets that go in and out of the cos-
sunication port. This log is of use to Kerait maintainers who are tracking
dows protocol problems in either C-Kerait or any Kermit that C(-Kerait is
connected to. Default nase: packet.log.

log session ,
This log will contain a copy of everything you see on your screen durin
the ‘connect’ cosmeand, except for local messages or interaction with loca
escape comsands. Default name: session.log.

log transactions)
The transactien lo? is a record of all the files that were sent or received
while transaction logging was in =ffect. It includes time staaps and
statistics, filename transforsations, and records of any errors that may
have occurred, The transaction log allcws you to have lcn? unattended fila
transéer sessions without ¢ear of aissing some vital screen gessage.
Detault naae: transaction.log.

The ‘close’ cossand explicitly closes a logy e.9. ‘close debug’.

LOCAL FILE MANAGEMENT COMMANDS:

Unix Kermit allows soae deqree of local file aanagesent froa interactive coa-
aand level:

directory Afndk .
Displays a listing of the names, modas, sizes, and dates of files aatching

fn (wnich defaults to '#'}., Eguivalent to ‘ls -1°,

cwd Adirectory-named)
Changes Kerait's working directory to the one given, or to the your default
directory if the directory nase is omitted. Equivalent to ‘ca’.

space
Display inforsation about disk space and/or quota in the current girectory
and device.

! coamand o A) . .
The command is executed by the Unix shell. Use this for all cther file
sanageaent coseands. This coamana has cartain peculiarities:

- The Bourne shell is used.

- At least ona space aust separate the ‘'’ from the shell coesand.

- A ‘cd’ coamand executed in this aanner will have no eftect -- use
the C-Kermit ‘cwd’' command instead.

THE "SET’ AND "SHOW' COMMANDS:

May 27 19:22 1985 ckerai.doc Page 10

Since Kermit is designed to allow diverse systeas to cossunicate, it is often
necessary to issue special instructions to allaw the gruqral to adagt to
geculxarxtxes of the another systea or the cossunication path. - These instruc-

ions are accomplished by the "set’ cosaand. The 'show’ comaand mdy be used to
display current settings. Here is a brief synopsis of settings available in
the current release of C-Kermit:

block-check a1, 2, 3a)

Deteraines the level of per-packet error detection. "1° is a .slngle-
character b-bit checksus, falded to include the values of all bits trom
gach character, “2' is a 2-character, 12-bit checksus, *3' is a
3-character, 14-bit cyclic redundancy check (CRC). The higher the block
check, the better the error detection and correction and the higher the
resulting overhead. Type | is most cossonly used; it is supported by all
Kerait isplesentations, and it has proven adequate in aost circusstancas.
Types 2 or 3 would be used to advantage when transterring 8-bit dinary
files aver noisy lines.

delay n
How aany seconds to wait before sending the first packet after a "send’
cossand. Used in resote sode to give you time to escape back to your local
Kerait and issue a ‘receive’ coasand. Norsally J seconds.

duplex afull, halfa
For use during

‘connect’. Specifies which side is doing the echuing;
‘full’ seans

he other side, 'half' seans C-Kerait must echo typain itselt.

end-of-packet ¢c . _
Specifies the control character needed by the other Kerait to recognize the
end of a packet. C-Kersit sends this character at the end of each packet.
Noreally 13 (carriage return), which most Kerait isplasentations require.
Other Keraits require no terainator at all, still others aay require a dif-
ferent tersinator, like linefeed {10).

escape-character cc
or use during ‘connect’ to get C-Kersit's attention. The escape character
acts as a prefix to an ‘escape coamand’, for instance to close the connec-
tion and return to C-Kermit or Unix cosaand level. The noraal escape
character is Contral-Backslash (28). The escape character is also used in
%yste: [1I/V iaplementations, to prefix interrupt coemands during file
ransters.

file édisglay. nases, type, warningd
Estabiish various file-related parameters:

display don, offi :
Norsally ‘on’; when in local aode, display progress of fil2 transfers
on the screen {stdout), and listen to the keyboard (stdinl for inter-
rugtxuns. 1¥ off {-q on cosdand line) none of this is done, and the
tile transfer may proceed in the background cblivious to any other work
concurrently done at the conscle terainal.

nasas dconverted, literala

Normally converted, which aean that outbound filenames have path
specifications stripped, lawercase letters raised to vpper, tildes and
extra periods changed to X's, and an ! inserted in front of any nase
that starts with period. Incolin? tiles have uppercase lettars
lowered., Literal aeans that none af these conversions are done; there-
fore, any directary path appearing in a received file specitication
sust exist and be write-accessible. W¥hen literal nanin? is being used,
the sender should not use path names in the file specitication unless
the same path exists on the target systea and is writable.

type ibinary, texta

Ncrmally text, which aeans that conversion is done between Unix newline
characters and the carriage-return/linefzed sequences required oy the
canonical Kermit file transaission foreat, and in cc2mon use Gh non-
Unix systeas. Binary aeans to transait file contents without conver-
sign. Binary {'-i' in comeand iine notation) is necesssary for binary
file:. dand desirable in all Unix-to-Unix transactions to cut down on
overhead.

warning aon, offad

Ncraally off, which means that incoming files will silently overwrite
existing files of the same nase. When cn ('-w' on coasind line) Xerait
will check if an arriving file would overwrite an sxisting file: it so,
1t will construct a new name for the arriving file, of the fora fooin,
where foo is the name they share and n is a “generation number*; if foo
exists, then the new file will be called fcodl. If foo and fooul ex-
ist, the new file will be fooid2, ano so on.

flow-control inone, xon/xoffa
Noraally xon/xoff for full duplex flow contral. Should be set to ‘mone’ if
the other system cannot do xon/xof+ flaw contral.

May 27 19:22 1985 ckersi.doc Page t!

handshake ixon, xoff, cr, 1f, bell, esc, noned =~
Norsally none. Otherwise, hal#-dgpizx coasunication line turnaround hand-
shaking is done, which seans Unix Kerait will not reply to a packet until
it hg: received the indicated handshake character or has tised out waiting
or it.

line Adevice-nasel
The device name for the cossunication line to be used for file transfer and
terainal connection, e.g. /dev/ttyil. If you specify a device name, Kerait
will be in local sede, and you should resesber to issue any other necessary
‘set’ comsands, such as 'set speed’. If vou omit the device nase, Kersit
will revert to its default mode of operation.

sodea-dialer adirect, hayes, ventela)
The tyoe of aodea dialer on the communication line. ‘“Direct® indicates ei-
ther there is no dialout sodes, or that if tne line requires carrier detec-
tion to open, then ‘set line’ will hang waiting for.an‘xncunxng call,
*Hayes® and *Ventel® indicate that the subsequent ‘set line’ (or the -l
arqueent) will prepare for a subsequent 'dial’ coamand for Hayes and Ventel
dialers, respectively.

packet-length n
Specify the saximus packet length to use. Normally 90. Shorter packet
lengths can be useful on noisy lines, ar with systess or front ends or net-
works that have saall buffers. The shorter the packet, the higher the
averhead, but the lower the chance of a packet being corrupted by ncise,
and the less tise to retransait corrupted packets.

pad-character cc .
C-Kerait normally does not need to have incoming packets preceded with pad
characters. This cosmand allows C-Kerait tao re?uest the other Kersit to
use cc as a pad character. Default cc is NUL, ASCII 0.

padding n .
How many pad characters to ask for, noreally 0.

parity deven, add, aark, space, noned)
Specify character parity for use in packets and tersinal connection, nor-
sally none. I ather than none, C-Kerait will seek to use the 8th-bit
prefixing sechaniss for transferring B-bit binary data, which can be used
successfully only if the other Kereit agrees; if not, B-bit binary data
cannot be successfully transferrad,

procgt Astringd ,
he 21ven string will be substituted for *C-Kerait)® as this progras’s
proept. 1f the string is caitted, the prospt will revert to “C-Kerait®.

speed 40, 110, 130, 300, 600, 1200, {B0O, 2400, 4800, 96004)
The 'baud'rate for the external comsunication line. This cossand cannot e
used to change the speed of your own console terminal. Many Unix systeas
are set up in such a way that you aust give this coeeand after a ‘set line’
command before you can use the line.

start-of-packet cc

The Kerait packet prefix is Control-A (1}. The only reasons it should ever
be changed would be: Some piece of equipsent samewhere betwean the two Ker-
ait programs will not pass through a Control-A; or, sose piece of of equi-
peent similarly placed is echoing its input. In the latter case, the
recipient of such an echo can change the packet pretix for outbound packets
to be different from that of arriving packets, so that the achoed packets
will be ignored. The opposite Kerait aust also be told to changs the
pretix far its inbound packets. Unix Kersit prezently can be told to
change only its outbound packet prefix.

tiseout n
Noraally, =2ach Kermit partner sets its packet tiseout interval based on
what the opposite Kermt requests. This comsand allows you to override the
noraal procedure and specify a tiasout interval. If you specify 0, then no
Exnenu;s will occur, and Unix Kerait will wait forever for expectea packets
0 arrive,

THE "SHOW' COMMAND:
Syntax: show dparameters, versionsa
The show comsand displays the values of all the ‘set’ parametars descrided
above. If you type 'show versions’, then C-Kermit will display the versicn
nuabers and dates of ail its internal acdules. You should use the "show

versions’ coeaand to ascertain the vintage of your Kerait prograa before
reporting probleas to Kerait maintainers,

THE "STATISTICS' COMMAND:

" Key 27 19:22 1983 ckerai.doc Page 12

The statistics coasand disglays inforsation about the amost recent Kerait
protocol ‘transaction, inc uﬂxn? file and comsunication line i/, as well as
what encoding optians were in effect (such as Bth-bit prefixing, repeat-count
cospression), . ,

THE "TAKE® AND 'ECHO’ COMNANDS:
Syntax: take fnt

The ‘take’ cossand instructs C-Kerait to execute comaands fros the nased file.
The file aay contain any interactive C-Kersit cossands, including 'take'; cos-
aand files aay be nested to any reasonable depth. The ‘echo’ cossand may be
used within coasand files to issue greetings, announce progress, etc.

Coseand files are in exactly the same syntax as interactive coamands. ote
that this ilglies that if you want to include special characters like question

aark or backslash that vou would have to quote with backslash when typing in-

quactxve comsands, you sust quote these characters the same way i1n coasand
iles.

Comaand files may be used in lieu of comsand macros, which have not been ingle-
sented in this version of C-Xerait. For instance, 1f you coasonly comnect to a
systes called ‘B’ that is connected to ttyh7 at 4800 baud, you could create a
file czlled b containing the coasmands

set line /dev/ttyh?

set speed 4800

echo Cannecting to Systes B...
connect

and then siaply type ‘take b’ (or 't b‘ since no other cossands begin with the
letter 't') whenever you wished to connect ta systea B.

For connecting to [BM mainfrases, a nusher of ‘set’ coasands are required;
these, tco, are conveniently cnliected into a4 ‘take’ file like this ane:

set speed 1200

set garxtK park

set handshake xon

set flow-cantral none
set duplex half

An inyiicit ‘take’ coamand is executed upon your .kerarc file upon C-Kermit's
initial entry into interactive dialog.. The .kerarc file should contain 'set’
or other cossands you want to be in effect at all tiases. For instance, you
sight want override the default action shen incosing files have the sase names
as existing files -- in that case, put the comaand

set file warning on
in your .kerarc file.

Cossends executed from take files are not echoed at the terainal. If you want
to see the coasands as well as their output, you could feed the coseanc file to
C-Kerait via redirected stdin, as in

‘kerait < cedfile’
Errors encountered during executian of take files (such as failure to coaplete
dial or script operations) cause tersination of the currant take file, popping
to the taks file that invoked it, or to interactive leval. ®hen rerait is ex-
ecuted -in the background, errors during execution of a take file are fatal.

THE ‘CONNECT' COMMARD:

The connect cosmand links your terainal to another coamputar as if it were 3 lo-
cal terainal to that computer, through the device specified in the most recent
‘sat line' cosmand, or through the detault devica if your systea is a PC or
-workstation. All characters you type at vour keyboard are sent cut the Coa-
sunication line, all characters arriving at the coasunication port are dis-
playad on your scrzen. Current settings of speed, parity, dunlex, arg flow-
control are honored. If vou have issued a ‘'log session’ ccoasand, evervthing
you see on your scresn will alse be recorded to your session log. This
prcyidei 4 way to “capture* files froa systeas that don't have Kermit prograss
available.

To get back to your own systea, you must type the escape character, which is
Control-Backslash (0G) unlass you have changed it with the ‘set escape’ coa-
sand, followed by a singie-character comsand, such as 'c’ for *close
connection”, Single-character coamands incluca:

4 Ciose the connection
b Send a BREAK signal

May 27 19:22 1585 ckerai.doc Page I3

0 (zero) send a null ')

5 Give a status report about the connection]

U6 Send Control-Backslash itself (whatever you have defined the. escape
character to be, typed twice in a row sends one copy of itl.

Lowercase and control sguivalents for these letters are also accepted. A space
tyged after the escape character is ignored. Any other character will produce
a beep.

The connect cosaand singly displays incnlin% characters on the screen. It is
assumed any screen control sequences sent by the host will be handled by the
firaware 1n your terminal or PC. 1f terminal esulation is desired, then the
connect command can invoked from the Unix comaand line (-c or -n), piped
through a terainal esulation filter, e.g.

kerait -1 /dev/acu -8 1200 -c @ tek

‘e’ is an acceptable nan-unique abbreviation for 'connect’.

THE ‘DIAL' COMMAND:
Syntax: dial teleghone-nusber-string

This coseand controls dialout eodess. The telephune—nunher-strins a3y contain
andas-dialer cosmangs, such as coasa for Hayes pause, or 'k’ for Ventel dial-
tane wait and ‘%' for Ventel pause.

Secause aodem dialers have strict requirements to averride the carrier-detect
signal aost Unix ieplesentations expect, the sequence for dialing is sore rigid
than with the rest of kerait's features. -

Exaaple ane:

kerait -1 /dev/cul) -b 1200 ‘

(-Keraityset sodea-dialer hayes hint: abbreviate set a h
C-Keraitydial 9,3551212

Connected!

C-Kerait>connect hint: abbreviate ¢
logan, request reacte server, etc,

C-Rerait) ... A

C-Kersit)quit hint: abbreviate g

this disconnects aodea, and unlocks line.
Exasple twa:

kerait

C-Xerait)set apdea-dialer ventel
C-Keraitdsast linz /dev/cul®
C-Keraitidial 9%335:212%
Connected!

C-Kerait) ...

txaaple three:

kerait
C-Kerait)take ay-dial-procedure
Connected!

file ay-diai-procadura:
set aodes hayes

set line /dev/tty99
dial 5551212

connect

For Hayes dialers, two iaportant switch settings are ¥1 and 84, #! should be
up so that the DTR is only assertad when the line is 'opan’. #6 should be up
so carrier-getect functions properly. Switches #2 (English versus digit result
codes) and ¥4 (Hayes echoes sodem commands!) aay be in either pasitian.

THE "SCRIPT" COMMAND:
Syntas: script expect send Aexpect sandd . . .
*pxpect® has the syntax: expecti-sand-expecti-send-expecti...AMd

This cosmand facilitates logging iato a remote systea and/ar invoking prograas
or other tacilities after login cn a remote systea.

This login script facility operates in a sanner similar to that comaonly used
hz :pe ?nxx uucp System's °L.sys® file entrias. A login script 1s a sequence
of the fors:

- ar

May 27 19:22 1583 ckerai.doc Page 14

expect send Aexpect sendd . . .

where expect is a prompt or message to be issued by tne resote site, and send
is the string (names, nuabers, etc) to return. The send may also be the
keyword EOT, to send Control-D, or BREAK, to send a break signal. Letters in
send aay be prefixed by ‘i’ to send special characters. These are:

ib backspace
us space
iq '? (trapped by Kermit's comaand interpreter)
in linefeed
ir carriage return
it tab
Iy s;ngle quote
ai tilde
1" double quote
ic don't append a carriage return
JoAoAcAX
an octal character

As with sose uucp systeas, sent strings are followed by ir unless they have a
ic,

Unlz the last 7 characters in each exgect ar2 satched. A null expect, e.g. 0
wo adjacent dashes, causes a short delav hefore proceeding to the next send
sequence. A null expect always succeeds.

As with uucp, if the expect string does not arrive, the script attespt fails.
If you expect that a sequence might not arrive, as with uucp, conditional se-
quences may be expressed in the fora:

-send-expectA-send-expects... A
where dashed sequences are followed as long as previous expects fail.

Expect/send transactions can be easily be debqued by logging transactions.
This records all exchanges, hoth expected and actual.

Note that ‘&' characters in login scripts, as in any other C-Kerait interactive
coamands, aust be doubled up.

Example one:

Using a modes, dial a unix host site. Expect ‘*login® f(...gin}, and if it
doesn't come, siaply send a null string with a ir. (Sose Unixes require either
an EOT or a BREAK instead of the null sequence, depending on the particular
site’'s "logger® progras.) After providing user id and password, respond “x* to
a question-sark proapt, expect the Bourne shell *X° proept (and send return if
it dossn’'t arrive). Then cd to directory kerait, and run the grogras called
"serait®, entering the interactive connect state after werait is loaded.

set sodea-dialer ventel

set line /dev/tty77

set baud 1200

dial 945551212

script gini--gini--gin: saith ssword: aysecret ig x #--8%
cdiskerait 2 werait

connect

£xazple two:

Using 3 modea, dial the Telenet network. This network expects three returns
with slight delays between them. These are sent following null expects, The
single raturn is here sent as a null string, with a return appendad by default.
Four returns are sent to be sate befare looking for the proapt. Then the
telenet id and password are entered. Then telenet is instructed to connect to
a host site (c 12345). The host has a data switch, and to *which systee® it
responds 'mzhnst‘. This is followed by a TOPS-20 logon, and a request to lcad
Kerait, set even parity, and enter the server mode. Files are then exchanged.
The comsands are in a take file. The login ccamand is split onto two lines for
readability, though it is a single long line in the take file,

set aodea-dialer hayes

set line /dav/culd

set baud 1200

dial 9,3551212

set parity even

script @0 40 0 10 @0 §0 U0 10 £--¢--€ idisaaliil2 = 002211 ¢
clis12345 ystem-cis12345-ystea ayhest € joeussecret € kerait
> setisparityiseven server

send some.stuff

get some,otherstuff

bye

quit

~ May 27 19122 1985 ckersi.doc Page 15

Since these cosmands say be executed totally in the backgrouqd, they can alse
be scheduled. A typical shell script, which mignt be scheduled by cron, would
be a: follows (csh used for this example):

$keep trying to dial and log onto remcte host and exchange files
$wait 10 ainutes tefore retrying if dial or script fail.

$

while (1)
kerait < tonight.cad &
if (! dstatus) break
sleep 400

end

File tonight.cad aight have two takes in it, for exaaple, one to take a file
with the set modes, set line, set baud, dial, and script, and a second take of
a file with send/qet cossands for the remcte server. The last lines of
tonight.cad should be a bye and a quit.

THE "HELP' COMMAND:

Syntax: help
or: help keyword
or: help iset, remoted keyword

Brief help messages or menus are always available at interactive comsand level
by typing a question mark at any point. A slightly sore vertose fora of help
is available through the 'help’ cosmand. The ‘help’ cosaand with no arquaents
prints a brief suseary of now to enter comsands and how to get further help.
‘help’ may be followed by one of the top-level C-Keramit coesand keywords, such
as ‘send’, to request inforsation about a coesand. Comsands such as ‘set’ and
‘resote’ have a further level of help. Thus you may type 'help’, ‘he!y set’,
grl ‘help set parity’; each will provide a successively sore detailed level of
Epo

THE “EXIT' AND 'BUIT’ COMMANDS:
These two comeands are identical. Roth of thes do the fallowing:

- Atteapt to insure that the terainal is returned to norasal. .

- Relinquish access to any comaunication line assigned via 'set line’.

- Close any open log files.

- Relinquish any uucp and aultiuser locks on the comgunications line.

- Hang up the sodes, if the comsunications line supports data terminal
ready.

After exit fros C-Kermit, your default directory will be the sase as when you
started the grogral. The ‘exit’ coemand is issued isplicitly whenever C-Kerait
halts noraally, e.g. after a comsand line invocation, or after certain kinds of
interruptions.

1.4, C-Kerait under Berkeley or Systea I1I1/V Unix:

C-Kersit may be interrupted at comeand level or during file transfer by typing
Control-C. The groqral will perfora its noraal exit function, restcrln? the
terainal, 1f a pratocol tramsaction was in progress, an error packet will be
sent to the opposite Kerait so that it can tersinate cleanly.

C-Kermit say be invoked in the background (*%* on shell comasand line!. If a
background process is “killed*, the user will have to sanually reeove any lock
file and may need to restore the apde2. This is because the kili signal
{kill(x,9) cannot be trapped by Kerait.

During execution of a systes command, C-Kersit can often e returned ta ccasand
level by typing a single Contrel-C. (With Systes III/V, the usual interrupt
function (often "the DEL kev) is replaced by Control-C.) On detacting
Control-C, C-Kermit takes 1its noreal exit, remcving lock files and restaring
the cossunication line, sodes, and/or console terainal.

Under Berkeley Unix only:

C-Kerait may also be interrupted by U to put the process in the back-
ground, In tnis case the terainal is not restored. Ycu #ill have to type
tontrol-] followed by ‘“reset® followed by ancther Controi-J to get ycur
terainzl back to noreal. C-Ker2it can be halted in a siailar aanner by
typxn? Centrol- ,

Backslash, except that instsag of aoving it te the background, & core duzp
is produced.

Undar Systes III/V Unix:
The Control-6 character (or whatever cantrol cnaracter has peen selected
via ‘'set escape®) at the C-Xerait comsand level is ignored; 1t is trapped
and will not core-duap or interrupt Kerait.

" Kay 27 19:22 1985 ckersi.doc Page 16

-Control-C, Control-Z, and Control-G lose their normal functions during tersinal
connection and also during file transfer when the controlling tty line is being
used for packet i/a.

The BSD ispleentation of C-Kerait has code to take advantage of a special non-
standard kernal-sode line driver, which boosts the speed of packet i/o sig-
nificantly. The probles is that ®raw" sode, needed for packet i/e, alse im-
plies “cbreak® (character wakeup) soce, which is very sxpensive. the new line
driver is a aodification of the “berknet® driver, which allowed raw aode i/o to
take place with frocess.uekeup only upon recezgt of a linefeed. The Berknet
driver, unfortunately, strips oft the high order bit of each character and does
not allow the line terainator to be specified. The sodification allows all 8
bits to pass thrau?h unmolasted, allows the wakeup character to be specified,
and allows the buffer to be tested or cleared.

The Gystes III/V iiglelentation uses requlér kernel drivers, but 'qulgs' raw-
sode input in large blocks, thus overcamasing the usual system call overheads.

If you are running C-Kermit in *guiet scde® in the fore?round then interrupt-
ing the progras with a console interrupt like Cantral-C uifl not restore the
terainal to norsal conversational operation. This is because the systes call
to enable consale interrupt traps will cause the grograa to block it it's run-
ning in the background, and the primary reason for quiet sode is to allow the
prugrgl to run in the background without blocking, so that you can da other
wirk in the foreground.

If C-Xeranit is run in the background (*%" on shell coamsand line), then the in-
terruzi signal (Control-C) land Systes [II/V quit signal) are ignored. This
ETEVEEts an interrupt signal intended for a foreground job (say a cospilation)
roa being trapped by a background Kersit session.

1.5. C-Kerait on the DEC Pro-Jxx with Venix 1.0

The DEC Professional 300 series are POF-11/23 based personal computers. Venix
1.0 is a Unix v7 derivative. [t should not be confused with Venix 2.0, which
resesbles ATT Systes V. C-Kerait runs in local aode on the Pro-Jxx when invoked
froa the console; the default device is /dev/coml. When connected to a resote
systea (using C-Kerait's ‘connect’ ccamand), Pro/Venix itself (not Kerait)
provides VT32 terainal eaulatian. '

During file transfer, the interruption and status cossands (Control-A,
Control-F, etc) are noé available.

1.6, C-Kerait Restrictions and Xnown Bugs

{. File renaaing: When filename collision avoidance (“warning®) is
selacted, C-Kerait constructs unique naaes by appending 2 generation
nuaber to the end of the file name. Currently, no checkiag is done
Eplensure that the result is still within the maxisua length for a

ile name. ’

!*-)

JUCP line locking: C-Kermit locks lines, to prevent UUCP and mul-
tiuser conflicts, when it tirst opens a communications line. This
ocecurs either when ‘set line' is issued, or if the '-1° arguaent is
used, when the first 'dial’, 'connect’, or grntucal operation oc-
curs. The lock is released if another ‘set line’ is issued, or if
the program quits, exits, or is terminated by Control-C. If a user
connects and returns to the shell coasand level, for exaaple to in-
itiate kerait by piped cossands, on a communications line, the line
lock is released wh2n returning to the shell, Locking is not
needed, or used, if comsunications occur over the local tersinal
line le.g. /dev/tty). In that case, there is no difficultly with
*piped" operations releasing locks and lines.

3. Removing stale lock files: For various reasons, lock files some-
tiaes get lett about after uucp or C-Kerait activities, (The sost
cogaon reason is that the uucg or C-Kermit activity was “killed® &y
a shell coeaand.) If the lack file is owned by yourself, clearly
you aay resave it (presusing you are not running C-Kerait or uucp in
the backqround when you discovered it).

Uucp supports a function, called uuclean, which is custonarily used
to resove these files after a gredeternined age. If in doubt about
a lock file on the dial-out line you need, contact ycur systes's
gperator,

4, Modes controls: It connection is aade aver & coasunication lin2
(rather than on the contralling tareinal linel, and that line has
sodea controls, (e.g. data terminal ready and carrier detaction
isplesentation}, returning to the shell level wiil oisccnnect the
conversation. In that case, one should use interactive aode coa-
sands, and avoid use of piped shell-level operation (also see ‘set
aodea-dialer’ and ‘dial’' cosaands.)

May 27 19:22 1983 ckerei.doc Page 17

3

b.

7'

8

-

10.

Login Scripts: The present login scripts inglenentatinn follows the
Unix conventions of uucp’'s "L.sys® file, rather than the noraal Ker-
ait *INPUT/QUTPUT® style. Valunteers have indicated an intent to
iaplesent the Kerait standard for login scripts. and indeed even
others say be ispleaented in the future as needed.

Dial-out vs dial-in comsunications lines C-Kermit requires 4
dial-out line for the “set line® or *-1° options. Most systeams have
some lines dedicated to dial-in, which they enatle “lqggers“ on, and
sose lines available for dial-out, where a line aust be shared be-
tween dial-in and dial-out, several agtiuns are available (though
they are, strictly speaking, outside the pervue of C-Kermit).

A simple shell prograa can be used to change directionality of the
line if your Unix has the enable(B) and disaplei{8) coesands, In
that case, the shell progran could "grep*® a ‘who" to see if anybody
is logged onto the desired line; if not, it could *disable® the
line, The shell pra?ral will need to be set-ull’'ed to root. The
shell progras can be called froa kersit prior to 3 dial cossand,
e.g., *t" aydisable.shellprog®. Prior to the final ‘quit® from
C-Kerait, another shell progras could be executed to ‘spable® the
line again. This program also needs to be set-ulD’ed to rocot.

If your Unix lacks the enable(8) and disable(B) cossands, anather
coamon tschnique works if your systes supparts the J/etc/ttys file.
A shell progral could call up an awk progras to find the line in the
file and sef the enadble byte to 0 (to directly disable the linel.
Likewise, it can be reenabled by a counterpart at the end. It aay
be necessary to pause for &0 seconds after modifying that file be-
faore the logger sees it and actuaily disables the line.

Using C-Kersit on Local Area Netwarks: C-Kersit can successtully
ogerate.gt speeds up to 9400 baud aver LANs. Testing has, hawever,
shown that sast gro;essors whether PC/iTs with SC/IX, or Vaxes,
need flow control at these rates. A cosmand, “set flow x* should be
issued to each end of this fora of cannection.

If the LAN -is the sort with an interface card (or box, like the

Sytek), then the interface card/box sust be prograssed to handle the

flow control characters (xon and xoff) at the card/bex level (rather

than forwarding these characters to the resote sitel. This is be-

cause packetizing LANs will not deliver the xcff character to tGhs
other end, after packetization, until long after the receive bhuffer

has been averrun.

Resetting terainal after abnormal tersination or kill: When C-Kerait

terainates abnorsally fsay, for exangle, by a kill coasand issued by

the operator] the user aay need to reset the terainal state. [f

coesands do not sees to be accepted at the shell prospt, try

Control-J “stty sane® Control-] ({use ‘reset® on Eerkeley Unix).

{Eat should take the terainal out of “raw aode® if it was stuck
ere,

Reacte host coemands aay tise-out on lengthy activity: Using
‘resote host® to instruct the C-Kersit server to invoke Unix tfunc-
tions (like °‘*sake’) that aight take a lang time to produce output
can cause tiseout conditions.

oC/1X Login Scripts -- Unfound Bug: Though login scripts appesr to

work properly on aost processors, in the case of the PL/AT with
PC/I1X, it appears that longer scripts need to e broken up into
sharter scripts (invoked sequentially #ros the take ¢ilel. This is
because the porticn of the script handler which checks if an aopera-
ﬁion)tined out seems to leave the processor in a strange state (i.e.
ung).

Apr 20 13:23 1988 chkuker.doc Page 1

UNIX KERMIT

FRERLELK

This document is formatted as an ordinary, plain text ASCII disk file. Typeset
copies are available in the Kermit User Guide from Columbia University.
Changes should be made to CKUKER.MSS.

Krhrkk

Program: Frank da Cruz, Bill Catchings, Jeff Damens, Columbia University;
Herm Fischer, Encino CA; contributions by many others.

Language: C

Documentation:
Frank da Cruz, Herm Fischer

Yersion: 4E(068)

Date: January 24, 1968

C-Kermit is an implementation of Kermit, written modularly and transportably in
C. The protocol state transition table is written in wart, a {non-proprietary)
lex-1ike preprocessor for C. System-dependent primitive functions are isolated
into separately compiled modules so that the prograa should be easily portable
among Unix systems and also to mon-Unix systems that have C compilers, such as
VAX/YMS, Data General AOS/VS, Apollo Aegis, the Apple Macintosh, and the Com-
modore Amiga. This document applies to Unix implementations of C-Kermit, and
in most ways also to the VMS, Data General, and other implementations.

Unix Kermit Capabilities At A Glance:

Local operation: Yes
Remote operation: Yes
Login scripts: Yes {(UUCP style)
Transfer text files: Yes
Transfer binary files: Yes
Wildcard send: Yes
File transfer interruption: Yes
Filename collision avoidance: Yes
Can time out: Yes
gth-bit prefixing: Yes
Repeat count prefixing: Yes
Alternate block checks: Yes
Terminal emulation: Yes
Communication settings: Yes
Transmit BREAK: Yes (most versions)
Support for dialout modems: Yes
IBM mainframe communication: Yes
Transaction logging: Yes
Session logging: Yes
Debug logging: Yes
Packet logging: Yes
Act as server: Yes
Talk to server: Yes
Advanced server functions: Yes
Local file management: Yes
Command/Init files: Yes
UUCP and multiuser line locking: Yes
Long packets: Yes
Sliding Windows: No
File attributes packets: No
Command macros: No

Raw file transmit: No

ver 639

Apr 20 13:23 1932 ckuker.doc Page 2

All numbers in the C-Kermit docuaeniation are decimal unless noted otherwise.

C-Kermit provides traditional Unix comsand line operation as well as inter-
active command prompting and execution. The command line options provide ac-
cess to a basic subset of C-Kermit's capabilities; the interactive command set
is far richer.

On systems with dialout modems, C-Kermit's command file and login script
facilities provide a counterpart to UUCP for file transfer with non-UNIX
operating systems, including the use of scheduled {e.g. late night) unattended
operation.

1.1. The Unix File Systenm

Consult your Unix manual for details about the file system under your version
of Unix. In general, Unix files have lowercase names, possibly containing one
or more dots or other special characters. Unix directories are tree-struc-
tured. Directory levels are separated by slash ("/") characters. For example,

fusr /foo/bar

denotes the file bar in the directory jusr/foo. Alphabetic case is significant
in Unix file and directory names, i.e. "a" is a different file {or directory)
from "A". Wildcard or "meta" characters allow groups of files to be specified.
“%" matches any string; "?" matches any single character.

When C-Kermit 1is invoked with file arguments specified on the Unix command
line, the Unix shell (Bourne Shell, C-Shell, K-Shell, etc) expands the seta
characters itself, and in this case a wider variety is available. For example,

kermit -s “/ck[uva]*.{upd,bwr}]

is expanded by the Berkeley C-Shell into a list of all the files in the user’s
home directory (*/) that start with the characters "ck", followed by a single
character "u", "v", or "a", followed by zero or more characters, followed by a
dot, followed by one of the strings “upd” or "bwr”. Internaily, the C-Kermit

program itself expands only the "+" and "?" meta characters.

Unix files are linear (sequential) streams of 8-bit bytes. Text files consist
of 7-bit ASCII characters, with the high-order bit off (0), and lines separated
by the Unix newline character, which is linefeed (LF, ASCII 10). This distin-
guishes Unix text files from those on most other ASCII systems, in which lines
are separated by a carriage-return linefeed sequence (CRLF, ASCII 13, followed
by linefeed, ASCII 10). Binary files are likely to contain data in the high
bits of the file bytes, and have no particular line or record structure.

When transferring files, C-Kermit will convert between upper and lower case
filenames and between LF and CRLF line terminators automatically, unless told
to do otherwise. When binary files must be transferred, the program must be
instructed not to perform LF/CRLF conversion (-i on the command line or "set
file type binary" interactively; see below).

1.2. File Transfer
If C-Kermit is in local mode, the screen (stdout} is continously updated to
show the progress of the file transer. A dot is printed for every four data

packets, other packets are shown by type:

I Exchange Parameter Information
R Receive Initiate

Apr 20 13:23 1988 ckuker.doc Page 3

S Send Initiate

F File Header

& Generic Server Comsand

¢ Remote Host Command

N Negative Acknowledgement (NAK)

E Fatal Error

T Indicates a timeout occurred

0 Indicates a damaged, undesired, or illegal packet was received
1 Indicates a packet was retransmitted)

You may type certain "interrupt"” commands during file transfer:

Control-F: Interrupt the current File, and go on to the next (if any).
Control-B: Interrupt the entire Batch of files, terminate the transaction.
Control-R: Resend the current packet

Control-A: Display a status report for the current transaction.

These interrupt characters differ from the ones used in other Kermit implemen-
tations to avoid conflict with commonly used Unix shell interrupt characters.
With Version 7, System III, and System V implementations of Unix, interrupt
commands must be preceeded by the 'connect’ escape character {e.g. normally-\).
Ctri-F and Ctr1-8 are effective only during the transfer of data (D) packets,
and cannot be used to interrupt a transfer that has not yet reached that stage.

CAUTION: If Control-F or Control-B is used to cancel an incoming file,
and a file of the same name previously existed, and the "file warning”
feature is not enabled, then the previous copy of the file will dis-
appear.

EMERGENCY EXIT: When running Unix Kermit in remote mode, if you have started a
protocol operation (sending or receiving a file, server command wait, etc), you
will not be able to communicate with the terminal in the normal way. In par-
ticular, you cannot stop the protocol by typing the normal Unix interrupt
characters, since the terminal has been put in "raw mode". If vou need to
regain control quickly -- for instance, because the protocol is stuck -- you
can type two Control-C’s directly to the Unix Kermit program ({"connect” first
if necessary):

Control-C Control-C

This will cause the program to exit and restore the terminal to normal.

1.3. Command Line Operation

The C-Kermit command line syntax conforms to the Proposed Syntax Standards for
Unix System Commands put forth by Kathy Hemenway and Helene Armitage of AT&T
Bell Laboratories im Unix/World, Vol.l, No.3, 1984. The rules that apply are:

- Command names must be between 2 and 9 characters (“kermit" is 4).

Command names must include lower case letters and digits only.

An option name is a single character.

Options are delimited by '-.

- Options with no arguments may be grouped {bundled) behind one
delimiter.

- Option-arguments cannot be optional.

- Arguaents immediately follow options, separated by whitespace.

- The order of options does not matter.

- "' preceded and followed by whitespace means standard input.

1

i

A group of bundled options may end with an option that has an argument.

Apr 20 13:23 1988 ckuker.doc Page 4

The following notation is used in comeand descriptions:

fn

fnl

rfn

rfnl

¢c

[]

A Unix file specification, possibly containing the “wildcard” charac-
ters %' or 77 (¥ matches all character strings, '?' matches any
single character).

A Unix file specification which may not contain “*' or *?'.

A remote file specification in the remote system's own syntax, which
may denote a single file or a group of files.

A remote file specification which should denote only a single file.
A decimal number between 0 and 94.

A decimal number between 0 and 127 representing the value of an ASCII
character.

A decimal nuaber between 0 and 31, or else exactly 127, representing
the value of an ASCII control character.

Any field in square braces is optional.

{x,y,2} Alternatives are listed in curly braces.

C-Kermit command line options may specify any combination of actions and set-

tings.

then

If C-Kermit is invoked with a command line that specifies no actions,

it will issue a prompt and begin interactive dialog. Action options

specify either protocol transactions or terminal connection.

-s fn

Send the specified file or files. If fn contains wildcard (meta)
characters, the Unix shell expands it into a list. If fn is '-' then
kermit sends from standard input, which may come from a file:

kermit -s - (foo.bar
or a parallel process:

Is -1 | grep christin | kermit -s -
You cannot use this mechanise to send terminal typein. If you want to
send a file whose actual name is "-" you can precede it with a path
name, as in

kermit -s ./-
Receive a file or files. Wait passively for files to arrive.

Receive (passively) a file or files, sending them to standard output.
This option can be used in several ways:

kermit -k
Displays the incoming files on your screen; to be used only in
"local mode" {see below).

kermit -k) fnl
Sends the incoming file or files to the named file, fnl. If more
than one file arrives, all are concatenated together into the
single file fnl.

kermit -k | command
Pipes the incoming data {(single or multiple files) to the indicated

Apr 20 13:23 1988 ckuker.doc Page 5

compand, as in
kermit -k | sort) sorted.stuff

-a fnl If you have specified a file transfer option, you may give an alternate
name for a single file with the -a ("as") option. For example,

kermit -s foo -a bar

sends the file foo telling the receiver that its name is bar. If more
than one file arrives or is sent, only the first file is affected by
the -a option:

kermit -ra baz
stores the first incoming file under the name baz.
=X Begin server operation. May be used in either local or remote mode.

Before proceeding, a few words about remote and local operation are necessary.
C-Kermit is "local” if it is running on PC or workstation that vou are using
directly, or if it is running on a multiuser system and transferring files over
an external communication line -- not your job's controlling terminal or con-
sole. C-Kermit is remote if it is running on a multiuser system and transfer-
ring files over its own controlling terminal’s communication line (normally
/dev/tty), connected to your PC or workstation.

If you are running C-Kermit on a PC, it is normally used in local mode, with
the "back port" designated for file transfer and terminal comnection. If you
are running C-Kermit on a multiuser (timesharing) system, it is in remote mode
unless you explicitly point it at an external line for file transfer or ter-
minal connection. The following command sets C-Kermit's “"mode”:

-1 dev Line -- Specify a terminal line to use for file transfer and terminal
connection, as in

kermit -1 /dev/ttyi5

When an external line is being used, you will also need some additional options
for successful communication with the remote system:

-bn Baud -- Specify the baud rate for the line given in the -1 option, as
in

kermait -1 /dev/ttyi5 -b 9600

This option should always be included with the -1 option, since the
speed of an external line is not necessarily what you expect.

-p x Parity -- e,o,m,s,n {even, odd, mark, space, or none). If parity is
other than none, then the 8th-bit prefixing mechanise will be used for
transferring 8-bit binary data, provided the opposite Kermit agrees.
The default parity is none.

-t Specifies half duplex, line turnaround with XON as the handshake
character.

The following commands may be used only with a C-Kermit which is local either
by default or else because the -1 option has been specified.

-g rfn Actively request a remote server to send the named file or files; rfn
is a file specification in the remote host’s own syntax. If fn happens

Apr 20 13:23 1988 ckuker.doc Page 6

to contain any special shell characters, like space, '¥', '[’, etc,
these must be quoted, as in

kermit -g x\x.\?

or
kermit -g "profile exec”

-f Send a 'finish’ command to a remote server.

-¢ Establish a terminal connection over the specified or default com-

aunication line, before any protocol transaction takes place. Get back
to the local system by typing the escape character ({(normally
Control-Backslash) followed by the letter ‘¢’.

-n Like -c, but after a protocol transaction takes place; -t and -n may
both be used in the same command. The use of -n and -¢ is illustrated
below.

If the other Kermit is on a remote system, the -1 and -b options should also be
included with the -r, -k, or -s options.

Several other command-line options are provided:

-1 Specifies that files should be sent or received exactly "as is" with no
conversions. This option is necessary for transmitting binary files.
It may also be used in Unix-to-Unix transfers {it must be given to both
Unix Kermit programs), where it will improve performance by circumvent-
ing the normal text-file conversions, and will allow mixture of text
and binary files in a single file group.

] Write-Protect -- Avoid filename collisions for incoming files.

-e n Extended packet length -- Specify that C-Kermit is allowed to receive
packets up to length n, where n may be between 10 and some large num-
ber, like 1000, depending on the system. The default maximum length
for received packets is 90. Packets longer than 94 will be used only
if the other Kermit supports, and agrees to use, the "long packet”
protocol extension.

-q Quiet -- Suppress screen update during file transfer, for instance to
allow a file transfer to proceed in the background.

-d Debug -- Record debugging information in the file debug.log in the cur-
rent directory. Use this option if you believe the program is mis-
behaving, and show the resulting log to your local Kermit maintainer.

-h Help -- Display a brief synopsis of the command line options.
The command line may contain no more than one protocol action option.

Files are sent with their own names, except that lowercase letters are raised
to upper, pathnames are stripped off, certain special characters like {**') and
{(“#") are changed to 'X’, and if the file name begins with a period, an ‘X' is
inserted before it. Incoming files are stored under their own names except
that uppercase letters are lowered, and, if -w was specified, a “generation
nusber” is appended to the name if it has the same name as an existing file
which would otherwise be overwritten. If the -a option is included, then the
same rules apply to its arqument. The file transfer display shows any trans-
formations performed upon filenames.

Apr 20 13:23 1988 ckuker.doc Page 7

During transaission, files are encoded as follows:
- Control characters are converted to prefixed printables.

- Sequences of repeated characters are collapsed via repeat counts, if
the other Kermit is also capable of repeated-character compression.

- If parity is being used on the communication line, data characters
with the 8th (parity) bit on are specially prefixed, provided the
other Kermit is capable of 8th-bit prefixing; if not, 8-bit binary
files cannot be successfully transferred.

- Conversion is done between Unix newlines and carriage-return-linefeed
sequences unless the -1 option was specified.

Command Line Examples:

kermit -1 /dev/ttyi5 -b 1200 -cn -r

This command connects you to the system on the other end of ttyi5 at 1200 baud,
where you presumably log in and run Kermit with a 'send’ command. After you
escape back, C-Kermit waits for a file (or files) to arrive. When the file
transfer is completed, you are reconnected to the remote system so that you can
logout.

kermit -1 /dev/ttyi4 -b 1800 -cntp m -r -a foo

This command is like the preceding one, except the remote system in this case
uses half duplex communication with mark parity. The first file that arrives
is stored under the name foo.

kermit -1 /dev/ttyié -b 9600 -¢ | tek

This example uses Kermit to connect your terminal to the system at the other
end of ttyis. The C-Kermit terminal connection does not provide any particular
terminal emulation, so C-Kersit’s standard ifo is piped through a
{hypothetical) program called tek, which performs (say) Tektronix emulation.

kermit -1 /dev/ttyié -b 9600 -nf

This command would be used to shut down a remote server and then connect to the
remote system, in order to log out or to make further use of it. The -n option
is invoked after -f {-c would have been invoked before).

kermit -1 /dev/ttyié -b 9500 -qg foo.* &

This command causes C-Kermit to be invoked in the background, getting a group
of files from a remote server {note the quoting of the "%’ character). No dis-
play occurs on the screen, and the keyboard is not sampled for interruption
commands. This allows other work to be done while file transfers proceed in
the background.

kermit -1 /dev/ttyit -b 9600 -g foo.*) foo.log ¢ /dev/null &
This command is like the previous one, except the file transfer display has

been redirected to the file foo.log. Standard input is also redirected, to
prevent C-Kerait from sampling it for interruption commands.

Apr 20 13:23 1988 chkuker.doc Page &

kermit -iwx

This command starts up C-Kermit as a server. Files are transmitted with no
newline/carriage-return-linefeed conversion; the -i option is necessary for bi-
nary file transfer and recommended for Unix-to-Unix transfers. Incoming files
that have the same names as existing files are given new, unique names.

kermit -1 /dev/ttyié -b 9600

This command sets the communication line and speed. Since no action is
specified, C-Kermit issues a prompt and enters an interactive dialog with you.
Any settings given on the command line remain in force during the dialog, un-
less explicitly changed.

kermit
This command starts up Kermit interactively with all default settings.

The next example shows how Unix Kermit might be used to send an entire direc-
tory tree from one Unix system to another, using the tar program as Kersit's
standard input and output. On the orginating system, in this case the remote,
type (for instance):

tar ¢f - fusr/fdc | kermit -is -

This causes tar to send the directory fusr/fdc (and all its files and all its
subdirectories and all their files...) to standard output instead of to a tape;
kermit receives this as standard input and sends it as a binary file. On the
receiving system, in this case the local one, type (for instance):

kermit -il1 /dev/ttyi5 -b 9600 -k | tar xf -

Kermit receives the tar archive, and sends it via standard output to its own
copy of tar, which extracts from it a replica of the original directory tree.

A final exasple shows how a Unix compression utility might be used to speed up
Kermit file transfers:

compress file | kermit -is - {sender)
kermit -ik | uncompress {receiver)

Exit Status Codes:

Unix Kermit returns an exit status of zero, except when a fatal error is en-
countered, where the exit status is set to one. MWith background operation
{e.g., "%’ at end of invoking command line) driven by scripted interactive cos-
mands (redirected standard input and/or take files), any failed interactive
command (such as failed dial or script attempt) causes the fatal error exit.

1.4. Interactive Operation
C-Kermit's interactive command prompt is "C-Kermit)". In response to this

proapt, you may type any valid interactive C-Kermit command. C-Kermit executes
the command and then prompts you for another command. The process continues

Apr 20 13:23 1988 chkuker.doc Page 9

until you instruct the program to terminate.

Compands begin with a keyword, normally an English verb, such as "send”. You
may omit trailing characters from any keyword, so long as you specify suf-
ficient characters to distinguish it from any other keyword valid in that
field. Certain commonly-used keywords (such as “send”, “"receive”, “connect")
also have special non-unique abbreviations ("s" for "send", "r" for “receive’,
"¢" for "connect”).

Certain characters have special functions during typein of interactive com-
mands:

7 Question mark, typed at any point in a command, will produce a message
explaining what is possible or expected at that point. Depending on
the context, the message may be a brief phrase, a menu of keywords, or
a list of files.

ESC (The Escape or Altmode key) -- Request completion of the current
keyword or filename, or insertion of a default value. The result will
be a beep if the requested operation fails.

DEL {The Delete or Rubout key) -- Delete the previous character from the
command. You may also use BS {Backspace, Control-H) for this function.

“W (Control-W) -- Erase the rightmost word from the command line.
U {(Control-U) -- Erase the entire command.
“R {Control-R) -- Redisplay the current command.

SP {Space) -- Delimits fields (keywords, filenames, numbers) within a com-
pand. HT {Horizontal Tab) may also be used for this purpose.

CR (Carriage Return) -- Enters the command for execution. LF (Linefeed)
or FF {formfeed) may also be used for this purpose.

\ (Backslash) -- Enter any of the above characters into the command,
literally. To enter a backslash, type two backslashes in a row (\\).
A backslash at the end of a command line causes the next line to be
treated as a continuation line; this is useful for readability in com-
pand files, especially in the 'script’ command.

“7 {Control-1) -- On systems {like Berkeley Unix, Ultrix) with job con-
trol, suspend Kermit, i.e. put it into the background in such a way
that it can be brought back into the foreground (e.g. with an 'fg’
shell command) with all its settings intact.

You may type the editing characters (DEL, "W, etc) repeatedly, to delete all
the way back to the prompt. No action will be performed until the command is
entered by typing carriage return, linefeed, or forafeed. If you make any mis-
takes, you will receive an informative error message and a new prompt -- make
liberal use of "7 and ESC to feel your way through the commands. One impor-
tant command is "help” -- you should use it the first time you run C-Kermit.

A command line beginning with a percent sign "%" is ignored. Such lines may be
used to include illustrative commentary in Kermit command dialogs.

Interactive C-Kermit accepts commands from files as well as from the keyboard.
When you start C-Xermit, the program looks for the file .kermrc in your home or
current directory {first it looks in the home directory, then in the current
one) and executes any commands it finds there. These commands must be in in-
teractive format, not Unix command-line format (the initialization file is not

Apr 20 13:23 1988 chkuker.doc Page 10

processed if you invoke Kermit with coemand-line action arguments, such that it
does not enter interactive dialog). A "take" command is also provided for use
at any time during an interactive session, to allow interactive-format commands
to be executed from a file; command files may be nested to any reasonable

depth.

Here is a brief list of C-Kermit interactive commands:

3

!

bye
close
connect
cwd
dial
directory
echo
exit
finish
get
help
log
quit
receive
remote
script
send
server
set
show
space
statistics
take

Comment

Execute a Unix shell command, or start a shell.

Terainate and log out a remote Kermit server.

Close a log file.

Establish a terminal connection to a remote systes.
Change Working Directory.

Dial a telephone number.

Display a directory listing.

Display arguments literally.

Exit from the program, closing any open files.

Instruct a remote Kermit server to exit, but not log out.
Get files from a remote Kermit server.

Display a help message for a given comsand.

Open a log file -- debugging, packet, session, transaction.
Same as 'exit’.

Passively wait for files to arrive.

Issue file management commands to a remote Kermit server.
Execute a login script with a remote system.

Send files.

Begin server operation.

Set various parameters.

Display values of 'set’ parameters.

Display current disk space usage.

Display statistics about most recent transaction.

Execute commands from a file.

The 'set’ parameters are:

block-check
delay
duplex

escape-character

file
flow-control
handshake
incomplete
line
modem-dialer
parity
proapt
receive
retry

send

speed
terminal

Level of packet error detection.

How long to wait before sending first packet.
Specify which side echoes during ’connect’.

Prefix for "escape commands™ during 'comnect’.
Set various file parameters.

Communication line full-duplex flow control.
Communication line half-duplex turnaround character.
Disposition for incompletely received files.
Communication line device name.

Type of modem-dialer on communication line.
Communication line character parity.

The C-Kermit program’s interactive command prompt.
Parameters for inbound packets.

Packet retransmission limit.

Parameters for outbound packets.

Communication line speed.

Terminal parameters.

The ’remote’ commands are:

cwd
delete
directory
help
host
space
type

who

Change remote working directory.

Delete remote files.

Display a listing of remote file names.

Request help from a remote server.

A command to the remote host in its own command language.
Display current disk space usage on remote systea.
Display a remote file on your screen.

Display who’s logged in, or get information about a user.

Apr 20 13:23 1988 ckuker.doc Page 11

Host of these commands are described adequately in the Kermit User Guide or the
Kermit book. Special aspects of certain Unix Kermit commands are described
below.

THE "SEND' COMMAND
Syntax: send fn - or - send fnl rfnl

send the file or files denoted by fn to the other Kermit, which should be run-
ning as a server, or which should be given the 'receive’ command. Each file is
sent under its own name (as described above, or as specified by the 'set file
names’ command). If the second form of the 'send’ command is used, i.e. with
fnl denoting a single Unix file, rfnl may be specified as a name to send it un-
der. The 'send’ command may be abbreviated to ’s’, even though 's' is not a
unique abbreviation for a top-level C-Kermit command.

The wildcard (meta) characters "*' and '?' are accepted in fn. If "?" is to be
included, it must be prefixed by '\’ to override its normal function of provid-
ing help. '¥' nmatches any string, "?’ matches any single character. Other
notations for file groups, like "[a-z]og', are not available in interactive
commands (though of course they are available on the command line). When fn
contains "%’ or "7 characters, there is a limit to the number of files that
can be matched, which varies from system to system. If you get the message
"Too many files match® then you'll have to make a more judicious selection. If
fn was of the form

usr /longname/another longname/*

then C-Kermit's string space will fill up rapidly -- try doing a cwd (see
below) to the path in question and reissuing the command.

Note -- C-Kermit sends only from the current or specified directory. It does
not traverse directory trees. If the source directory contains subdirectories,
they will be skipped. By the same token, C-Kermit does not create directories
when receiving files. If you have a need to do this, you can pipe tar through
C-Kermit, as shown in the example on page 3, or under Systea ITI/V Unix you can
use cpio.

Another Note -- The 'send’ command does not skip over "invisible” files that
match the file specification; Unix systems usually treat files whose names
start with a dot {like .login, .cshrc, and .kerarc) as invisible. Similarly
for "temporary” files whose names start with "§".

THE 'RECEIVE' COMMAND
Syntax: receive - or - receive fnl
Passively wait for files to arrive from the other Kermit, which must be given
the 'send’ command -- the 'receive’ command does not work in conjunction with a
server {use 'get’ for that). If fnl is specified, store the first incoming
file under that name. The 'receive’ comsand may be abbreviated to 'r’.

THE "GET' COMMAND:
Syntax: get rfn

or: get

rfn
fnl

Apr 20 13:23 1988 ckuker.doc Page 12

Request a remote Kermit server to send the named file or files. Since a remote
file specification (or list) might contain spaces, which norsally delimit
fields of a C-Kermit command, an alternate form of the command is provided to
allow the inbound file to be given a new name: type 'get’ alone on a line, and
you will be prompted separately for the remote and local file specifications,
for example

C-Kermit)get
Remote file specification: profile exec
Local name to store it under: profile.exec

As with 'receive', if more than one file arrives as a result of the 'get’ com-
mand, only the first will be stored under the alternate name given by fnl; the
resaining files will be stored under their own names if possible. If a '?’ is
to be included in the remote file specification, you must prefix it with ‘\" to
suppress its normal function of providing help.

If you have started a multiline 'get’ cosmand, you may escape from its lower-
level prompts by typing a carriage return in response to the prompt, e.q.

C-Kermit)get

Remote file specification: foo

Local name to store it under: (Type a carriage return here)
{cancelled)

C-Kermit)

THE "SERVER' COMMAND:

The 'server® command places C-Kermit in "server mode” on the currently selected
communication line. All further commands must arrive as valid Kermit packets
from the Kermit on the other end of the line. The Unix Kermit server can
respond to the following commands:

Command Server Response
get Sends files
send Receives files
bye Attempts to log itself out
finish Exits to level from which it was invoked
remote directory Sends directory lising
remote delete Removes files
remote cwd Changes working directory
remote type Sends files to your screen
remote space Reports about its disk usage
resote who Shows who's logged in
remote host Executes a Unix shell command
remote help Lists these capabilities

The Unix Kermit server cannot always respond properly to a BYE command. It
will attempt to do so using "kill()", but this will not work on all systems or
under all conditions because of the complicated process structures that can be
set up under Unix.

If the Kermit server is directed at an external line (i.e. it is in "local
mode”™) then the console may be used for other work if you have 'set file dis-
play off’; normally the program expects the console to be used to observe file
transfers and enter status queries or interruption commands. The way to get
C-Kermit into background operation from interactive command level varies from
system to system (e.g. on Berkeley Unix you would halt the program with "7 and
then use the C-Shell 'bg’ command to continue it in the background). The more
common sethod is to invoke the prograe with the desired command line arguments,

Apr 20 13:23 1988 ckuker.doc Page 13

including "-q", and with a terminating "&".

when the Unix Kermit server is given a 'remote host’ command, it executes it
using the shell invoked upon login, e.g. the Bourne shell or the Berkeley
C-Shell.

THE "REMOTE', 'BYE', AND 'FINISH' COMMANDS:

C-Kermit may itself request services from a remote Kermit server. In addition
to 'send” and 'get’, the following commands may also be sent from C-Kermit to a
Kermit server:

remote cwd [directory]
If the optional remote directory specification is included, you will be
prospted on a separate line for a password, which will not echo as you
type it. If the remote system does not require a password for this
operation, just type a carriage return.

remote delete rfn delete remote file or files.
remote directory [rfn] directory listing of remote files.
remote host command command in remote host’s own command language.

remote space disk usage report from remote host.

resote type [rfn] display remote file or files on the screen.
remote who [user] display information about who's logged in.
remote help display remote server's capabilities.

bye and finish:
When connected to a remote Kermit server, these commands cause the
remote server to terminate; 'finish’ returns it to Kermit or systea
command level {depending on the implementation or how the program was
invoked); 'bye’ also requests it to log itself out.

THE 'LOG' AND 'CLOSE' COMMANDS:
Syntax: log {debugging, packets, session, transactions} [fnl]

C-Kermit's progress may be logged in various ways. The 'log’ command opens a
log, the 'close’ command closes it. 1In addition, all open logs are closed by
the 'exit’ and ’quit’ commands. A name may be specified for a log file; if the
name is omitted, the file is created with a default name as shown below.

log debugging
This produces a voluminous log of the internal workings of C-Kermit, of use
to Kermit developers or maintainers in tracking down suspected bugs in the
C-Kermit program. Use of this feature dramatically slows down the Kermit
protocol. Default name: debug.log.

log packets
This produces a record of all the packets that go in and out of the com-
sunication port. This log is of use to Kermit maintainers who are tracking
down protocol problems inm either C-Kermit or any Kermit that C-Kermit is
connected to. Default name: packet.log.

log session
This log will contain a copy of everything you see on your screen during
the 'connect’ command, except for local messages or interaction with local
escape commpands. Default name: session.log.

log transactions
The transaction log is a record of all the files that were sent or received

Apr 20 13:23 1998 ckuker.doc Page 14

while transaction logging was in effect. It includes time stamps and
statistics, filename transformations, and records of any errors that may
have occurred. The transaction log allows you to have long unattended file
transfer sessions without fear of missing some vital screen message.
Default name: transact.log.

The 'close’ command explicitly closes a log, e.g. 'close debug’.

Note: Debug and Transaction logs are a compile-time option; C-Kermit may be
compiled without these logs, in which case it will run faster, it will take up
less space on the disk, and the commands relating to them will not be present.

LOCAL FILE MANAGEMENT COMMANDS:

Unix Kermit allows some degree of local file management from interactive com-
mand level:

directory [fn]
Displays a listing of the names, modes, sizes, and dates of files matching
fn (which defaults to "*'). Equivalent to ‘ls -1’.

cwd [directory-name]
Changes Kermit's working directory to the one given, or to the default
directory if the directory name is omitted. This command affects only the
Kermit process and any processes it may subsequently create.

space
Display information about disk space and/or quota in the current directory
and device.

I [command]
The command is executed by the Unix shell. If no command is specified,
then an interactive shell is started; exiting from the shell, e.g. by
typing Control-D or 'exit’, will return you to C-Kermit command level. Use
the "!" comeand to provide file management or other functions not ex-
plicitly provided by C-Kermit comeands. The ‘!’ command has certain
peculiarities:

- C-Kermit attempts to use your preferred, customary {login) shell.
- At least one space must separate the '!' from the shell command.

- A ‘'c¢d’ (change directory) command executed in this manner will
have no effect -- use the C-Kermit 'cwd’ command instead.

THE "SET' AND 'SHOW' COMMANDS:

Since Kermit is designed to allow diverse systems to communicate, it is often
necessary to issue special instructions to allow the program to adapt to
peculiarities of the another system or the communication path. These instruc-
tions are accomplished by the 'set’ command. The ’show’ command may be used to
display current settings. Here is a brief synopsis of settings available in
the current release of C-Kermit:

block-check {1, 2, 3}
Determines the level of per-packet error detection. "1" is a single-
character 6-bit checksum, folded to include the values of all bits from
each character. "2" is a 2-character, 12-bit checksus. "3 is a
3-character, 16-bit cyclic redundancy check (CRC}. The higher the block
check, the better the error detection and correction and the higher the
resulting overhead. Type | is most commonly used; it is supported by all
Kermit implementations, and it has proven adequate in mest circumstances.

Apr 20 13:23 1988 ckuker.doc Page 15

Types 2 or 3 would be used to advantage when transferring 8-bit binary
files over noisy lines.

delay n
How many seconds to wait before sending the first packet after a ’send’
compand. Used in remote mode to give you time to escape back to your local
Kermit and issue a 'receive’ command. Normally 5 seconds.

duplex {full, half}
For use during connect’. Specifies which side is doing the echoing;
"full’ means the other side, 'half’ means C-Kermit must echo typein itself.

escape-character cc
For use during 'connect’ to get C-Kermit's attention. The escape character
acts as a prefix to an 'escape command’, for instance to close the connec-
tion and return to C-Kermit or Unix command level. The normal escape
character is Control-Backslash (28). The escape character is also used in
System III/V implementations to prefix interrupt commands during file
transfers.

file {display, names, type, warning}
Establish various file-related parameters:

display {on, off}
Normally ‘on’; when in local mode, display progress of file transfers
on the screen (stdout), and listen to the keyboard (stdin) for inter-
ruptions. If off (-q on command line) none of this is done, and the
file transfer may proceed in the background oblivious to any other work

concurrently done at the console terminal.

names {converted, literal}

Normally converted, which means that outbound filenames have path
specifications stripped, lowercase letters raised to upper, tildes and
extra periods changed to X's, and an X inserted in front of any name
that starts with period. Incoming files have uppercase letters
lowered. Literal means that none of these conversions are done; there-
fore, any directory path appearing in a received file specification
pust exist and be write-accessible. When literal naming is being used,
the sender should not use path names in the file specification unless
the same path exists on the target system and is writable.

type {binary, text} [{7, 8}]

The file type is normally text, which means that conversion is done be-
tween Unix newline characters and the carriage-return/linefeed se-
quences required by the canonical Kermit file transmission format, and
in common use on non-Unix systems. Binary means to transait file con-
tents without conversion. Binary ("-i' in command line notation) is
necessary for binary files, and desirable in all Unix-to-Unix trans-
actions to cut down on overhead.

The optional trailing parameter tells the bytesize for file transfer.
It is 8 by default. If you specify 7, the high order bit will be
stripped from each byte of sent and received files. This is useful for
transferring text files that may have extraneous high order bits set in

their disk representation ({e.g. Wordstar or similar word processor
files).

warning {on, off}
Normally off, which means that incoming files will silently overwrite
existing files of the same name. When on ("-w’ on comeand line) Kermit
will check if an arriving file would overwrite an existing file; if so,
it will construct a new name for the arriving file, of the foras foo™n,

Apr 20 13:23 1988 ckuker.doc Page 16

where foo is the name they share and n is a "generation number”; if foo
gxists, then the new file will be called foo™1. If foo and foo™1 ex-
ist, the new file will be foo™2, and so on. If the new name would be
longer than the maximum length for a filename, then characters would be
deleted from the end first, for instance, thelongestname on a system
with a limit of 14 characters would become thelongestn™l.

CAUTION: If Control-F or Control-B is used to cancel an incom-
ing file, and a file of the same name previously existed, and
the "file warning" feature is not enabled, then the previous
copy of the file will disappear.

flow-control {none, xon/xoff}

Normally xon/xoff for full duplex flow control. Should be set to 'none’ if
the other system cannot do xon/xoff flow control, or if you have issued a
"set handshake' command. If set to xon/xoff, then handshake should be set
to none. This setting applies during both terminal connection and file
transfer. Warning: This command may have no effect on certain Unix sys-
tems, where Kermit puts the communication line into 'rawmode’, and rawmode
precludes flow control.

incomplete {discard, keep}
Disposition for incompletely received files. If an incoming file is inter-
rupted or an error occurs during transfer, the part that was received so
far is normally discarded. If you "set incomplete keep” then such file
fragments will be kept.

handshake {xon, xoff, cr, 1f, bell, esc, none}
Normally none. Otherwise, half-duplex comsunication line turnaround hand-
shaking is done, which means Unix Kermit will not reply to a packet until
it has received the indicated handshake character or has timed out waiting
for it; the handshake setting applies only during file transfer. If you
set handshake to other than none, then flow should be set to none.

line [device-name]

The device name for the communication line to be used for file transfer and
terminal connection, e.g. /dev/ttyi3. If you specify a device name, Kermit
will be in local mode, and you should remember to issue any other necessary
set’ commands, such as 'set speed’. If you omit the device name, Kermit
will revert to its default mode of operation. If vyou specify /[dev/tty,
Kermit will enter remote mode (useful when logged in through the "back
port" of a system normally used as a local-mode workstation). When Unix
Kermit enters local mode, it attempts to synchronize with other programs
{like uucp} that use external communication lines so as to prevent two
prograas using the same line at once; before attempting to lock the
specified line, it will close and unlock any external line that was
previously in use. The method used for locking is the "uucp lock file®,
explained in more detail later.

modem-dialer {direct, hayes, racalvadic, ventel, ...}

The type of modem dialer on the communication line. “Direct” indicates ei-
ther there is no dialout modem, or that if the line requires carrier detec-
tion to open, then ‘set line’ will hang waiting for an incoming call.
"Hayes", "Ventel®, and the others indicate that ’'set line’ ({or the -l
arqument) will prepare for a subsequent ’'dial’ command for the given
dialer. Support for new dialers is added from time to time, so type ’set
modem ?' for a list of those supported in your copy of Kermit. See the
description of the 'dial’ command

parity {even, odd, mark, space, none}
Specify character parity for use in packets and terminal conmection, nor-
pally none. If other than none, C-Kermit will seek to use the 8th-bit

Apr 20 13:23 1938 chkuker.doc Page 17

prefixing mechanism for transferring 8-bit binary data, which can be used
successfully only if the other Kermit agrees; if not, 8&-bit binary data
cannot be successfully transferred.

prompt [string]
The given string will be substituted for “C-Kermit)" as this program’s
prompt. If the string is omitted, the prompt will revert to "C-Kermit)".
If the string is enclosed in doubleguotes, the quotes will be stripped and
any leading and trailing blanks will be retained.

send parameter
Establish parameters to use when sending packets. These will be in effect
only for the initial packet sent, since the other Kermit may override these
parameters during the protocol parameter exchange (unless noted below).

end-of-packet cc
Specifies the control character needed by the other Kermit to recognize
the end of a packet. C-Kermit sends this character at the end of each
packet. Normally 13 (carriage return), which most Kermit implemen-
tations require. Other Kermits require no terminator at all, still
others may require a different terminator, like linefeed (10).

packet-length n

Specify the maximum packet length to send. Normally 90. Shorter
packet lengths can be useful on noisy lines, or with systems or front
ends or networks that have small buffers. The shorter the packet, the
higher the overhead, but the lower the chance of a packet being cor-
rupted by noise, and the less time to retransmit corrupted packets.
This comeand overrides the value requested by the other Kermit during
protocol initiation unless the other Kermit requests a shorter length.

pad-character cc

Designate a character to send before each packet. MNormally, none is
sent. Outbound padding is sometimes necessary for comsunicating with
slow half duplex systems that provide no other means of line turnaround
control. It can also be used to send special characters to communica-
tions equipment that needs to be put in "transparent” or "no eche”
mode, when this can be accomplished in by feeding it a certain control
character.

padding n
How many pad characters to send, normally 0.

start-of-packet cc

The normal Kermit packet prefix is Control-A (1); this command changes
the prefix C-Kermit puts on outbound packets. The only reasons this
should ever be changed would be: Some piece of equipment somewhere be-
tween the two Kerait programs will not pass through a Control-A; or,
some piece of of equipment similarly placed is echoing its input. In
the latter case, the recipient of such an echo can change the packet
prefix for outbound packets to be different from that of arriving pack-
ets, so that the echoed packets will be ignored. The opposite Keramit
pust also be told to change the prefix for its inbound packets.

timeout n
Specifies the number of seconds you want the other Kermit to wait for a
packet before timing it out and requesting retransmission.

receive parameter
Establish parameters to request the other Kermit to use when sending pack-
ets.

Apr 20 13:23 1988 ckuker.doc Page 18

end-of -packet cc
Requests the other Kermit to terminate its packets with the specified
character.

packet-length n

Specify the maximum packet length to that you want the other Kermit to
send, normally 90. If you specify a length of 95 or greater, then it
will be used if the other Kermit supports, and agrees to use, the Ker-
mit protocol extension for long packets. In this case, the maximum
length depends upon the systems involved, but there would normally be
no reason for packets to be more than about 1000 characters in length.
The 'show parameters’ command displays C-Kermit's current and maximum
packet lengths.

pad-character cc
C-Kermit normally does not need to have incoming packets preceded with
pad characters. This command allows C-Kermit to request the other Ker-
mit to use cc as a pad character. Default cc is NUL, ASCII O.

padding n
How many pad characters to ask for, normally 0.

start-of -packet cc
Change the prefix C-Kermit looks for on inbound packets to correspond
with what the other Keramit is sending.

timeout n
Normally, each Kermit partner sets its packet timeout interval based on
what the opposite Kermit requests. This comsand allows you to override
the normal procedure and specify a timeout interval for Unix Kermit to
use when waiting for packets from the other Kermit. If you specify 0,
then no timeouts will occur, and Unix Kermit will wait forever for ex-
pected packets to arrive.

speed {0, 110, 150, 300, 600, 1200, 1800, 2400, 4800, 9600}
The baud rate for the external comsunication line. This command cannot be
used to change the speed of your own console terminal. Many Unix systems
are set up in such a way that you must give this command after a 'set line’
command before you can use the lime. ’set baud' is a synomym for 'set
speed’.

terminal
Used for specifying terminal parameters. Currently, 'bytesize' is the only
parameter provided, and it can be set to 7 or 8. It's 7 by default.

THE "SHOW® COMMAND:
Syntax: show {parameters, versions}

The “show" command with the default argument of ‘“parameters” displays the
values of all the ’'set' parameters described above. If you type "show
versions", then C-Kermit will display the version numbers and dates of all its
internal modules. You should use the "show versions” command to ascertain the
vintage of your Kermit program before reporting problems to Kermit maintainers.

THE "STATISTICS' COMMAND:

The statistics command displays information about the most recent Kermit
protocol transaction, including file and communication line ifo, timing and ef-
ficiency, as well as what encoding options were in effect (such as 8th-bit

Apr 20 13:23 1982 ckuker.doc Page 19

prefixing, repeat-count compression).

THE "TAKE' AND 'ECHO' COMMANDS:

Syntax: take fnl
echo [text to be echoed]

The ’take’ command instructs C-Kermit to execute commands from the named file.
The file may contain any interactive C-Kermit commands, including 'take’; com-
mand files may be nested to any reasonable depth, but it may not contain text
to be sent to a remote system during the ’connect’ command. This means that a
command file like this:

set line fdev/ttyl7
set speed 9600
connect

login myuserid
aypassword

etc

will not send "login myserid" or any of the following fext to the remote sys-
tem. To carry on a canned dialog, use the 'script’ command, described later.

The ¢’ command is useful for including comments in take-command files. It may
only be used at the beginning of a line.

The ‘echo' command may be used within command files to issue greetings, an-
nounce progress, ring the terminal bell, etc. The 'echo’ command should not be
confused with the Unix ‘echo' command, which can be used to show how meta
characters would be expanded. The Kermif echo command simply displays its text
argument (almost) literally at the terminal; the argument may contain octal es-
capes of the form "\ooo", where o is an octal digit {0-7), and there may be 1,
2, or 3 such digits, whose value specify an ASCII character, such as "\007" {or
"\07" or just "\7") for beep, "\012" for newline, etc. Of course, each back-
slash must be must be entered twice in order for it to be passed along to the
ec command by the Kermit command parser.

Take-command files are in exactly the same syntax as interactive commands.
Note that this implies that if you want to include special characters like
question mark or backslash that you would have to quote with backslash when
typing interactive commands, you must quote these characters the same way in
command files. Long lines may be continued by ending them with a single back-
slash.

Command files may be used in lieu of command macros, which have not been imple-
mented in this version of C-Kermit. For instance, if you commonly connect to a
system called 'B' that is connected to ttyh7 at 4800 baud, vyou could create a
file called b containing the commands

1 C-Kermit command file to connect to System B thru /dev/ttyh7
set line /dev/ttyh7

set speed 4200

1 Beep and give message

echo \\007Connecting to System B...

connect

and then simply type 'take b’ {or 't b’ since no other commands begin with the
letter ’t') whenever you wish to connect to system B. Note the comment lines
and the beep inserted into the ’echo’ command.

1

For connecting to IBM mainframes, a number of ’set' commands are required;

Apr 20 13:23 1988 ckuker.doc Page 20

these, too, can be conveniently collected into a "take’ file like this one:

g Sample C-Kermit command file to set up current line
1 for IBM mainframe communication

p4

set parity mark

set handshake xon

set flow-control none

set duplex half

Note that no single command is available to wipe out all of these settings and
return C-Kermit to its default startup state; to do that, you can either res-
tart the program, or else make a command file that executes the necessary 'set’
commands:

g Sample C-Kermit command file to restore normal settings
1

set parity none

set handshake none

set flow-control xon/xoff

set duplex full

An implicit 'take’ command is executed upon your .kermrc file when C-Keramit
starts up, upon either interactive or command-line invocation. The .kermrc
file should contain 'set’ or other commands vou want to be in effect at all
times. For instance, you might want override the default action when incoming
files have the same names as existing files -- in that case, put the command

set file warning on

in your .kermrc file. On some non-Unix systems that run C-Kermit, the in-
itialization file might have a different name, such as kermit.ini.

Errors encountered during execution of take files {such as failure to complete
dial or script operations) cause termination of the current take file, popping
to the level that invoked it (take file, interactive level, or the shell).
When kermit is executed in the background, errors during execution of a take
file are fatal.

Under Unix, vou may also wuse the shell's redirection mechanism to cause
C-Kermit to execute commands from a file:

kermit ¢ cmdfile
or you can even pipe commands in from another process:

cadprocess | kermit

THE 'CONNECT' COMMAND:
The 'connect’ command (’¢c’ is an acceptable non-unique abbreviation for
‘connect’) links your terminal to another computer as if it were a local ter-
minal to that computer, through the device specified in the most recent ’set
line' command, or through the default device if your system is a PC or worksta-
tion. All characters you type at your keyboard are sent out the communication
line {and if vyou have 'set duplex half’, also displayed on your screen), and
all characters arriving at the communication port are displayed on the screen.
Current settings of speed, parity, duplex, and flow-control are honored, and
the data connection is 7 bits wide unless you have given the command 'set ter-
minal bytesize 8'. If you have issued a 'log session’ command, everything you
see on your screen will also be recorded to your session log. This provides a

Apr 20 13:23 1988 ckuker.doc Page 21

way to ‘“capture” files from remote systems that don’t have Kermit programs
available.

To get back to your own system, you must type the escape character, which is
Control-Backslash ("\) unless you have changed it with the 'set escape’ com-

mand, followed by a single-character command, such as ¢’ for “close
connection”. Single-character commands include:

Close the connection
Send a BREAK signal
{zero) send a null
Give a status report about the connection
Hangup the phone
\ Send Control-Backslash itself (whatever you have defined the escape
character to be, typed twice in a row sends one copy of it).

P O T O

Uppercase and control equivalents for {most of) these letters are also ac-
cepted. A space typed after the escape character is ignored. Any other
character will produce a beep.

The connect command simply displays incoming characters on the screen. It is
assumed any screen control sequences sent by the host will be handled by the
firmware or emulation software in your terminal or PC. If special terminal
epulation is desired, then the 'connect’ command can invoked from the Unix com-
mand line (-c or -n), piped through a terminal emulation filter, e.g.

kerait -1 /dev/acu -b 1200 -¢ | tek

THE 'DIAL' COMMAND:
Syntax: dial telephone-number-string

This coseand controls dialout modems; you should have already issued a ‘“set
line" and "set speed” command to identify the terminal device, and a "set
moden” command to identify the type of modem to be used for dialing. In the
"dial” command, you supply the phone number and the Kermit program feeds it to
the modem in the appropriate format and then interprets dialer return codes and
modem signals to inform you whether the call was completed. The telephone-
number-string may contain imbedded modem-dialer commands, such as comma for
Hayes pause, or & for Ventel dialtone wait and ‘%’ for Ventel pause (consult
your modea manual for details).

At the time of this writing, support is included for the following modeas:

- AT&T 7300 Internal Modem
- Cermetek Info-Mate 212A
- Concord Condor CDS 220

- DEC DFO3-AC

- DEC DF100 Series

- DEC DF200 Series

- General DataComm 212A/ED
- Hayes Smartmodem 1200 and compatibles
- Penril

- Racal Vadic

- US Robotics 2124

- Ventel

Support for new modems is added to the program from time to time; you can check
the current list by typing "set modem 2°.

The device used for dialing out is the one selected in the most recent "set

Apr 20 13:23 1988 chkuker.doc Page 22

line" command {or on a workstation, the default line if no "set line" command
was given). The "dial” command calls locks the path {see the section on line
locking below) and establishes a call on an exclusive basis. If it is desired
to dial a call and then return to the shell (such as to do kermit activities
depending on standard in/out redirection), it is necessary to place the dialed
call under one device name (say, "/dev/cua0") and then escape to the shell
within Kermit on a linked device which is separate from the dialed line (say,
“/dev/cul0"). This is the same technique used by uucp (to allow locks to be
placed separately for dialing and conversing).

Because modem dialers have strict requirements to override the carrier-detect
signal most Unix implementations expect, the sequence for dialing is more rigid
than most other C-Kermit procedures.

Example one:
kermit -1 /dev/cul0 -b 1200

C-Kermit)set modem-dialer hayes hint: abbreviate set m h
C-Xermit)dial 9,5551212

Connected!

C-Kermit)connect hint: abbreviate ¢
logon, request remote server, etc.

"\¢ escape back
C-Kermit) ...

C-Kermit)quit hint: abbreviate q

this disconnects modem, and unlocks line.
Example two:

kermit

C-Kermit)set modem-dialer ventel
C-Kermit)set line /dev/culo
C-Kermit)dial 9855512122
Connected!

C-Kermit) ...

Example three:

kermit
C-Kermit)take my-dial-procedure
Connected!

file my-dial-procedure:
set modea hayes

set line /dev/tty99
dial 5551212

connect

In general, C-Kermit requires that the modem provide the "carrier detect” (CD)
signal when a call is in progress, and remove that signal when the call com-
pletes or the line drops. If a modem switch setting is available to force (D,
it should normally not be in that setting. C-Kermit also requires (on most
systems) that the modem track the computer’s "data terminal ready” (DTR) sig-
nal. If a switch setting is available to simulate DTR asserted within the
modem, then it should normally not be in that setting. Otherwise the modea
will be unable to hang up at the end of a call or when interrupts are received
by Kermit.

For Hayes dialers, two important switch settings are #1 and 4é. Switch #1
should be normally be UP so that the modem can act according to your computer’s
DTR signal. But if your computer, or particular implementation of Kermit, can-

Apr 20 13:23 1988 ckuker.doc Page 23

not control DTR, then switch 1 should be DOMN. Switch #6 should normally be UP
so carrier-detect functions properly (but put it DOWN if you have trouble with
the UP position). Switches #2 ({English versus digit result codes) and #4
{Hayes echoes modem commands) may be in either position.

If you want to interrupt a dial cossand in progress (for instance, because you
just realize that you gave it the wrong number), type a Control-C to get back
to command level.

THE "SCRIPT’ COMMAND:
Syntax: script expect send [expect send] . . .
"expect” has the syntax: expect[-send-expect[-send-expect{...]]]

The 'script’ command carries on a "canned dialog” with a remote system, in
which data is sent according to the remote system’s responses. The typical use
is for logging in to a remote system automatically.

C-Kermit's script facility operates in a manner similar to that commonly used
by the Unix UUCP system’s "L.sys" file entries. A login script is a sequence
of the fora:

expect send [expect send] . . .

where expect is a prompt or message to be issued by the remote site, and send
is the string {names, numbers, etc) to return, and expects are separated from
sends by spaces. The send may also be the keyword EOT, to send Control-D, or
BREAK, to send a break signal. Letters in sends may be prefixed by ‘™' to send
special characters, including:

b backspace

s space

q '?'(trapped by Kermit's command interpreter)
n linefeed

r carriage return

t tab

' single quote

M tilde

double quote

“x XON {Controi-a)

¢ don't append a carriage return

“o[o[o]] an octal character

“d delay approx 1/3 second during send

“w[d[d]] wait specified interval during expect, then time out

As with some UUCP systems, sent strings are followed by “r unless they have a

C.

Only the last 7 characters in each expect are matched. A null expect, e.g. "0
or two adjacent dashes, causes a short delay before proceeding to the next send
sequence. A null expect always succeeds.

As with UUCP, if the expect string does not arrive, the script attempt fails.
If you expect that a sequence might not arrive, as with UUCP, conditional se-
quences may be expressed in the form:

-send-expect[-send-expect[...]]

where dashed sequences are followed as long as previous expects fail. Timeouts
for expects can be specified using “w; “w with no arguments waits 15 seconds.

Apr 20 13:23 1988 chuker.doc Page 24

Expect/send transactions can be easily be debugged by logging tramsactions.
This records all exchanges, both expected and actual. The script execution
will also be logged in the session log, if that is activated.

Note that '\' characters in login scripts, as in any other C-Kermit interactive
commands, must be doubled up. A line may be ended with a single '\’ for con-
tinuation.

Example one:

Using a modem, dial a UNIX host site. Expect “login® (...gin), and if it
doesn’t come, simply send a null string with a “r. (Some Unixes require either
an EOT or a BREAK instead of the null sequence, depending on the particular
site's "logger” program.) After providing user id and password, respond “x" to
a question-mark prompt, expect the Bourne shell "$" prompt (and send return if
it doesn’t arrive). Then cd to directory kermit, and run the program called
"wermit", entering the interactive connect state after wermit is loaded.

set modem ventel

set line [dev/tty77

set baud 1200

dial 985551212

script gin:--gin:--gin: smith ssword: mysecret “q x $--§ \
cd skermit $ wermit

connect

Note that 'set line' is issued after 'set modem’, but before ’'set baud' or
other line-related parameters.

Example two:

Using a modem, dial the Telenet network. This network expects three returns
with slight delays between them. These are sent following null expects. The
single return is here sent as a null string, with a return appended by default.
Four returns are sent to be safe before looking for the prompt. Then the
Telenet id and password are entered. Then Telenet is instructed to connect to
a host site (c 12345). The host has a data switch that asks “which systea";
the script responds "myhost" {(if the "which systea" prompt doesn’t appear, the
Telenet connect command is reissued). The script waits for an "&" prompt froa
the host, then sends the user ID {"joe") and password ("secret”), looks for
another "&" proapt, runs Kermit, and in response to the Kermit's prompt (which
ends in ")"), gives the commands "set parity even" and "server". Files are
then exchanged. The commands are in a take file; note the continuation of the
'seript’ command onto several lines using the *\’ terminator.

set modem hayes

set line /dev/acu

sef speed 1200

set parity mark

dial 9,5551212

script 0“0 “0 "0 "0 "0 0 “0 €--€--@ id“saa001122 = 002211 € \
£"s12345 ystem-c"s12345-ystem myhost @ joe“ssecret @ kermit \
) set“sparity™seven) server

send some.stuff

get some.otherstuff

bye

quit

Since these commands may be executed totally in the background, they can also
be scheduled. A typical shell script, which might be scheduled by cron, would
be as follows (csh used for this example):

O

Apr 20 13:23 1988 ckuker.doc Page 25

#
tkeep trying to dial and log onto remote host and exchange files
$wait 10 minutes before retrying if dial or script fail.
§
c¢d someplace
while (1)
kermit (/tonight.cad)) nightly.log &
if {1 $status) break
sleep 600
end

File tonight.cmd might have two takes in it, for example, one to take a file
with the set modem, set line, set baud, dial, and script, and a second take of
a file with send/get commands for the remote server. The last lines of
tonight.cad should be a bye and a quit.

THE "HELP' COMMAND:

Syntax: help
or: help keyword
or: help {set, remote} keyword

Brief help messages or menus are always available at interactive command level
by typing a question mark at any point. A slightly more verbose fora of help
is available through the 'help' command. The 'help’ command with no arguaents
prints a brief sumeary of how to enter commands and how to get further help.
help’ may be followed by one of the top-level C-Kermit command keywords, such
as ’'send’, to request information about a command. Commands such as 'set’ and
‘remote’ have a further level of help. Thus you may type 'help’, ‘help set’,
or 'help set parity’; each will provide a successively more detailed level of
help.

THE 'EXIT’ AND 'QUIT' COMMANDS:
These two commands are identical. Both of them do the following:

- Attempt to insure that the tereinal is returned to normal.

- Relinquish access fo any communication line assigned via 'set line’.

- Relinquish any uucp and multiuser locks on the communications line.

- Hang up the modem, if the communications line supports data terminal
ready.

- Close any open logs or other files.

After exit froe C-Kermit, your default directory will be the same as when you
started the program. The ’exit’ command is issued implicitly whenever C-Kermit
halts normally, e.g. after a command line invocation, or after certain kinds of
interruptions.

1.5. UUCP Lock Files

Unix has no standard way of obtaining exclusive access to an external com-
munication line. When you issue the 'set line’ command fo Unix Kermit, Unix
would normally grant you access to the line even if some other process is
making use of it. The method adopted by most Unix systems to handle this
situation is the "UUCP lock file". UUCP, the Unix-to-Unix Copy program,
creates a file in its directory ({usually fusr/spool/uucp, on some systems
Jetc/locks) with a name like LCK..name, where name is the device name, for in-
stance tty07.

Apr 20 13:23 1988 chuker.doc Page 26

Unix Kermit uses UUCP lock files in order to avoid conflicts with UUCP, tip, or
other programs that follow this convention. Whenever you attempt to access an
external line using the ’set line’ command or ‘-1 on the command line, Keramit
looks in the UUCP directory for a lock file corresponding to that device. For
instance, if you 'set line /dev/ttyié’ then Kermit looks for the file

Jusr /spool fuucp/LCK. . ttyié

If it finds this file, it gives you an error message and a directory listing of
the file so that you can see who is using it, e.g.

-r=-r--r-- 1 fdc 4 May 7 13:02 fusr/spool/uucp/LCK. ttyié

In this case, you would look up user fdc to find out how soon the line will be-
come free.

This convention requires that the uucp directory be publicly readable and
writable. If it is not, the program will issue an appropriate warning message,
but will allow you to proceed at your own risk {and the risk of anyone else who
might also be using the same line).

If no lock file is found, Unix Kermit will attempt create one, thus preventing
anyone who subsequently tries to run Kermit, UUCP, tip, or similar programs on
the same line from gaining access until you release the line. If Kermit could
not create the lock file (for instance because the uucp directory is write-
protected), then you will receive a warning message but will be allowed to
proceed at your -- and everyone else's -- risk. When Kermit terminates nor-
pally, your lock file is removed.

Even when the lock directory is writable and readable, the locking mechanisa
depends upon all users using the same name for the same device. If a device
has more than one path associated with it, then a lock can be circumvented by
using an alias.

When a lock-creating program abruptly terminates, e.g. because it crashes or is
killed via shell command, the lock file remains in the uucp directory,
spuriously indicating that the line is in use. If the lock file is owned by
yourself, you may remove it. Otherwise, you'll have to get the owner or the
system manager to remove it, or else wait for a system task to do so; uucp sup-
ports a function {uuclean) which removes these files after a predetermined age
-- yucp sites tend to run this function periodically via crontab.

Locking is not needed, or used, if communications occur over the user’s login
terminal line (normally /dev/tty).

It may be seen that line locking is fraught with peril. It is included in Unix
Kermit only because other Unix communication programs rely on it. While it is
naturally desirable to assure exclusive access to a line, it is also un-
desirable to refuse access to a vacant line only because of a spurious lock
file, or because the uucp directory is not appropriately protected.

1.6. C-Kermit under Berkeley or System III/V Unix:

C-Kermit may be interrupted at command level or during file transfer by typing
Control-C. The program will perform its norsal exit function, restoring the
terminal and releasing any lock. If a protocol tramsaction was in progress, an
error packet will be sent to the opposite Kermit so that it can terminate
cleanly.

C-Kermit may be invoked in the background {"&" on shell comsmand line). If a

Apr 20 13:23 1988 ckuker .doc Page 27

background process is "killed”, the user will have to manually remove any lock
file and may need to restore the moden. This is because the kill signal
{(kill{x,9)) cannot be trapped by Kermit.

During execution of a system command (directory’, cwd’, or ‘!’), C-Kermit can
often be returned to command level by typing a single Control-C. (With System
III/V, the usual interrupt function (often the DEL key) is replaced by
Control-C.)

Under Berkeley Unix only: C-Kermit may also be interrupted by "7 to put the
process in the background. In this case the terminal is not restored. You
will have to type Control-J followed by "reset” followed by another Control-J
to get your terminal back to normal.

Control-C, Control-Z, and Control-\ lose their normal functions during terminal
connection and also during file transfer when the controlling tty line is being
used for packet i/o.

If you are running C-Kermit in "quiet mode" in the foreground, then interrupt-
ing the program with a console interrupt like Control-C will not restore the
terminal to normal conversational operation. This is because the system call
to enable console interrupt traps will cause the program to block if it's run-
ning in the background, and the primary reason for quiet mode is to allow the
program to run in the background without blocking, so that you can do other
work in the foreground.

If C-Kermit is run in the background ("&" on shell comamand line), then the in-
terrupt signal (Control-C) (and System III/V quit signal) are ignored. This
prevents an interrupt signal intended for a foreground job {say a compilation)
from being trapped by a background Kermit session.

1.7. C-Xermit on the DEC Pro-3xx with Pro/Venix Version 1

The DEC Professional 300 series are PDP-11/23 based personal computers. Venix
Version 1 is a Unix v7 derivative. It should not be confused with Venix Ver-
sion 2, which is based on ATT System V; these comments apply to Venix Version 1
only. C-Kermit runs in local mode on the Pro-3xx when invoked from the con-
sole; the default device is /dev/coml.dout. When connected to a remote systea
{using C-Kermit's ’'connect’ command), Pro/Venix itself (not Kermit) provides
V152 terminal emulation. Terminal operation at high speeds (like 9600 baud)
requires xon/xoff flow control, which unfortunately interferes with applica-
tions such as the EMACS that use Control-G and Control-S as commands.

When logging in to a Pro-3xx {(or any workstation) through the "back port", it
may be necessary to give the command “set line /dev/tty" in order to get
C-Kermit to function correctly in remote mode (on a system in which it normally
expects to be operating in local mode).

1.8. C-Kermit under VAX/VMS

C-Kermit can be built using VAX-11 € to run under VMS. Most of the descrip-
tions in this manual hold true, but it should be noted that as of this writing
the VMS support 1is not thoroughly tested, and no explicit support exists for

the various types of VNS files and their attributes.

The C-Kermit init file for VMS is called KERMIT.INI.

1.9. C-Kermit on the Macintosh and other Systems

Apr 20 13:23 1988 chkuker.doc Page 28

The "protocol kernel” of C-Kermit is also used by Columbia’s Macintosh Kerait.
The wuser and system interface is entirely different, and is covered in a
separate document.

There is also a Kermit for the Commodore Amiga based on C-Kermit, as well as
versions for MS-D0S, Data General operating systems, etc.

1.10. C-Kermit Restrictions and Known Bugs

. Editing characters: The program’s interactive command interrupt,
delete, and kill characters are Control-C, Delete ({or Backspace),
and Control-U, respectively. There is currently no way to change
them to suit your taste or match those used by your shell, in case
those are different.

2. Flow control: C-Kermit attempts to use XON/XOFF flow control during
protocol operations, but it also puts the communication line into
"rawmode”. On many systems, rawmode disables flow control, so even
though you may have "set flow xon/xoff", no flow control will be
done. This is highly system and Unix-version dependent.

3. High baud rates: There's no way to specify baud rates higher than
9600 baud. Most Unix systems don't supply symbols for them (unless
you use EXTA, EXTB), and even when they do, the program has no way
of knowing whether a specific port's serial ifo controller supports
those rates.

4. Modem controls: If a connection is made over a communication line
{rather than on the controlling terminal line), and that line has
modem controls, (e.g. data terminal ready and carrier detection
implementation), returning to the shell level will disconnect the
conversation. In that case, one should use interactive mode com-
mands, and avoid use of piped shell-level operation {also see ’set
moden-dialer’ and 'dial’ commands.)

5. Login Scripts: The present login scripts implementation follows the
Unix conventions of uucp’s "L.sys" file, rather than the normal Ker-
mit "INPUT/OUTPUT" style.

6. Dial-out vs dial-in communications lines: C-Kermit requires a
dial-out or dedicated line for the "set line" or "-1" options. Most
systems have some lines dedicated to dial-in, which they enable
"loggers” on, and some lines available for dial-out. Recent
releases of Unix (ATT & Berkeley) have mechanisas for changing the
directionality of a line.

7. Using C-Kermit on Local Area Networks: C-Kermit can successfully
operate at speeds up to 9600 baud over LANs, provided the network
buffers are big enough to accommodate Kermit packets.

When computers are connected to LAN's through asynchronous terminal
interfaces, then the connection should be configured to do XON/XOFF
flow control between the network interface and the computer, rather
than passing these signals through transparently. This can help
prevent Kermit from overrunning the LAN's buffers if they are small
{or if the LAN is congested), and will can also prevent the LAN from
overrunning a slow Kermit's buffers.

If the network hardware cannot accept 100 characters at a time, and
flow control cannot be done between the network and the computer,
then Kermit’s "set send/receive packet-length” command can be used

Apr 20 13:23 1988 ckuker.doc Page 29

to shorten the packets.

8. Resetting terminal after abnormal termination or kill: When C-Kermit
terminates abnormally (say, for example, by a kill command issued by
the operator) the user may need to reset the terminal state. If
compands do not seem to be accepted at the shell prompt, try
Control-J “stty sane” Control-J (use ‘“reset” on Berkeley Unix).
That should take the terminal out of "raw mode” if it was stuck
there.

9. Remote host commands may time-out on lengthy activity: Using
"remote host" to instruct the C-Kermit server to inveke Unix func-
tions (like “make") that might take a long time to produce output
can cause timeout conditions.

10. XOFF deadlocks: When connecting back to C-Kermit after a trans-
action, or after finishing the server, it may be necessary to type a
Control-@ to clear up an XOFF deadlock. There's not much the
program can do about this... :

1.11. How to Build C-Kermit for a Unix System

The C-Kermit files, as distributed from Columbia, all begin with the prefix
“ck™. You should make a directory for these files and then c¢d to it. A
makefile is provided to build C-Kermit for various Unix systems (there are
separate makefiles for VMS and the Macintosh). As distributed, the makefile
has the name “ckuker.mak”. You should rename it to "makefile" and then type
“pake xxx", where xxx is the symbol for your system, for instance "make bsd" to
make C-Kermit for 4.x BSD Unix. The result will be a program called "wermit”.
You should test this to make sure it works; if it does, then you can rename it
to "kermit" and install it for general use. See the makefile for a list of the
systems supported and the corresponding "make” arguments.

1.12. Adapting C-Kermit to Other Systeas

C-Kermit is designed for portability. The level of portability is indicated in
parentheses after the module name: "C" means any system that has a C compiler
that conforms to the description in "The C Programming Language" by Kernighan &
Ritchie (Prentice-Hall, 1978). "Cf" is like "C", but also requires "standard"
features like printf and fprintf, argument passing via argv/argc, and so on, as
described in Kernighan & Ritchie. “"Unix" means the module should be useful un-
der any Unix implementation; it requires features such as fork{) and pipes.
Anything else wmeans that the module is particular to the indicated systes.
C-Kermit file names are of the fora:

ck{system)(what). (type)

where the part before the dot is no more than é characters long, the part after
the dot no more than 3 characters long, and:

{type) is the file type:

C language source

Header file for € language source

Wart preprocessor source, converted by Wart {or Lex) to a C prograa
nr: Nroff/Troff text formatter source

mss: Scribe text formatter source

doc: Documentation

hlp: Help text

bld: Instructions for building the program

= T oo

Apr 20 13:23 1938 ckuker.doc Page 30

bur: & "beware" file - list of known bugs
upd: Program update log
mak: Makefile

(system) is a single character to tell what system the file applies to:

E < & C B o~ Do oo
% as ab as 8% as es as vs as

Descriptive material, documentation
All systems with C compilers

Data General

Harris computers (reserved)
Commodore Amiga {Intuition)
Macintosh

IBM PC, PC-DOS (reserved)

Unix

VAX/VMS

Wart

(what) is mnemonic (up to 3 characters) for what’s in the file:

aaa: A "read-me" file, like this one

¢md: Command parsing

con: Connect command

deb: Debug/Transaction Log formats, Typedefs

dia: Modem/Dialer control

fio: System-depdendent File I/0

fns: Protocol support functions

fn2: More protocol support functions

ker: General C-Kermit definitions, information, documentation
mai: Main program

pro: Protocol

scr: Script coamand

tio: System-dependent terminal ifo & control and interrupt handing
usr: User interface

us2: More user interface

us3: Still more user interface

Examples:

ckufio.c File ifo for Unix

ckatio.c Terminal ifo for Macintosh

ckuker .mss Scribe source for for Kermit User Guide chapter

ckuker .nr Nroff source file for Unix C-Kermit man page

The following material discusses each of the C-Kermit modules briefly.

ckemai.c, ckeker.h, ckedeb.h (Cf):

This is the main program. It contains declarations for global variables
and a small amount of code to initialize some variables and invoke the com-
mand parser. In its distributed form, it assumes that command line ar-
guments are passed to it via argc and argv. Since this portion of code is
only several lines long, it should be easy to replace for systems that have
different styles of user interaction. The header files define symbols and
macros used by the various modules of C-Kermit. ckcdeb.h is the only
header file that is included by all the C-Kermit modules, so it contains
not only the debug format definitions, but also any compiler-dependent
typedefs.

ckwart.c (Cf), ckepro.w (C):

The ckepro module embodies the Kermit protocol state table and the code to
accomplish state switching. It is written in "wart", a language which may
be regarded as a subset of the Unix "lex" lexical analyzer generator. Wart
implements enough of lex to allow the ckprot module to function. Lex it-

Apr 20 13:23 1988 chuker.doc Page 31

self was not used because it is proprietary. The protocol module ckepro.w
is read by wart, and a system-independent C program is produced. The syn-
tax of a Wart prograe is illustrated by ckcpro.w, and is described in
chkwart.doc.

ckefns.c (C):
The module contains all the Kermit protocol support functions -- packet
formation, encoding, decoding, block check calculation, filename and data
conversion, protocol parameter negotiation, and high-level interaction with
the communication line and file system. To accommodate small systems, this
module has been split into two -- ckefns.c and ckefn2.c.

chutio.c:

This module contains the system-dependent primitives for communication line
ifo, timers, and interrupts for the various versions of Unix. Certain im-
portant variables are defined in this module, which determine whether
C-Kermit is by default remote or local, what the default comaunication
device is, and so forth. The tio module maintains its own private database
of file descriptors and modes for the console terminal and the file trans-
fer communication line so that other modules {like ckcfns or the terminal
connect module) need not be concerned with them. The variations among Unix
implementations with respect to terminal control and timers are accom-
modated via conditional compilation.

chufio.c:

This module contains system-dependent primitives for file ifo, wildcard
{meta character} expansion, file existence and access checking, and systea
compand execution for the various versions of Unix. It maintains an inter-
nal database of i/o "channels” (file pointers in this case) for the files
C-Kermit cares about -- the input file (the file which is being sent), the
output file (the file being received), the various logs, the screen, and so
forth. This module varies little among Unix implementations except for the
wildcard expansion code; the directory structure of 4.2bsd Unix is dif-
ferent from that of other Unix systems. Again, variation among Unix sys-
tems is selected using conditional compilation.

ckuusr.h, ckuusr.c, ckuus2.c, chuus3.c (Unix):

This is the "user interface” for C-Kermit. It includes the command parser,
the screen output functions, and console input functions. The command par-
ser comes in two pieces -- the traditional Unix command line decoder (which
is quite small and compact), and the interactive keyword parser (which 1is
rather large). This module is fully replacable; its interface to the other
modules is very simple, and is explained at the beginning of the source
file. The ckuusr module also includes code to execute any commands
directly which don’t require the Kermit protocol -- local file management,
etc. The module is rated "Unix" because it makes occasional use of the
system{) function.

Note that while ckuusr is logically one module, it has been split wup into
three C source files, plus a header file for the syabols they share in com-
mon. This is to accommodate small systems that cannot handle big modules.
ckuusr.c has the command line and top-level interactive command parser;
chuus2.c¢ has the help command and strings; ckuus3 has the set and remote
commands along with the logging, screen, and "interrupt” functions.

ckucmd.c, ckucmd.h (Cf):
This is an interactive command parsing package developed for C-Kermit. It
is written portably enough to be usable on any system that has a C compiler
that supports functions like printf. The file name parsing functions
depend upon primitives defined in the fio module; if these primitives can-
not be supplied for a certain system, then the filename parsing functions
can be deleted, and the package will still be useful for parsing keywords,

Apr 20 13:23 1988 ckuker.doc Page 32

numbers, arbitrary text strings, and so forth. The style of interaction is
the same as that found on the DECSYSTEM-20.

ckucon.c (Unix):
This is the connect module. As supplied, it should operate in any Unix en-
vironment, or any C-based environment that provides the fork{) function.
The module requires access to global variables that specify line speed,
parity, duplex, flow control, etc, and invokes functions from the tio
module to accomplish the desired settings and input/output, and functions
from the fio module to perform session logging. No terminal emulation is
performed, but since standard ifo is used for the console, this may be
piped through a terminal emulation filter. The ckucon function may be en-
tirely replaced, so long as the global settings are honored by its replace-
ment. PC implementations of C-Kermit may require the ck?con module to do
~ screen control, escape sequence interpretation, etc, and may also wish to
write special code to get the best possible performance.

ckudia.c (Unix):
This is the dialer module. As supplied, it handles Hayes, Ventel, Penril,
r‘ Racal-Vadic, and several other modems.

ckuscr.c (Unix):
This is the login script module. As supplied, it handles uucp-style
scripts.

Moving C-Kermit to a new system enfails:

1. Creating a new ck?tio module in C, assembler, or whaiever language
is most appropriate for system programming on the new system. If
the system is Unix-like, then support may be added within the
ckutio.c module itself using conditional compilation.

2. Creating a new ck?fio module, as above.

3. If the system is not Unix-like, then a new ckuusr module may be re-
quired, as well as a different invocation of it from ckcmai.

(-\
4. If the distributed connect module doesn’t work or perforas poorly,
then it may be replaced. For instance, interrupt-driven ijo may be
required, especially if the system doesn’t have forks.
/‘\

Those who favor a different style of wuser/progras interaction from that
provided in ckuusr.c may replace the entire module, for instance with one that
provides a mouse/window/icon environment, a menu/function-key environment, etc.

4 few guidelines should be followed to maintain portability:

- Keep variable and function names to é characters or less. Don’'f use
identifiers that are distinguished from one another only by al-
phabetic case.

- keep modules small. For instance, on a PDP-11 it is necessary to
keep the code segment of each module below 8K in order to allow the
segment mapping to occur which is necessary to run programs larger
than 64K on a non-I-and-D-space machine.

- Keep strings short; many compilers have restrictive maximum lengths;
128 is the smallest maximum string constant length we’ve encountered
so far.

- Keep (f,s)printf formats short. If these exceed some compiler de-
pendent maximum (say, 128) memory will be overwritten and the program

Apr 20 13:23 1988 chuker.doc Page 33

will probably core dump.
- Do not introduce system dependencies into ckcpro.w or ckefnk.c.

- If a variable is a character, declare as CHAR, not int, to prevent
the various sign extension and byte swapping foulups that occur when
characters are placed in integer variables.

- Remember that different systems may use different length words for
different things. Don't assume an integer can be used as a poi“ter,
etc.

- Don’t declare static functions; these can wreak havoc with systems
that do segment mapping.

- In conditional compilations expressions, use ¥ifdef and #ifndef and
not #if, which is not supported by some compilers. Also, don't use
any operators in these expressions; many compilers will fail to un-
derstand expressions like #ifdef FOO | BAR. Also, don’t put trailing

,’L‘~ tokens on #else’s or #endif’s (use /* comments */).

- Don't define multiline macros.

In general, remember that this program will have to be compilable by old com-
pilers and runnable on small systems.

