Jul 29 09:27 1985 win_cads.doc Page 1

O 0 NN T B N PO

O PO PO et e b pea bt et s ke et
D b= D N0 CO NN N Py PN O

44

Cd SN Al N PO N PO PO PO PO
D b= DN SO N O O N

(=)
<

L NN NN N & oo B B BB oo Bl N <l
M'—'C?\DCO\JO\M-P-MP\JP—‘O\D@\JQ\.m.bwwmc\og‘dgm‘;:

This file contains descriptions of the window utility commands.

1.

This command creates a new window with the status of a terminal and
executes the command given as argument in it (if no comsand is
specified, a shell is executed).

The syntax is:

wopen [-rotbwz] [-¢ (m1 [-r (1 [-h ] [-w (m] [-x (m)]
[-y (m] [-f ()] [-s (m] [-e (] [{command)]

Explanation of the options:
b - Black windou.
- White window (this is the default).

W
n
0
t
1
C
r
h
W
X

y

N e

[1-]

2.

No window border.

Single {(one) line window border.

Double {two) lines window border (this is the default).

Zoom box shall be present in the border.

Nusber of character columns in the window {default 80).

Number of character rows in the window (default 24).

height of window in pixels.

width of window in pixels.

y coordinate of the lower left corner of the window (default 24
in portrait mode and 152 in landscape mode).

y coordinate of the lower left corner of the window (default 344
in portrait mode and 216 in landscape mode).

The default font to be used (default 'A’).

Signal to be used to signal that the window has moved, etc.
(default 0).

Signal to be sent when the close box is used. If not zero, a
close (exit) box will be present in the border (default 0).

This command inserts a header in a window.
The syntax is:

whead [-i] [-t] [(header)]

Explanation of the options:
i - Invert the header.
t - Invert the top header.

If no header is given, the present header will be removed.

3.

This command sets up an icon in a window.
The syntax is:

wicon [-prielmgszt] [-x ] [~y (] [-w (m] [-h (m}]
[(sequence)]

Explanation of the options:
b - Send icon sequence when left mouse button is pressed (default).



Jul 29 09:27 1985 win_cads.doc Page 2

63
64
65
66
67
68
69
70
71
72

73
74

75
74
77
78
79
80
81
32
83
84
5
86
87
ag
29
90
91
92
93
94
95
9%
97
98
99
100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116
117
118
119
120
121
122
123
124

r - Send icon sequence when left mouse button is released.
i - Invert the icon when the mouse pointer points to it.

e - Send the icon sequence when we enter the icon area.

1 - Send the icon sequence when we leave the icon area.

m - Remove the icon after the icon sequence has been sent.

q - Only send the icon sequence if there is a pending read request
on the window.
s - Check if option e or 1 is fulfilled upon set up.

7 - Only send the icon sequence if it is the level zerc window.
t - The coordinates and sizes are supposed to be given in character

box units. )
¥ - The x coordinate of the lower left corner of the icon

(default 0).

y - The y coordinate of the lower left corner of the icon
{default 0).

w - The width of the icon (default 100).

h - The height of the icon (default 100).

(sequence) is the icon sequence to be sent when the icon is chosen.

4, Rmicons

This command removes all icons in a window.
The syntay is:

rmicons

5. Wzoonm

This command sets up a zoom list for a window.
The syntay is:

wzoom [(zoomlist)]

{zoomlist) is a string of capital letters indicating the fonts which
the zoom list shall consist of. If no (zoomlist) is specified, any
existing zoomlist is removed.

6. Wfont

This coemand changes the default font for a window.
The syntax is:

wfont [-x (n)] [-y (n)] [(font)]

Explanation of the options:
x - The x coordinate for the middle visible character {default 1).
y - The v coordinate for the middle visible character {default 1).
(font) is a single capital letter specifying the new font.
If no (font) is specified, the next font in the zoom list for the
window is used instead.

7. Wtop



Jul 29 09:27 1985 win_cads.doc Page 3

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
135
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

This command moves a window to the top level.
The syntay is:

wiop

8. Wbg

This cosmand reads the file specified as argument and uses the data to
set up a new background pattern for the window handler. It supposes
file descriptor 3 to be the window handler "super” channel.

The syntax is:

wbg [-n] [(file)]

where the "-n’ option shall be used if no error messages shall be
displayed.
If 'file’ is not specified, the standard input is read instead.

9. Wmsk

This command reads the file specified as argument and uses the data to
set up new mouse substitute keys for the window handler. It supposes
file descriptor 3 to be the window handler "super” channel.

The syntax is:

wask [-n] [(file)]

where the '-n’ option shall be used if no error messages shall be
displayed.
If 'file’ is not specified, the standard input is read instead.

10. Hmp

This command reads the file specified as argument and uses the data to
set up a new global mouse pointer for the window handler. It supposes
file descriptor 3 to be the window handler "super” channel.

The syntax is:

wap [-n] [(file)]

where the '-n" option shall be used if no error messages shall be
displayed.
If 'file' is not specified, the standard input is read instead.

11. Widtp

This command reads the file specified as argument and uses the data to
set up new initial driver and terminal parameters for the window
handler. It supposes file descriptor 3 to be the window handler
"super” channel.

The syntax is:

widtp [-n] [(file}]



Jul 29 09:27 1985 win_cads.doc Page 4

187
168
189
190
191
192
193
194
195
196

197
198

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

where the '-n’ option shall be used if no error messages shall be

displayed. _ . _
If 'file’ is not specified, the standard input is read instead.

12. Wshdis

This command is the reverse of the window shell preprocessor. It
produces a text file from a file produced by wshpp which can be

nodified and then processed by ushpp again.
The syntax is:

wshdis [(infile}] [-o (outfile}]

where 'infile' is the input file (default '.window') and 'outfile’ is
the output file {default standard output).

13. Wpictrd

This comsand reads a rectangle of the picture memory for a virtual
screen or the whole screen and writes an optional parameter header
followed by the binary data to the standard output. The parameter
header is the wpictblk structure (see the w_structs.h header file).
The syntax is:

wpictrd [-p] [-x 71 [-y (m] [-w (] [-h (m] [-c (n}]
[-0 (file}]

Explanation of the options:
p - first output a header parameter.
x - x pixel coordinate of the lower left corner of the rectangle to
read (default 0).

y - y pixel coordinate of the lower left corner of the rectangle to
read {default 0).
W - Width in pixels of the rectangle (default 100).

h - Height in pixels of the rectangle (default 100).

¢ - The file descriptor (channel) to read the data through
{default 0, i.e. standard input).

o - The name of the output file. If not specified, the output is
written to the standard output.

This coamand sets up a new default size and location for a window. If
no arguaents are specified, the current size and location of the
window will become the default one.

The syntax is:

wdsize [-t] [-x ()] [-y (] [-u ] [-v (md] [-w (m)]
[-h (n)]

Explanation of the options:
t - The parameters are given in units of font boxes.
x - The lower left corner of the virtual screen (x coordinate}.
y - The lower left corner of the virtual screen (y coordinate).
u - The lower left corner of the window (x coordinate).
v - The lower left corner of the window (y coordinate).



Jul 29 09:27 1985 win_cads.doc Page 5

249 w - Width of the window.
250 h - Height of the window.
251

252

253 15. Whelp

254 =ozzIs

255

256 This comsand changes the sequence sent when the help box is used.
257 The syntax is:

258

259 whelp [(sequence)]
260

261 No sequence will be sent if (sequence) is not given.



Aug 5 19:12 1985 wh_escapes.doc Page 1

O 0O~y TN o A B

1985-07-29

ABC1600 WINDOW HANDLER ESCAPE SEQUENCES

This documentation briefly describes all the escape sequences
implemented in the window handler. There are two types: VT100
andfor Facit Twist compatible sequences and sequences private
to the ABC1600.

The sequences are, if possible, compatible with the ones used
in the ABC1600 terminal emulator (the console).

1. VT100 and Facit Twist Compatible Escape Sequences

1.1 Cursor Up

ESC[(Pn}A

Moves the text cursor {(Pn) lines up. The cursor stops at the top
pargin. If (Pn) is zero or not present, the cursor is moved one line
upwards.

1.2 Cursor Down

ESC[(Pn}B

Moves the text cursor (Pn) lines down. The cursor stops at the
bottom margin. If (Pn)} is zero or not present, the cursor is moved
one line down.

1.3 Cursor Forward

ESC[(Pn)C

Moves the text cursor (Pn) positions to the right. The cursor stops
at the right margin. If (Pn) is zero or not present, the cursor is
moved one position to the right.

1.4 Cursor Backward

ESC[(Pn}D

Moves the text cursor {(Pn) positions to the left. The cursor stops
at the left margin. If (Pn) is zero or not present, the cursor is
moved one position to the left.

1.5 Cursor Position

ESC[(PnY;(PmH  or  ESC[(Pn);(Pm)f

Moves the text cursor to the position specified by the parameters.



Aug 5 19:12 1985 wh_escapes.doc Page 2

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
30
81
82
23
84
85
86
37
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

The first parameter specifies the line position and the second the
colusn position. If a parameter is 0 or not specified, the cursor
is moved to the first line or coluan.

1.6 Set Top and Bottom Margins

ESC[(Pn};{(Pn)r

Sets the top and bottom margins for the scrolling region. The first
parameter is the line number of the first line in the scrolling
region and the second the line number of the bottom line. If no
parameters are specified, the scrolling region is set to the entire
virtual screen. The miniaum size of the scrolling region is two
lines. The cursor is placed in the home position.

1.7 Erase in Display

ESC[(Ps}]

Erase some part of or the entire virtual screen according to the
parameter.

Parameter Meaning

0 Erase from and including the current text cursor
position to the end of the scrolling region (default).
1 Erase from the start of the scrolling region to
and including the current text cursor position.
2 Erase the whole scrolling region.

This escape sequence does not change the current text cursor position.

1.8 Erase in Line

ESCL(Ps)K

Erases some part of or the entire line where the text cursor is
positioned according to the parameter.

Parameter Meaning

0 Erase from and including the current text cursor
position to the end of the line (default).

1 Erase from the start of the line to and including
the current text cursor position.

? Erase the entire line.

This escape sequence does not change the current text cursor position.

ESC D

Moves the text cursor one line downward without changing the coluan



Mg 5 19:12 1985 wh_escapes.doc Page 3

125
126
127
128
129
130
131
132
133
134

135
136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

position. If the cursor is at the bottom margin, a scroll up is
performed.

1.10  Next Line

ESC E

Moves the text cursor to the first position on the next line downward.
If the cursor is at the bottom margin, a scroll up is performed.

1.11  Reverse Index

ESC M

Moves the text cursor one line upward without changing the coluan
position. If the cursor is at the top margin, a scroll down is
performed.

1.12 Save Cursor

ESC 7

Saves the current text cursor position, graphic cursor pesition,
graphic origin, character attributes, and character font.

1.13 Restore Cursor

ESC 8

Restores all things saved by the Save Cursor sequence to the state
when the Save Cursor sequence was last used. If no Save Cursor
sequence has been sent to the window the text cursor, graphic cursor,
and graphic origin are set to their home positions.

1.14  Reset to Initial State

ESC ¢

On a VYT100 terminal this sequence resets it to its initial state.
To simulate this in a window, the following things are perforsed
when this sequence is received:
- The text cursor is put at its home position.
- The graphic cursor is put at its home position.
- The text cursor apperance is set to the default.
- The Set Mode - Reset Mode flags are set to their default values.
- The character attributes are set to their default values.
- The top and bottom margin of the scrolling region are set to the
the top and bottom line of the virtual screen.
- The graphic origin is set to the lower left corner of the virtual
screen.
- Tab stops are set to the default.
- The graphic pattern tables are set to their default values.



Aug 5 19:12 1985 wh_escapes.doc Page 4

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

- The current font is set to the default font for the window.
- The whole virtual screen is cleared.
- All the LED's on the keyboard are turned off.

1.15  Tabulation Backward

Esclz

Moves the text cursor left to the next tab stop. The cursor stops at
the left margin.

1.16  Horizontal Tabulation Set

ESC H

Set a horizontal tabulation stop at the current text cursor position.

1.17  Tabulation Clear

ESC[(Ps)g
If (Psy is O the horizontal tab stop at the current text cursor

position is cleared (default).
If (Ps) is 3 all horizontal tab stops are cleared.

1.18  Character Attributes

ESCI(Ps);(Ps);....;(Ps)m
Set or reset character attributes according to the parameter(s):

Parameter Meaning

0 Attributes off.

1 Bold or increased intensity. On the ABC1600 this has
the same effect as the reverse character attribute.

4 Underscore.

5 Blink. On the ABC1600 this has the same effect as the
reverse character attribute.

7 Reverse.

1.19  Device Status Report

ESCL(Ps);(Ps);...;(Ps)n

Request to get a report of the specified status. The status is
determined by the paraseter(s).

Parameter Neaning

6 Report the text cursor position. The report sequence
is ESC[{Pn);(Pn)R where the first parameter



Aug 5 19:12 1985 wh_escapes.doc Page 5

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
294
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

specifies the line and the second the column.

1 Report Portrait/Landscape screen mode. This is
compatible with the Facit Twist terminal. The report
sequence is ESC{?Pn for portrait mode and ESC[?Ln
for landscape mode.

1.20  Load LEDs

ESC[{Ps);{Ps);...;(Ps)q

Loads the eight programmable LEDs on the keyboard according to the
parameter{s).

Parameter Meaning

Clear LEDs 1 through 8.
Light LED 1.
Light LED 2.
Light LED 3.
Light LED 4.
Light LED 5.
Light LED 6.
Light LED 7.
Light LED 8.

O g T PN ke ©

The default value of the parameter is 0.
Note that the status of the keyboard LEDs always reflects the LED
status for the top level window.

1.21  Set Mode

ESCL(Ps);(Ps);...;(Ps)h

Sets the modes specified by the parameter(s). The different modes
are:

Parameter Meaning
20 Line feed new line mode. When set causes the LF key

to imply movement to the first position of the
following line and causes the RETURN key to send both

CR and LF.
75 Screen mode. When set the window is inverted.
% Origin mode. When set the home position for the

text cursor is at the upper-left position of the
scrolling region.

27 Auto wrap mode. When set, the text cursor will advance
to the next line when it reaches the right margin.

732 Page mode, i.e. the window does not scroll. This is
compatible with the Facit Twist terminal. -

733 Underline cursor. This is compatible with the Facit
Tuist terminal.

234 Blinking cursor. This is compatible with the Facit
Tuist terminal.

735 Cursor off. This is compatible with the Facit Twist
terminal.



Aug 5 19:12 1985 wh_escapes.doc Page 6

3
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
322
329
330
331
332
333
334
338
336

727
D

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

1.22  Reset Mode

ESC[(Ps};(Ps);...;(PsH]

Resets the modes specified by the parameter(s). The different modes
are:

Parameter Neaning
20 Line feed new line mode. When reset causes the LF key

to imply only vertical movement of the text cursor and
the RETURN key to send the single code CR.

75 Screen mode. When reset the window is not inverted.

?% Origin mode. When reset the text cursor home position
is at the upper-left position of the virtual screen.

77 Auto wrap mode. Khen reset, the text cursor will
not advance to the next line when it reaches the right
margin.

232 Scroll mode. This is compatible with the Facit Twist
terminal.

233 Reverse block cursor. This is compatible with the
Facit Twist terminal.

234 Non-blinking cursor. This is compatible with the Facit
Tuist terminal.

235 Cursor on. This is compatible with the Facit Twist
terminal.

Esc{z or ESC)Z

Selects the desired font. When changing between fonts of different
sizes, the fonts will be aligned so that the base lines of the fonts
will be the same.

Note that when the font is changed for a window, the saving of the
text contents of the window will be lost.

2. ABC1600 Private Escape Sequences

2.1 Draw Line

ESC: {x);{y);{pnod;{cno}d

Draws a line from the current graphic cursor position to (x),{(y},
using the pattern specified by (pno}. If the colour nusber (cno) is
'1" a normal line is drawn and if it is '0" or not specified the line
is the inverse of that obtained with the colour number '1'. If (pno)
is not specified, a continous line is drawn.

The graphic cursor position is updated to (x),{(y).



Aug 5 19:12 1985 wh_escapes.doc Page 7

373
374
375
376
377
378
379
380
381
382
383
384
385
286
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

2.2 Draw Inverted Line

ESC: (x);{y)i

Draws a line from the current graphic cursor position to (x),(y) by
inverting the corresponding pixels. The line can be removed by drawing
an inverted line a second time.

The graphic cursor position is updated to (x),{y).

2.3 Move Graphic Cursor

ESC:{x};{y)m

Positions the graphic cursor at (x),{y).

2.4 Draw Point

ESC: {x)};{y);{op};(cnolp
Changes or reads the pixel at (x),{y). (op) determines the operation:

If (op) is O or not specified, set the pixel.

If (op) is !, clear the pixel.

If (op) is 2, complement the pixel.

If (op) is 10, the colour of the pixel at {x),{y} is reported:

ESC:{x);{y);11;{cnodp {(cno) is '1' if the pixel is
set, otherwise '0’.
ESC:(x);{y);11p The specified pixel is outside

the virtual screen.

The graphic cursor position is updated to (x),{y} if (op} is 0, I, or
2.

Note that (cno) is not used for (op} equal to 0, 1, 2, or 10 and may
be left out.

2.5 Draw Arc

ESC:{x);{y};{len);{pno);{cnola

Draws a circle arc with the origin at (x),{y) from the current graphic
cursor position counter-clockwise with length (len) using the pattern
{pno). If (pno) is not specified, a continous arc is drawn.

The length (len) is the number of vertical and horizontal pixel steps,
i.e. a full circle is drawn when (len) is 8 % circle radius.

If the colour number (cno) is '1', a normal arc is drawn and if it is
0" or not specified the arc is the inverse of that obtained with the
colour number '1'.

The graphic cursor position is updated to the last drawn pixel in the

arc.

2.6 Draw Inverted Arc



Aug 5 19:12 1985 wh_escapes.doc Page &

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
432
483
434
485
486
487
438
489
490
491
492
493
494
495
496

ESC: (x);{y);{lem]

Draws a circle arc, with the origin at (x),(y}, froa the current
graphic cursor position counter-clockwise with length (len) by
inverting the corresponding pixels.

The length (len) is the number of vertical and horizontal pixel steps,
i.e. a full circle is drawn when (len) is 8 ¥ circle radius.

The graphic cursor position is updated to the last drawn pixel in the
arc.

2.7 Fill Area

ESC: (x};{y);{pno);{cno)f

Fills a rectangle with the pattern (pno). If (pno} is not specified,
all pixels in the rectangle are set.

The rectangle has one of its corners at {(x),{(y) and the opposite
corner at the current graphic cursor position.

If the colour nuaber (cno) is '1’, a normal fill is done and if it is
'0* or not specified, the rectangle is the inverse of that obtained
with colour number 1.

The graphic cursor position is updated to (x),(y).

2.8 Draw Filled Circle

ESC:(x);{y};{rad);{pno);{cnolc

Draws a filled circle with origin at (x),(y) and with radius (rad)
using the pattern {pno}. If {(pno) is not specified, all pixels in the
circle are set.

If the colour number (cno) is '1', a normal fill is done and if it is
'0" or not specified, the circle is the inverse of that obtained with
colour nuaber '1'.

The graphic cursor position is updated to (x),{y).

2.9 Paint Area

ESC:{x);{y);{pno);{cno)F

Paints an area with the pattern (pno). The area to be painted should
be limited by continous lines {curves) generated by previous line,
dot, circle, fill, paint, etc. operations.

{x),{y) specifies the starting point for the paint and should be
within the area. If the pixel at (x),(y) is cleared, the limits of
the area are supposed to consist of set pixels and vice versa.

If (pno) is '0" or not specified, the area is painted completely and
"goes around corners”. If {pno) is not zero the paint does not “go
around corners”.

If the colour number (cno) is '1' a normal paint is done and if it is
'0" or not specified, the paint is the inverse of that obtained with
colour number '1°.

The graphic cursor position is updated to (x),{y).

Note that since paint works directly with the graphic memory,
different results may be obtained if the window being painted is
overlapped by another window or not.



Aug 5 19:12 1995 wh_escapes.doc Page 9

497
498
499
500
501
502
503
504
505
506

507
508

509
510
511
512
513
514
515
516
517
518
319
520
521
522
523
524
525
526
527
528
529
530
531
532
933
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558

2.10  Move Area

ESC: (xsre);{(ysrc);{xdest);(ydest);(width);<height); (op)r

Moves (actually copies) the rectangular area with lower left corner
at {(xsrc),{ysrc) to {(xdest),{ydest). The area has width (width) and
height (height).

If the operation (op) is 0" or not specified the area is moved
(copied) as it is, and if it is "1’ the area is complemented.

The graphic cursor position is not updated.
Note that only those areas where both the source and destinmation areas
are visible are moved.

2.11  Define Pattern

ESC: (pno); (hmask); (vmask);{shift);{op)R

Redefines the pattern (pno} as specified. The pattern is defined for
portrait mode and will be tilted 90 degrees when used in landscape
mode.

(hmask) defines a 16 bit horizontal mask used repeatedly on a scan
line during fill or when drawing lines or arcs.

{vmask) defines a 16 bit vertical mask where each bit determines the
operation on the corresponding scan line. If a bit is set (hmask) is
used to fill the scan line, otherwise (op) determines the operation:

0 Clear the line, rotate (hmask) the number of bits
given by (shift).
{op) = 1 Set the line, rotate (hmask) the number of bits
given by (shift).
{op) = 2 Use (hmask) but complemented, rotate (hmask) the
nuaber of bits given by (shift).
{op) = 3 Leave line as it is, rotate (hmask) the number of bits
given by (shift).

{op}

{op} = 4 Clear the line, no rotate.

{op) = 5 Set the line, no rotate.

{op} = 6 Use (hmask) but complemented, no rotate.
{op) = 7 Leave line as it is, no rotate.

{pno) can be in the range 1 - 15. Pattern nuaber zero can not be
redefined.

(shift) can be in the range 0 - 15.

Only (hmask) is used by the draw line and draw arc escape sequences.

2.12  Set Text Cursor

ESC: {seD)H

The text cursor is positioned at the position of the graphic cursor
according to (sel):
{sel) = 0 The upper left corner of the font box is placed at the
graphic cursor.
1 The lower left corner of the font box is placed at the
graphic cursor.

{sel)



Aug 5 19:12 1985 wh_escapes.doc Page 10

539
560
561
562
563
564
563
566
567
968

569
570

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
598
589
590
391
592
593
594
595
5%
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620

{sel) = 2 The left edge of the base line for the font box is
placed at the graphic cursor.

Note that when this escape sequence is sent to a window, the saving of
the text contents of the window will be lost.

2.13  Mouse Report

ESC: {sel)M

This escape sequence is used to get a report of the current mouse
pointer position. The report is, depending on (sel), only sent when
the mouse pointer or the mouse buttons have changed.

(sel) =7 The report is sent immediately if the mouse has
changed since the last report. Otherwise the report
is sent as soon as the mouse changes. A change is
either a mouse movement or a status change of a mouse
button.

The report sequence is:

ESC:{x};{y);{buttons)P

where (x) and {y) is the position of the mouse
pointer. If the mouse pointer is outside the virtual
screen, the reported position will be at the virtual
screen border.
(buttons) is '1" if the left button is pressed, '2' if
the middle button is pressed, '3’ if both the left and
piddle buttons are pressed, and 0’ if no button is
pressed.

(sel) - 8 Identical to (sel} = 7, except that reports are only
sent when the left or middle buttons changes.

Note that mouse reports are only sent to the top level window.

2.14  Device Status Report

ESC:{sel)n
Reports the status of different devices, determined by (sel):

{sely = 1 Reports the graphic cursor position. The report
sequence is:

ESC: (x};{(y)R

where (x),{y) is the current graphic cursor position.

Reports the mouse position and button status. This is

identical to the Mouse Report escape sequence with

(sel) = 7 (ESC:7M), except that the report is sent

impediately.

Note that reports are only sent to the top level

window.

{sel) = 3 Reports the size of the virtual screen and the current
font. The report sequence is:

{sel)

1]
ro

ESC:(vsx);(vsy);(fsx);(fsy);(bl};(fno)¥



Aug 5 19:12 1995 wh_escapes.doc Page 1l

621

622 (vsx) and (vsy) are the x and y pixel sizes,

623 respectively, of the virtual screen, (fsx) and (fsy)
624 are the v and y pixel sizes of the current font box,
625 (b} is the base line for the font box, and (fno) is
626 the ASCII code for the name of the current font.

627

628

629 2.15  Set Graphic Origin

630 szzzszzzzzzozozoooos

631

632 ESC:{x};{y)0

633

634 Sets the graphic origin to (x),{y}. The graphic cursor position is
635 set to 0,0.

636 All coordinates given by the graphic escape sequences are relative
637 to the graphic origin.

638 Note that the mouse position is always reported relative to the lower
639 left corner of the virtual screen.

640

641

642 2.16  Clear All

643 zzzzzzzzs

644

645 ESC:J

646

647 Clear window and home cursors, etc. as follows:

548

649 - The text cursor is set to 1,1.

650 - The graphic cursor is set to 0,0.

651 - The graphic origin is set to 0,0.

652 - The scroll region is reset to the whole virtual screen.

653 - If the current character font is the same as the default font for
654 the window, the text contents of the window will be started to be
655 remeabered again.

656 - The whole virtual screen is cleared.

657

658

659 2.17  Load Key LEDs

660 ZozzzzzooozIs

661

662 ESC:(sel);{(sel);...;{sel)q

663

664 Loads the LEDs on the INS and ALT keys according to the parameter(s).
665

666 (sel) = 0 Clear both the LEDs.

667 (sel) - 1 Light the INS key LED.

668 {sel} = 2 Light the ALT key LED.

669

670 If no parameter is specified, the LEDs are cleared.

671 Note that the status of the keyboard LEDs always reflects the LED
672 status for the top level windou.

673

674

675 2.18  Private Set Mode

676 ZzzzzzzzzzozzoIs

677

678 ESC:{(sel);{sel};...;{(seD)h

679

680 Sets the ABC1600 private modes specified by the parameter(s). The
681 different modes are:

682



Aug 5 19:12 1985 wh_escapes.doc Page 12

693
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733

(sel) = 2 Phased pattern mode. When set, the patterns obtained
when using the fill area, draw filled circle, paint
area, and spray escape sequences will be phased.

2.19  Private Reset Mode

ESC:{sel);(sel);...;{sel)]

Resets the ABC1600 private modes specified by the parameter(s). The
different modes are:

{sel) = 2 Non-phased pattern mode. When reset, the patterns
obtained when using the fill area, draw circle, paint
area, and spray escape sequences will not be phased.

ESC: {x};{y};{pno);{op)s

This escape sequence manipulates the pixels which are set both in the
spray mask and in the pattern specified by (pno}, according to the
goeration {oph.

{(x},{y) is the Jower left corner of where to put the 32x32 pixels
spray mask.

If (pno) is not specified, '0" is used and if (op} is not specified,
0" is used.

The following operations can be performed:

(op) = 0 All pixels which are set both in the spray mask and in
the pattern are set and the remaining pixels are
cleared {replace).

All pixels which are set both in the spray mask and in
the pattern are set. The remaining pixels are left
unaffected (set).

All pixels which are set both in the spray mask and in
the pattern are cleared. The remaining pixels are left
unaffected (reset).

All pixels which are set both in the spray mask and in
the pattern are complemented. The remaining pixels are
left unaffected (complement).

"
f—

{op}

"
[

{op}

"
(]

{op}

The spray mask for a window can be altered by a request to the window
handler.

For most applications of this escape sequence, the window must
probably be set to phased pattern mode in order to give a meaningful
result.

The current graphic cursor position is updated to (x),{y).



Jul 29 16:09 1985 wshpp.doc Page !

Q0 S o N By PO e

O"-cr-.mmm(ﬂmu'lm(_nm(ﬂ.a..-b.b-br-.p.-b-.n.huhuQQQ,quuwwuwwror\>l\>MI\DMMI\)I‘\)HH»—M»—*)—‘-D—‘F—'—"—‘
F—‘Q‘«Dcﬂ\lﬂ\m-buro)—-O\oCOMmmbuMk—onoo~qcr~m.>wrgl—-D\oC’O\lc.T\m-b-uMn-—-c:\ooo\]c\m.p.wr\:l—-c\o

62

1985-07-29
Peter Andersson
Luxor Datorer AB

THE WINDOW SHELL PREPROCESSOR - WSHPP

1. Introduction

Wshpp is a preprocessor for the window shell - wsh. As input it takes
a text file describing the menu’s and other things to be used to start
programs, open pull down menus, etc. when using the ABC1600 window
handler. The output is in a compact binary format which wsh can handle
efficiently.

Wshpp can also produce single data structures to be used by other
prograss when creating windows, setting up icons, etc. By always using
wshpp when creating the data to be used to call the window handler,
future incompatibility problems can be avoided.

It should be pointed out that the format of the text input file is

of a fairly low level, instead it is possible to use most of the
facilities of the window handler. If higher level routines is desired
(for example the input is just a collection of independent icons), it
is recommended that a program is written which as output produces a
text file which can be processed by wshpp.

2. Command Syntax

The syntax of wshpp is:

wshpp [-n] [(infile)] [-x {(struc) (outfile) -x (struc) (outfile)...]
[-0 (outfile)]

(infile) is the input text file. If it is not specified, the standard
input is used instead.

The -0’ option specifies the filename of the wsh data output file.
The '-x" option with its two following arguments specifies a single
structure to be output to a file (see part 4).

If no ’-x" or '-o' options are given, the wsh data is written to the
file .window, which is the file wsh reads by default. No wsh data file
is generated if no "-o’ and one or more '-x’ options are specified.
411 or some of the outfiles may be replaced by a dash (-}, in which
case the corresponding data is written to the standard output {all
messages displayed by wshpp are written to the standard error output).
This is intended to be used together with pipes.

The '-n’ option is used if no output file at all shall be generated.
All error messages displayed by wshpp are by default in english.
However if the environment variable LANGUAGE is set to ’swedish’, all
error messages are displayed in swedish instead.

3. The Format of the Input File

The input file consists of descriptions of data items and action
items.

The data items is {the structures refered to are the ones

used to communicate with the window handler and can be found in
the documentation for the handler):



Jul 29 16:09 1985 wshpp.doc Page 2

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
23
24
25
86
%7
a8
19
20
91
92
93
94
95
9%
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

window Data for a window (the winstruc structure).

icon Data for an icon (the winicon structure).

string A string to be used in both landscape and portrait
rode.

pstring A string to be used in portrait mode only.

Istring A string to be used in landscape mode only.

pointer Data for the layout of a mouse pointer (the npstruc
structure).

header Data for a window header (the headstruc structure).

environ Environment strings used to modify the environment
in both portrait and landscape screen mode.

penviron Environment strings to be used in portrait mode only.

lenviron Environment strings to be used in landscape mode only.

directory A directory pathname.

command A command {the file name and the arguments).

flags Window flags data {the flgstruc structure).

zooalist Zoom list data {the zoomlst structure).

substitute  Mouse substitute keys (the substit structure).
background  Data for a background pattern {the chbgstruc
structure).

The action items are:

init Describes what to do on initialization.

meny Describes a menu window.

choice Describes a choice which can be made from a menu
window.

action Describes the action when a certain choice has been
chosen.

terminal Describes a terminal window, i.e. a window running
a program.

3.1 Data Items

The description of a data item consists of its name, which is the name
of the item, immediately followed by a number. A colon separates the
name from the data. The data either consists of

(i) one string (string, pstring, lstring, directory),

{ii) several strings separated by commas (environ, penviron,
lenviron, cosmand), or

(iii) keywords {with corresponding values) and flags {window, icon,
pointer, header, flags, zoomlst, substitute, background).

The string in (i) is the rest of the line after the first colon. The
strings in {ii) are those between the first colon and a comma or a
newline, between two commas, or between a comma and a newline.

Data items in {iii) consists of 4-letter keywords, optionally followed
by a value, separated by colons. If it is a numerical value, the
keyword shall be followed by a '#’ character and the numerical value.
The numerical value can be a decimal number, an octal number, or a
hexadecimal number. The syntax of the different numbers are the same
as in the C language: A number starting with a zero is interpreted as
an octal number, a nuamber starting with '0x’ or '0X’ is interpreted

as a hexadecimal number, otherwise it is interpreted as a decimal
number.

If the value is a string, the keyword shall be followed by an
character and the string terminated by a colon or a newline.
A flag consists of just a keyword and if it is present the flag is
set, otherwise it is reset.

1.9



Jul 29 16:09 1985 wshpp.doc Page 3

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
192
183
184
185
186

The backslash (\) can be used as an escape character in strings. This
works as in the C language (it has been augmented by "\e' which means
ESCAPE, 27 decimal).

Leading and trailing spaces and tabs are significant in all strings.
A line can be continued on the next line by ending the line with a
backslash.

3.1.1  Window

The window data itea gives the data for a window. Every keyword has

a corresponding member or flag in the winstruc structure (see the
documentation for the window handler). In the following list the
corresponding structure member or flag is listed inside paranthesis
and a '#' character indicates that it is a numerical value, otherwise
it is a flag.

Keyword Description

pxord {wp_xorig) The x coordinate in portrait mode of the
lower left corner of the virtual screen.

Ixor {wl_xorig) The x coordinate in landscape mode of the
lower left corner of the virtual screen.

pyor# {wp_yorig) The y coordinate in portrait mode of the
lower left corner of the virtual screen.

lyor} {wl_yorig) The y coordinate in landscape mode of the
lower left corner of the virtual screen.

pxsid (wp_xsize) The horizontal size in portrait mede of the
virtual screen.

Ixsit {wl_xsize) The horizontal size in landscape mode of
the virtual screen.

pysi# {wp_ysize) The vertical size in portrait mode of the
virtual screen.

lysid {(wl_ysize) The vertical size in landscape mode of the
virtual screen.

pvio# {wp_vrorig) The x coordinate in portrait mode of the

lower left corner of the window relative to the lower
left corner of the virtual screen.

lvxok {(wl_vxorig) The x coordinate in landscape mode of the
lower left corner of the window.

pvyok {wp_vyorig) The y coordinate in portrait mode of the
lower left corner of the window.

lvyod {wl_vyorig) The y coordinate in landscape mode of the
lower left corner of the window.

pvxsk {wp_vxsize) The horizontal size in portrait mode of
the window.

lvxast {wl_vxsize) The horizontal size in landscape mode of
the window.

pvysk {wp_vysize) The vertical size in portrait mode of the
window.

Ivysk (wl_vysize) The vertical size in landscape mode of the
window.

colrd {w_color) Background colour in the window.
0 = Black, 1 - White.

bord# {(w_border) The type of the window border.

The different types are (N - No border, S - Single
line border, D = Double lines border):

Border Left  Right Upper Lower
type side side side  side



Jul 29 16:09 1985 wshpp.doc Page 4

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

299

(Y44

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

pfnti

1fnté
usrbi

tsigh

nsigh

rsigh

csigh
hscr
vscr

cbox

sbox
nbox
box
avis

bbox

hbox
pmod
1mod
stxt

sbap

lock
novr

ncur
nmov

0 N N N N
! S S S S
2 D D D D
3 D 5 S S
4 5 D S S
5 S S D S
6 S 5 S D
7 D D S S
8 D S D S
9 D 5 S D
10 S D D S
i1 S D S D
12 S S D D
13 D D D S
14 D D S D
15 D S D D
16 S D D D

{wp_font) The initial font in portrait mode (ASCII
code, i.e. font A is 65).

(wl_font) The initial font in landscape mode.
{w_uboxes) The maximal number of user defined boxes
that can be set up in the left side of the border.
{(w_tsig) The signal used to signal that the window has
poved to the top level. The window shell always sets
this one to zerc for menu windows.

{w_ntsig) The signal used to signal that the window
has moved from the top level. The window shell always
sets this one to zero for menu windows.

{w_rsig) The signal used to signal a window that it
has to redraw itself. The window shell sets this one
to zero for menu windows if the 'stxt’ flag is
present. If the 'stxt’ flag is not set, the window
shell sets this signal to an appropriate value.
{w_csig) The signal to be sent to processes in a
window when the close box is used.

(BX_HSCR) The scroll left and right boxes shall be
present in the border.

{BX_VSCR) The scroll up and down boxes shall be
present in the border.

{BX_CLOS) The close box shall be present in the
border. The window shell clears this flag for aenu
windows.

{BX_SIZE) The size box shall be present in the border.
(BX_MOVE) The move box shall be present in the border.
(BX_700M) The zoom box shall be present in the border.
(BX_AVIS) Scroll left/right and up/down are only
visible if the whole virtual screen is not visible.
(BX_BLOW) The blow up box shall be present in the
border.

(BX_HELP) The help box shall be present in the border.
{PMODE) Portrait mode coordinates given.

{LMODE) Landscape mode coordinates given.

{SAVETEXT) Save the text contents of the virtual
screen.

(SAVEBITMAP) Save the bitmap contents of the virtual
screen (future use).

(LOCK) Lock the window on the top level.

(NOOVER) The window must not be overlapped by another
window.

(NOCURSOR) Text cursor not visible.

(NOMOVE) The window must not be moved or change size.



Jul 29 16:09 1985 wshpp.doc Page 5

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
256
267
270
271
272
273
274
275
276
277
278
279
280
281
292
283
284
285
286
297
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

alls (ALLSCR) The window must be the whole virtual screen.

spec (SPECIAL) Special window.

kscr (KEYSCROLL) Make sure that the text cursor is visible
in the window everytime a key is pressed.

Wscr (WRITSCROLL) Make sure that the text cursor is visible
in the window everytime something has been written to
the window.

ansp (ALTMPNT) Allocate space to store a private mouse
pointer for the window.

rltv (RELATIVE) Add the window relative to the parent
window.

nepi (NOCPIN) Prevents text from being copied intc this
window.

nepo (NOCPOUT) Prevents text from being copied from this
window.

text (TXTSIZE) The size of the virtual screen, the window,

and the origin of the window are supposed to be given
in term of characters instead of pixels.
Wgrp {WGROUP} This window shall belong to a window group.
ryle {REL_UEY This windou she!l follow its parent window
relative the upper left corner of the parent (not
seaningful if the window is not a child window).
rurc (REL_URC) This window shall follow its parent window
relative the upper right corner of the parent (not
peaningful if the window is not a child windou).
rllc (REL_LLC) This window shall follow its parent window
relative the lower left corner of the parent {(not
peaningful if the window is not a child window).
rlrc (REL_LRC) This window shall follow its parent window
relative the lower right corner of the parent (not
geaningful if the window is not a child window).

The following is an example of a small window put somewhere in the
middle of the screen (only portrait mode coordinates are given):

windowS:pxor$300:pyor#500:pxsif100:pysif100:pvxo#0: pvyok0:pvxskl00:\
:pvyskR0:colril:bord#2:pfnti0x4l:\
-pmode:stxt:chox:sbox:mbox

Note that all values which are not specified are guaranteed to be

Iero.

Icon

[ )
.

P
ro

The icon data item gives the data for an icon. Every keyword has a
corresponding member or flag in the winicon structure (see the
documetation for the window handler). An =’ character after the
keywords means that the value is a string.

Keyword Description

pxor (ip_xorig) The x coordinate in portrait mode of the
lower left corner of the icon.

Ixord {il_xorig) The x coordinate in landscape mode of the
lower left corner of the icon.

pyor} {ip_yorig) The y coordinate in portrait mede of the
lower left corner of the icon.

lyor# (il_yorig) The y coordinate in landscape mode of the

lower left corner of the icon.
pxsi$ {ip_xsize) The horizontal size in portrait mode of the



Jul 29 16:09 1985 wshpp.doc Page 6

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

icon.

Ixsi# (il_xsize) The horizontal size in landscape mode of
the icon.

pysi (ip_ysize) The vertical size in portrait mode of the
icon.

lysi# (il _ysize) The vertical size in landscape mode of the
icon.

tseqs (i_cmdseq[]) Character sequence to be sent by the
icon.

pmod (1_PMODE) Portrait mode coordinates given.

1mod {(I_LMODE) Landscape mode coordinates given.

pres (I_PRESS) Send sequence when left button is pressed.

rlse {(I_RELEASE) Send sequence when left button is
released.

inve {(I_INVERT) Invert icon when we are pointing to it.

entr {1_ENTER) Send sequence when we are moving into the
icon area.

leav (I_LEAVE) Send sequence when we are leaving the icon
area.

raov (I_REMOVE) Remove the icon when a sequence has been
sent.

rqst {1_RQST) Only send the sequence if there is a pending
read request to the window.

schk {1_SETCHK) Check if 'entr’ or 'leav’ is fulfilled when
setting up the icon.

lzer (1_LZERO) The sequence is sent only if the window is
at the top level.

text (I_TEXT) The icon coordinates are supposed to be in

character units.

The following exasple puts the icon in the lower left corner of a
virtual screen {only portrait mode coordinates are given):

iconl7:pxor#0:pyor#0:pxsi#80:pysi#50:cseq=\200:\
:pmod:pres:rise:inve:rgst

Note that all values which are not specified are guaranteed to be
1810.

3.1.3 String, pstring, and lstring

To set up the string

I like
WINDOWS!

using string, pstring, or lstring, looks like:

string36:1 like\nWINDOWS!
pstringl2:1 like\nWINDOWS!
Istringl9:1 like\nWINDOWS!

3.1.4 Pointer

The pointer data item gives the data for a mouse pointer layout.
Every keyword has a corresponding member in the npstruc structure
(see the documentation for the window handler).



Jul 29 16:09 1985 wshpp.doc Page 7

373 Keyword Description

374

375 xsizd {np_xsize) The with of the mouse pointer.

376 ysizs {np_ysize) The height of the mouse pointer.

377 xpnth {np_xpnt) Pointing part of the mouse pointer, x
378 coordinate.

379 ypnt4 (np_ypnt) Pointing part of the mouse pointer, y
380 coordinate.

381 anda} {np_and[]) & series of 16 AND masks used to construct
332 the mouse pointer. The different elements are
383 separated by commas.

384 ormad {np_or[]) A series of 16 OR masks used to construct
385 the mouse pointer. The different elements are
386 separated by commas.

387

388 The following is an example of a black hair cross mouse pointer:
389

390 pointer7:xsiz#31:ysiz#31:xpnt#15:ypnt#15:\

391 :andn30xfffeffff,oxfffeffff, Oxfffeffff,oxfffeffff,\
392 Oxfffeffff,0xfffeffff,Oxfffeffff,oxfffeffff,\
393 Oxfffeffff,onfffeffff, Oxfffeffff,oxfffeffff,\
394 Oxfffeffff,0xfffeffff,oxfffeffff,01x00000001,\
395 Oxfffeffff, 0nfffeffff,oxfffeffff oxfffeffff,\
396 Oxfffeffff,oxfffeffff,oxfffeffff,oxfffeffff,\
397 Oxfffeffff, Oxfffeffff,oxfffeffff,oxfffeffff,\
398 Oxfffeffff,Oxfffeffff, oxfffeffff,onffffffff\
399 :orma#s,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

400

401 - Note that all values which are not specified are guaranteed to be
402 1ero.

403

404

405 3.1.5  Header

406 zzzzzIz

407

402 The header data item gives the data for a window header. Every
409 keyword has a corresponding member or flag in the headstruc structure
410 (see the documentation for the window handler).

411

412 Keyword Description

413

414 head= {h_hdr[]) The header string.

415 invh (H_INVHD) Invert the window header.

416 invt {(H_INVT) Invert the top window header.

417

418 The following is an example of the header ' MY PROGRAM ':

419

420 header17:head= MY PROGRAM :invt

421

422

423 3.1.6 Directory

424 zozzzzzos

425

426 To specify the directory pathname fusr/sven/bin, use the line:
427

428 directory4:/usr/sven/bin

429

430

431 3.1.7 Environ, penviron, and lenviron

432 ededddedodeddedfedeeeefodeefefebegoeodefai=fegeted

433

434 These data items specifies how the environment for the program



Jul 29 16:09 1935 wshpp.doc Page 8

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
435
486
437
488
489
490
491
492
493
494
495
496

shall be modified before it is executed by wsh. If the specified
environsent variable already exist, the old one is replaced. Otherwise
the environment variable is added to the environsent list.

To specify PATH to be 'fusr/mydir/bin’ and TERM to be 'vt100', use

the line:

environ3:PATH=fusr/aydir /bin, TERM=vt100
By modifying the environment it is possible to tell prograas, which
uses termcap, the size of the virtual screen. If the size of the
virtual screen is 132 columns times 33 lines, use:

environ7:TERM-win, TERMCAP=w0{winiw:co$132:1i833:tc-abc1600u:

'abc1600w’ is an entry in the termcap file which should be used for
this purpose only.

The syntax for penviron and lenviron is equivalent.

3.1.8 Command

To specify the 'ls -1’ command, use the line:
command!:/bin/ls,ls,-1

'[bin/ls’ is the file name, 'ls’ is argument 0, '-1' is argument 1.

The flags data item gives the data for new window flags. Every
keyword has a corresponding flag in the flgstruc structure {see the
window handler documentation).

Keyword Description
lock {Lock) See the description of the window data itee.
novr (NOOVER)
neur {NOCURSOR)
naov (NOMOVE)
alls (ALLSCR)
kscr {XEYSCROLL)
Wscr (WRITSCROLL)
ncpi (NOCPIN)
ncpo (NocPouT)
rule (REL_ULC)
rurc (REL_URC)
rlle (REL_LLC)
rlre (REL_LRC)

The following example can be used to set the LOCK flag for the window
in the example in section 3.1.1:

flags5é:lock

3.1.10 Zoomlist



Jul 29 16:09 1985 wshpp.doc Page 9

497
498
499
500
501
502
503
504
305
306

507
508

509
510
511
512
313
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
953
554
555
556
557
558

The zoomlist data item gives the data for a zoom list. Every keyword
has a corresponding member or flag in the zoomlst structure (see the
documentation for the window handler).

Keyword
plst:
11st=

pmod
1rod

Description

{zp_list[]) The set of fonts to be used in portrait
node.
(21_list[]) The set of fonts to be used in landscape
mode.

(Z_PHODE‘ Portrait mode list given.
{Z_LMODE) Landscape mode list given.

The following is an example of a zoom list (only data for portrait
mode is given) which will make it possible to toggle between the
window's default font and the font F:

1008list7:plst=F:pmod

3.1.11 Substitute

The substitute data item gives the data for a set of mouse substitute
keys. Every keyword has a corresponding member in the substit
structure (see the window handler documentation).

Keyword

inith

onof#

mpupd
ppdo#
ppled
pprit
ppul#
spurd
npdl#
ppdri
Ipup#
1pdot
Iplet
lpris
lpult

lpurg
lpdl#
1pdr#
pcadd
cwing
ntxtd

step#

Description

{c_initflg) Flag indicating if the substitute keys are
enabled or not after the set up {1 if enabled, 0 if
not).

{c_keys[S_ONOFF]) Key used to toggle the substitute
keys on or off.

(c_keys[S_MPU]) Move mouse pointer up.
(c_keys[S_MPD]) Move mouse pointer down.
{c_keys[S_MPL]) Move mouse pointer left.
{c_keys[S_MPR]) Move mouse pointer right.
{c_keys[S_MPUL]) Move mouse pointer up - left.
{c_keys[S_MPUR]) Move mouse pointer up - right.
{c_keys[S_MPDL]) Move mouse pointer down - left.
{c_keys[S_MPDR]) Move mouse pointer down - right.
{c_keys[S_LMPU]) Move mouse pointer up a long step.
(c_keys[S_LMPD]) Move mouse pointer down a long step.
{c_keys[S_LMPL]) Move mouse pointer left a long step.
(c_keys[S_LMPR]) Move mouse pointer right a long step.
{c_keys[S_LMPUL]) Move mouse pointer up - left a long
step.

{c_keys[S_LMPUR]) Move mouse pointer up - right a long
step.

{c_keys[S_LMPDL]) Move mouse pointer down - left a
long step.

{c_keys[S_LMPDR]) Move mouse pointer down - right a
long step.

{c_keys[S_PCMD]) Replacement for the left mouse
button.

{c_keys[S_CHWIN]) Replacemet for the right mouse
button.

{c_keys[S_MCA]) Replacement for the middle mouse
button.

(c_step) Step length for a normal move of the mouse
pointer.



Jul 29 16:09 1985 wshpp.doc Page 10

559
560
561
562
563
564
965
S66
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
592
583
594
585
586
587
588
589
590
591
592
393
594
593
596
597
598
599
600
601
602
603
604
605
606
607
A

£11
612
613
614
615
616
617
618
619
620

Istp {c_lstep) Step length for a long move of the mouse
pointer.

The following is an exeaple of the set up of the mouse substitute
keys:

substitutel:init#0:onof30xfe:apup#Oxal:mpdod0xa3:mple#dxac:\
:mpri¥0xad:apul#0xad:mpur80xa5:apd1#0xaf: mpdri0xa?:
:1pup#0xb1: 1pdo#0xb3:1plesOxbe: 1pri#0xba: lpul#0xbd:\
:1pur#0xbS: 1pd1#0xbf : 1pdr80xb7:pcad#Oxcc: cwindOxce:\
:atxt80xcd:step#d: 1stpsl0

3.1.12 Background

The background data item gives the data for a background pattern.
The keyword has a corresponding member in the chbgstruc structure
(see the docusentation for the window handler).

Keyword Description

bmap¥ (ch_bitmap) The bit pattern of a 16 x 16 pixels area
representing the pattern. The 16 elements shall be
separated by cosmas.

The following is an example of a white backaround pattern:

background2:baap#0xffff,Oxffff,oxffff,0xffff,\
OxfFFf,Oxfeff,Oxffff, OxFFff,\
Oxffff,oxffff, Oxffff,oxffff,\
Oxffff,OxfFff,OxfEff,OxfFff

Note that all values which are not specified are guaranteed to be
18r9.

3.2 Action Items

The description of an action item consists of its name, which is the
name of the item in most cases followed by a number. A colon separates
the name from the description part, which consists of data items,
action items, or in some cases some special actions.

3.2.1  Init

The init action consists of a list of actions to be performed upon
initialization. They are executed in the specified order. The
fsllowing things can be specified to he performed on initialization:

Ttem Description

substitute  The keys used as substitute for the mouse. No keys
will be set up if substitute is not present.

background A new background pattern. The default pattern is used
if no background is present.

pointer The layout of the global mouse pointer. If no pointer
is specified, the default mouse pointer is used.

terminal Open a terminal window with a program running in it.



Jul 29 16:09 1935 wshpp.doc Page 11

621
622
623
624
625
£26
627
629
629
630

631
632

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682

feny The starting menu window. This must be specified.

inverse Set the screen to inverse video. This is a special
action and no number shall be given.

norsal Set the screen to normal video. This is a special

action and no number shall be given.

Only one init action can be specified and therefore no init nusber
shall be given.
An example:

init:substitutel:menu3

3.2.2  Menu

The menu action describes a menu window, a pull down menu, etc.
The following things can be specified:

Iten Description

window Data for the window to be used as menu. If the window
already is open, wsh checks if the window already
contains the desired strings and icons, and if so
these are not set up once more. However if the
contents is new, the new icons are set up and the new
strings are displayed. One and only one window must
be specified.

header The header of the menu window. The header is optional.

choice Describes the choices which it is possible to make
from this menu. If no action is specified, at least
one choice must be specified.

action The specified action will be executed directly without
waiting for a choice from the mouse. If any choices
have been given, they are ignored.

string Text and graphic contents of the menu window.
pstring Text and graphic contents of the menu window.
Istring Text and graphic contents of the menu window.
pointer The layout of the mouse pointer when it points into

this menu. If no pointer is specified, the global
mouse pointer is used. The 'amsp’ flag for the genu
window must be set to make it possible to set up a
private mouse pointer.

An example:
menu5:windowll:choice20:choice?l:choice22:pstringl3:Istringl3

If both an action and choices are given, a warning message is issued.

3.2.3  Choice

The choice action connects an icon with the actions to be performed
when that icon is chosen. The following two things must be specified
in a choice:

Item Description

icon The icon.
action The actions to be performed when the above icon is



Jul 29 16:09 1985 wshpp.doc Page 12

683
684
685
636
687
638
689
690
691
692
693
694
£95
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

chosen.
An exasmple:

choice9:icon7:actionl?

The action consists of a list of actions to be performed. The actions
will be executed in the same order as they are specified. The
following items may be specified in the list:

Iten Description
flags New window flags for the current menu window.

substitute  Set new mouse substitute keys.
background  Set up a new background pattern.

pointer Set up a new global mouse pointer.
terminal Open a terminal window with a program running in it.
fmeny 6o to the specified menu.

The following special actions may be specified inm an action list
{no number shall be specified after these special actions):

Special action Description

tlose Close the current menu window.

restore Restore the screen.

inverse Set the screen to inverse video.

normal Set the screen to normal video.

top Move the current menu window to the top level.
turn Turn the screen.

logout Log out. This will only work if there are not

any open terminal windows. Wsh takes care of
checking this.

At least one 'menu’ must be given. If several are given, @ warning is
issued. A warning also appears if a 'menu’ does not end the list (in
this case the actions after the 'menu’ will never be executed).

An example:

action18:flags5:terminall0:close:menu?

3.2.5 Terminal

The terminal action describes a window to be used to run a progras.
The following can be specified in a terminal description:

window Data for the window to be used as terminal. At most
one may be specified. If no window is specified, the
compand will be executed with '/dev/null' as standard
input, output, and error output.

header Optional header for the terminal window.
zoomlist Optional zoom list for the terminal window.
pointer Layout of the mouse pointer to be used when pointing

into the terminal window. If no pointer is specified,
the global mouse pointer is used instead. The ’aasp’
flag for the terminal window must be set to make it



Jul 29 16:09 1985 wshpp.doc Page 13

745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
oo
801
802
803
804
805
806

possible to set up a private mouse pointer.

icon Optional icons to be set up before the execution
of the prograa starts.

string Optional strings to be written to the terainal window
before the execution of the program starts.

pstring As above.

Istring As above.

directory An optional directory to move to before the execution
of the program starts. If no directory is specified,
the current directory for the program when it starts

?ill be the same as the one where wsh were started
rom.

super If present, the "super” channel will be open as file
descriptor 3 in the program. This is a special action
and no number shall be given.

wait Causes wsh to wait for the command to finish. This is
a special action and no number shall be given.

environ Optional modification of the environment.

penviron As above, but only for portrait mode.

lenviron As above, but only for landscape mode.

coamand Specifies the program to be executed in the terminal
window.

An example:

terminall5:window7:header7:pstring5:pstringé: Istring5:1stringé:\
:directoryll:environ3:environd:penviron3: lenvirons:\
:copmand?3

3.3 More about the Format

The number of all the numbered items must be an integer greater than
or equal to one.

All lines starting with a '#’ character are supposed to be comments
and ignored.

All the data and action items may be given in any order.

4. Writing Single Structures to File

To output, for example, a single window structure {winstruc) to a
file, the '-x’ option is used.

Suppose we have a text file - menu.wd - which contains a description
of a window named window3. The command

wshpp senu.wd -x window3 win3

will write the window data structure described by window3 to the file
win3. All the remaining data in the input file is ignored.

The following data items can be extracted and written to a file in
this way:

window
header
icon
pointer
flags
zo0mlist
substitute



Jul 29 16:09 1985 wshpp.doc Page 14

807 background



Jul 15 11:04 1985 wsh.doc Page |

[==R I = N 2 B 2

Oy o N N WD WL B e B o B I o B oo B G N G SN G N G SN G N RO T PO P PO P RO RN PO PO R s bt e e [ [y .
I\)o—«O\aOO\‘a\mbul\)b—-c\om*-Jcr.u'!-D-an—-c\ooa\jmmbuwg——ﬁ-@m\jmmhuwiaéxom\la\m.;ush‘cxa

1985-07-07
Peter Andersson
Luxor Datorer AB

THE WINDOW SHELL - WSH

1. Introduction

The window shell - wsh - is an interface between the user and the
ABC1600 window handler. To know what to do, wsh starts by reading a
data file. This file is created by the window shell preprocessor -
wshpp. The documentation for wshpp covers most of the things
concerning wsh, so this documentation just describes the syntax of
wsh and gives some notes of how wsh behaves in different situations.

2. Command Syntax and Start Up

The syntax of wsh is:
wsh [-n] [(file)]

(file) is the input data file. If it is not specified, wsh tries to
read the file ’.window’ in the current directory, and if this fails
it finally tries to read the file '/etc/.window’.

Normally wsh (after reading the data file) activates the window
handler. The '-n’ option tells wsh not to do this. In this case wsh
assumes that the window handler already has been activated and that
the file descriptor for the window handler “super channel® is 3.

This can be used together with the 'wait' and ’super' special actions
(see the documentation for wshpp) to start "sub-window shells".

If wsh is started from another terminal than the console or froam a
window, the ordinary shell - sh - is executed instead.

Error messages from wsh are by default in english. However if the
environment variable LANGUAGE is set to 'swedish’, all error messages
are displayed in swedish instead.

3. Some Notes of the Behaviour of Wsh

- When wsh are going to get a command from a menu window it first
checks if the window is already open {if not wsh opens it). Then
it is checked that the contents (header, strings, and icons) is
the desired and if not the old header and icons are removed and
the new header and icons are set up and the specified strings are
written to the menu window.

- Wsh automatically sets up a redraw signal (’rsig’) for all menu
windows which have not the 'stxt’ flag set and takes care of
redrawing them when necessary. If the ’stxt’ flag is set, wsh sets
'rsig’ to 0 and supposes the window handler to take care of the
redrawing of the window. Note that because wsh manipulates 'rsig’
for menu windows, the same window data description should not be
used both for menu and terminal windows.

- There is no need to specify the character sequence {’cseq’) to be
sent by the icon for icons used in menu windows as wsh uses its own
sequences. As for window data, the same icon data description

-



Jul 15 11:04 1985 wsh.doc Page 2

63
64
65
66
67
62
69
70
71
72
73
74
75

74
77
78
79
80

2t

82
83
94
5
26
87
as
89
90
91
92
93
94
95
%6
97
98
99
100
101
102
103
104
105

should not be used both for menu and terminal icons.

'tsig’ and 'nsig’ are always set to 0 and the 'chox’ flag is
cleared for menu windows. The reason is that wsh can not handle
these things.

The cursors are not moved to their home positions and the window

is not cleared before the specified strings are displayed in a
window. These things must, if necessary, be included in the
strings. Be especially careful with strings which must be rewritten
by wsh to update menu windows.

Strings are always written in the specifisd order.

11 terminal windows are set up as controlling terminals, i.e.
"[dev/tty’ refers to the window.

The processes running in different terminal windows belongs to
different process groups.

Only file descriptors 0, 1, and 2 {standard input, output, and
error output) and sometimes 3 (the "super channel®) are open when
the command specified in a terminal description is executed.

When the command in a terminal description is executed, all signals
are set to default except those signals specified by 'tsig’,
'nsig’, 'rsig’, and ’csig’ which are ignored.

The current directory for wsh is always the directory where it was
started from. Terminals will initially have the same current
directory if no 'directory’ is specified.

The command specified in terminals can be shell scripts and wsh
automatically searches for the command in all the directories
specified by the PATH environment variable.

When handling the 'turn’ special action, wsh checks that there

are no windows open, except for menu windows. If not, all menu
windows are closed and the window shell executes the 'init’ action
in the new screen mode.

When handling the 'logout’ special action, wsh ignores it if there
are any windows open, except for menu windows.



Aug 5 18:37 1985 window_hnd.doc Page !

SO B N RO

<o

11
12
13
14
15
16
17
18
19
20
21
22

4

23
24
25
26
27
29
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

1985-07-29, Peter Andersson, Luxor Datorer AB

ABC1600 WINDOW HANDLER

The ABC1600 Window Handler is, as indicated by the name, implemented
as a handler under ABCenix and has special calls to open new windows,
move windows around, return the status of a window, remove windows,
etc. It also automatically takes care of things like:

- Moving and altering sizes of windows, using a mouse.

- Convert pointing to a specified area inside a window to a
command sequence (e.g. pointing to icon’s).

- Moving text between windows.

1. The Model

When several windows are present on the screen each of them is thought
of as being at 2 certain level. The window on the top is at level 0
and it receives all the input from the keyboard. All the other windows
are at lower levels; the window one step from the top is at level 1
and so forth.

To switch to another window (i.e. attach the input from the keyboard
to another window), that window must be put at level 0. When this is
done, all windows previously at higher levels than the new level 0
window are moved one level down. The level 0 window can also be moved
to the bottom, making all other windows moving one level up.

The output from the processes connected to a certain window are always
sent to that window, regardless of if it is at level 0 or not.

Each window emulates a DEC VT100 terminal augmented by ABC1400 private
escape sequences. The ABC1600 private escape sequences are compatible
with or similar to their counterparts in the ABC1600 terminal
emulator. See wh_escapes.doc for further details regarding the escape
sequences.

2. Starting and Terminating the Window Handler

The window handler is started by giving the command:
Jusr [window/whgo

This is a start-up program, usually started by the rc script, which
mounts itself on the 'fwin’ directory and waits in the background
until the window handler is activated. This is done with an open
request, which in C can look like:

fd = open("/winfactivate", 2);

The file descriptor returned (greater than or equal to zero if no
errors) can later be used to disactivate the handler and also to issue
some special requests to it.

On activation of the window handler, 'whgo' performs some
initializations and then executes a portrait or landscape mode version
of the handler, depending on the direction of the screen.

A close request is used to disactivate the window handler:

close(fd);



Aug 5 18:37 1985 window_hnd.doc Page 2

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
30
81
32
83
84
85
86
87
88
29
90
91
92
93
94
25
9%
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

When the handler receives this request it sends hangup signals to all

processes in the windows, resets the screen, and then executes 'whgo'

again.

The terminate signal will terminate the window handler in a controlled
manner witout executing 'whgo’.

3. Opening Windows

When the window handler has been activated, windows can be opened by
issuing an open request to the handler:

fd - open("/win", 2);

This will not create a window on the screen, it just tells the handler
to allocate space for a new window. The returned value - 'fd’ - is
greater than or equal to zero if the open was successful and is used
to write to, read from, send I/0 control requests to, and close the
window.

To acctually create the window on the screen, the Wincreat request is
used (see below).

4. Closing Windows

To close a window, a close request shall be sent to the handler with
the file descriptor obtained when the window was opened:

close(fd);

This will cause the handler to remove the window from the screen.

5. Write to and Read from Windows

To write to a window the standard write system call can be used with
the file descriptor obtained when the window was opened:

write(fd, bp, be);

To read from (through) a window, i.e. get input from the keyboard, the
read system call can be used:

ent = read(fd, bp, bc);

6. Window Requests

The following is a description of all the requests which are
implemented to manipulate the windows from other processes.

They are all macros, and the definitions of them can be found in the
file (winfw_macros.h). The constant definitions can be found in
{win/w_const.h}, the structure declarations in (win/w_structs.h), and
new variable type declarations can be found in (win/w_types.h}.

The requests returns a negative value if they fail.

The unions included in most of the structures below are reserved for
future use. To guarantee compatibility with future versions, the



Aug 5 18:37 1985 window_hnd.doc Page 3

125 member of the union must be zero.

126

127

128 6.1 Create Window

129 Sszz=zzzzzoe:z

130

131 To create a window the following request is used:
132

133 Wincreat{fd, bp);

134 int - fd;

135 struct winstruc *bp;

136

137 'fd’ is the file descriptor obtained from the open request and the
138 structure winstruc looks like:

139

140 typedef short pix_d;
141 typedef short cur_d;
142 typedef char  sint;
143 typedef unsigned short word;
144 typedef unsigned long uflags;
145

146 struct winstruc

147 {

148 pix_d wp_xorig;

149 pix_d wl_xorig;

150 pix_d wp_yorig;

151 pix_d wl_yorig;

152 pix_d wp_xsize;

153 pix_d wl_size;

154 pix_d wp_ysize;

155 pix_.d wl_ysize;

156 pix_d wp_vxorig;
157 pix_d wl_vxorig;
158 pix_d wp_vyorig;
159 pix_d wl_vyorig;
160 pix_d wp_vxsize;
161 pix.d wl_vysize;
162 pix_d wp_vysize;
163 pix_d wl_vysize;
164 short w_color;

165 sint  w_border;

166 char  wp_font;

167 char  wl_font;

168 char  w_curfont;
169 sint  w_level;

170 sint  w_uboxes;

171 cur_d  wW_xcur;

172 cur_d  w_ycur;

173 pix_d w_xgcur;

174 pix_d wW_ygcur;

175 sint  w_tsig;

176 sint  w_ntsig;

177 sint  w_rsig;

178 sint  w_csig;

179 word  w_boxes;

180 uflags w_flags;

181 sint  w_rstat;

182 union

183 {

184 long  w_xxx;
185 } w_pad;

186 h



Aug 5 18:37 1985 window_hnd.doc Page 4

187
188
189
190
191
192
193
194
195
196

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

The meaning of the structure asembers are:

Wp_xorig

wl_xorig

Wp_yorig

wl_yorig

Wp_xsize

wl_xsize

Wp_ysize

wl_ysize

Wp_vxorig

Wl _vxorig

Wp_vyorig

ul_vyorig
Wp_vxsize
ul_vxsize
Wp_vysize
wl_vysize
W_color

w_border

The x coordinate of the lower left corner of the
virtual screen relative to the lower left corner of
the screen. The coordinates are expressed in terms of
pixels. If the lower left corner is to the left of the
lower left corner of the screen, this value is
negative. This coordinate is used in portrait mode.

As 'wp_xorig’, but used in landscape mode.

The v coordinate of the lower left corner of the
virtual screen in portrait mode.

As 'wp_yorig’, but used in landscape mode.

The horizontal size of the virtual screen expressed in
pixels in portrait sode.

As 'wp_xsize', but used in landscape mode.

The vertical size of the virtual screen expressed in
pixels in portrait mode.

As 'wp_ysize', but used in landscape mode.

The x coordinate of the lower left cormer of the
window (excluding the border) relative to the lower
left corner of the virtual screen in portrait eode.

As 'wp_vxorig®, but used in landscape mode.

The v coordinate of the lower left corner of the
window in portrait mode.

As 'wp_vyorig’, but used in landscape mode.

The horizontal size of the window in portrait mode.
As 'wp_vxsize’, but used in landscape mode.

The vertical size of the window in portrait mode.
As 'wp_vysize’, but used in landscape mode.
Background colour in the window (BLACK or WHITE).

The type of the border:

NOBORDER - No border.

SLBORDER - Single line border.

DLBORDER - Double lines border.

DSSSBORD - The left side is a double lines border and
the rest of the sides are single line
borders.

SDSSBORD - The right side is a double lines border and
the rest of the sides are single line
borders.

SSDSBORD - The upper side is a double lines border and
the rest of the sides are single line
borders.

SSSDBORD - The lower side is a double lines border and



Aug 5 18:37 1985 window_hnd.doc Page 5

249
250
251
252
253
254
255
256
257
258

259
260

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
298
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

up_font

wl_font
w_curfont

W_level

W_uboxes

H_xcur

W_ycur

W_xgeur

W_ygeur

W_tsig

the rest of the sides are single line
borders.

DDSSBORD - The left and right sides are double lines
borders and the upper and lower sides are
single line borders.

DSDSBORD - The left and upper sides are double lines
borders and the right and lower sides are
single line borders.

DSSDBORD - The left and lower sides are double lines
borders and the right and upper sides are

single line borders. .
SDDSBORD - The right and upper sides are double lines

borders and the left and lower sides are
single line borders.

SDSDBORD - The right and lower sides are double lines
borders and the left and upper sides are
single line borders.

SSDDBORD - The upper and lower sides are double lines
borders and the left and right sides are
single line borders.

DDDSBORD - The lower side is a single line border and
the rest are double lines borders.

DDSDBORD - The upper side is a single line border and
the rest are double lines borders.

DSDDBORD - The right side is a single line border and
the rest are double lines borders.

SDDDBORD - The left side is a single line border and
the rest are double lines borders.

The initial font in portrait mode. The font can be in
the range 'A’ - '7°.

As 'wp_font’, but used in landscape mode.
The currently used font.

The level of the window. A newly created window will
be on level 0 if it is not a special and not a child
window, and on the lowest level if it is a special
window (see the SPECIAL flag), and on the top level
of its window group if it is a child window.

The maximal nuaber of user defined boxes allowed (see
the Winubox() request). The value of this member is
significant only if the BX_USER flag in 'w_boxes' is
set (to be compatible with older versions of the
window handler, it was done in this way). If BX_USER
is not set, this value is assumed to be zero.

x coordinate for the text cursor position. This is
only used to return the initial position of the
cursor, which is the upper left corner of the window.
y coordinate for the text cursor position.

x coordinate for the graphic cursor. This one is
only used to return the initial position (which is
the lower left corner of the window).

y coordinate for the graphic cursor.

The signal to be sent to the processes in the window



Aug 5 18:37 1985 window_hnd.doc Page &

311
312
313
314
315
ML
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
338
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

W_ntsig

W_i'sig

W_csig

w_boxes

w_flags

when it has moved to the top level (level zero). If
0, no signal will be sent.

As above, but signals are sent when the window moves
from the top level to a lower level.

The signal to be sent to the processes in the window
when the window has changed in some way. If 0, no
signal will be sent.

The signal to be sent to the processes in the window
when the close box in the border is used. If 0, no

signal is sent, instead all requests to this window
will be terminated with bad status.

Contains flags indicating which boxes shall be present
in the border:

BX_HSCR - Scroll left and right boxes and the
horizontal visible indicator shall be
present in the border.

BX_YSCR - Scroll up and down boxes and the vertical
visible indicator shall be present in the
border.

BX_CLOS - The close box shall be present in the
border.

BX_SIZE - The size box shall be present in the border.

BX_MOVE - The move box shall be present in the border.

BX_Z00M - The zoom box shall be present in the border.

BX_AVIS - The scroll boxes and the horizontal and
vertical visible indicators are only visible
if the whole virtual screen is not visible.

BX_BLOW - The "blow up" box shall be present in the
border (see the Windflsz{) request).

BX_HELP - The help box shall be present in the border
(see the Winhelp() request).

BX_USER - Indicates that the value of the 'w_uboxes’
pember is significant.

Contains some flags:

PHODE - Indicates that coordinates have been
given for portrait mode.
LMODE - Indicates that coordinates have been

given for landscape mode.

SAVETEXT - Save the text contents of the virtual
screen.

SAVEBITMAP - Save the bitmap contents of the virtual
screen {virtual bitmap) (reserved for
future use).

OVERLAP - The window is overlapped flag.

LOCK - The window is locked on the highest level
(level 0).
NOOVER - The window must not be overlapped by

another window.

NOCURSOR - Cursor not visible.

NOMOVE - The window must not be moved or change
size.

ALLSCR ~ The window must be the whole virtual
screen. ‘

SPECIAL - A special window will be added on the
lowest level. Special windows are always



Aug 5 18:37 1985 window_hnd.doc Page 7

373 on lower levels than non-special windows
374 and their level does not change when the
375 level of other windows are changed. They
376 can for example be used as menu windows.
377 KEYSCROLL - Every time a key is pressed it is checked
378 if the whole cursor is visible and if not
379 the window is scrolled.

380 WRITSCROLL - After each write request to the window,
381 it is checked if the whole cursor is

382 visible and if not the window is

383 scrolled.

384 ALTHMPNT Allocate space to store a mouse pointer
385 which is used when we point to this

386 window. Initially the mouse pointer will
387 be the same as the global pointer.

388 See the Winchmpnt() request.

389 RELATIVE The coordinates 'w_xorig’ and w_yorig’
390 are supposed to be relative to the lower
391 left corner of the parent in this window
392 group {see section 8).

393 NOCPIN Makes it impossible to copy text into
394 this window using the text copy facility
395 of the window handler.

396 NOCPOUT Makes it impossible to copy text from
397 this window using the text copy facility
398 of the window handler. Instead the status
399 of the middle mouse button is reported on
400 mouse position reports. Note that the
401 piddle button is only reported if this
402 flag is set.

403 TXTSIZE The 'wp_xsize’, 'wl_xsize', 'wp_ysize’,
404 'wl_ysize', "wp_vxorig', 'wl_vxorig’,
405 'wp_vyorig’, 'wl_vyorig’, wp_vxsize’,
406 "wl_vysize®’, 'wp_vysize', and 'wl_vysize’
407 meabers are supposed to be given in ters
408 of characters instead of pixels.

409 Note that in this case 'wp_vxorig',

410 'wl_vxorig’, 'wp_vyorig', and 'wl_vyorig’
411 nust be given relative to the upper left
412 corner of the virtual screen.

413 WGROUP This window shall belong to a window

414 group (see section 8).

415 REL_ULC This window shall follow its parent

416 window relative the upper left corner
417 of the parent (this flag has no effect
418 if the window is not a child window).
419 REL_URC This window shall follow its parent

420 window relative the upper right corner
421 of the parent (this flag has no effect
422 if the window is not a child window).
423 REL_LLC This window shall follow its parent

424 window relative the lower left corner
425 of the parent (this flag has no effect
426 if the window is not a child window).
427 REL_LRC This window shall follow its parent

428 window relative the lower right corner
429 of the parent (this flag has no effect
430 if the window is not a child window).
431

432 Note that at most one of the flags REL_ULC, REL_URC,
433 REL_LLC, or REL_LRC may be set.

434 All these flags are single bits in the flags word.



Aug 5 18:37 1985 window_hnd.doc Page 8

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
430
481
482
483
484
485
486
437
498
489
490
491
492
493
494
495
496

0f these only the OVERLAP flag is non-significant when
creating a window.

All the remaining bits should be zero to guarantee
compatibility with future versions.

w_rstat Return status:

W_0K - 0.

WE_ILPARA - an illegal parameter was specified.

WE_LORO - the window can not be created because of
another window with the NOOVER or LOCK
flag set.

WE_ALRCR - the window has already been created.
WE_ALLSCR - the whole virtual screen is not visible
and the ALLSCR flag is set.

WE_NOMEM - enough memory does not resain to create
the windou.

WE_FATHER - the window has the RELATIVE flag set, but
there is no parent window.

WE_ILMOD - the coordinates for the current screen
mode has not been given, e.g. the screen
is in landscape mode and the LMODE flag
is not set.

WE_NOFONT - the specified default font can not be
loaded.

0f the above mesbers, only the following are used when a window is
created:

wp_xorig or wl_xorig, wp_yorig or wl_yorig, wp_xsize or
wl_xsize, wp_ysize or wl_ysize, wp_vxorig or wl_vxorig,
wp_vyorig or wl_vyorig, wp_vxsize or wl_vysize, wp_vysize

or wl_vysize, w_color, w_border, wp_font or wl_font, w_tsig,
W_ntsig, w_rsig, w_csig, w_boxes, w_flags

On exit the values of these members remains the same, except for some
adjustments that may occur in order to make the window fit, etc.
The other members have on exit received their initial values.

6.2 Move Window to Level Zero

The level zero window is the window that receives the keyboard input.
The request

Winlevel(fd, bp)
int fd;
struct winlevel *bp;

is used to move a window which does not belong to a window group to
the zero level. If the window indicated by 'fd’ belongs to a window
group, the whole group is moved to the top without altering the
relative levels inside the group.

The winlevel structure locks like:

typedef char  sint;

struct winlevel

{
sint  1_rstat;
union

{



Aug 5 18:37 1985 window_hnd.doc Page 9

497
498
499
500
501
502
503
504
505
506

507
508

509
510
511
512
513
514
315
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
940
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558

long  I_xxx;
} 1_pad;
h

where '1_rstat’ is the return status:

W_0K - everything is well.

WE_NOTCR - the window has not been created yet.

WE_SPECIAL - the window can not be moved to the top because
it is a special window.

WE_LORO - the level can not be changed because of another
window with the LOCK or NOOVER flags set.

6.3 ¥ove Window to the Top Level of its Window Group

To move a window, belonging to a window group, to the top level of the
group, use the request:

Winllev(fd, bp)
int fd;
struct winlevel *bp;

'fd’ is the file descriptor for the window and the winlevel structure
was described in section 6.2.

6.4 Alter a Window

To alter the size, position, etc. of a window, the request

Winalter(fd, bp);
int fd;
struct winstruc *bp;

is used. If the window is a parent of a window group, all the
children are also moved according to the flags REL_ULC, REL_URC,
REL_LLC, and REL_LRC. If none of these flags are set for a child
window, the child is not moved.

The winstruc structure was described in section 6.1. On entry to this
request, the following structure member values are significant:

wp_xorig or wl_xorig, wp_yorig or wl_yorig, wp_vxorig or
wl_vxorig, wp_vyorig or wl_vyorig, wp_visize or wl_visize,
Wp_vysize or wl_vysize

Further the PMODE and LMODE flags in 'w_flags’ are used to check that
the data is relevant and if the TXTSIZE flag is set, the coordinates
and sizes are interpreted in units of characters. The size of the
current default font is used.

The remaining parameters can not be changed using this request, but
the current values of them are returned.

'w_rstat’ is the return status:

W_0K - all is well.

WE_NOTCR - the window has not been created yet.

WE_ILPARA - an illegal parameter value was used.

WE_LORO - the window can not be altered because of another
window with the LOCK or NOOVER flags set.

WE_ALLSCR - the whole virtual screen will not be visible and



Aug 5 18:37 1985 window_hnd.doc Page 10

559
560
561
562
563
564
565
566
567
968
569
570
571
572
573
574
578
576
577
578
579
580
581
582
583
594
585
586
587
598
589
590
591
592
593
594
595
396
597
598
599
600
601
602
603
604
605
606
607
608
© 609
610
611
612
613
614
615
616
617
618
619
620

the ALLSCR flag for the window is set.
WE_NOMOVE - it is not allowed to change the location or the

size of the window (the NOMOVE flag is set).
WE_ILMOD - data for the current screen mode is not present.

6.5 Alter a Window without Affecting Child Windows

This request is identical to the Winalter() request, except that if
the specified window is a parent of a window group, its child windows
are not moved.

The request is:

Winlalter(fd, bp)
int fd:
struct winstruc *bp;

6.6 Set up Default Size and Location for a Window

When the "blow up" box is used the size and location of the window
toggles between the default size and location and the size and
location it had before it was altered to the default.

When a window is created, its initial default size and location will
be the same as the initial size and location of the window.

When the default font is changed, the default size and location will
be set to the sase as the size and location of the window after the
default font has been changed.

To set up another default size and location, use the request:

Windflsz{fd, bp)
int fd;
struct winstruc *bp;

The winstruc structure was described in section 6.1. On entry to this
request the following structure members are significant:

wp_xorig or wl_xorig, wp_yorig or wl_yorig, wp_vxorig or
wl_vxorig, wp_vyorig or wl_vyorig, wp_visize or wl_vxsize,
wp_vysize or wl_vysize

Further the PMODE and LMODE flags in 'w_flags’ are used to check that
the data is relevant and if the TXTSIZE flag is set the coordinates
and sizes are interpreted in units of characters. The size of the
current default font is used.

The return status - 'w_rstat’ - is:

W_0K - all is well.

WE_NOTCR - the window has not been created yet.
WE_ILMOD - data for the current screen mode is missing.
WE_ILPARA - an illegal value was specified.

6.7 Alter Window Flags

To alter the flags in the 'w_flags’ word for a window, use the
request:

Winflags(fd, bp);



Aug 5 18:37 1985 window_hnd.doc Page 1l

621
622
623
624
625
626
627
628
629
630
31
32
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
630
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
€73
674
675
676
677
678
679
680
631
682

int fd;
struct flgstruc *bp;

The flgstruc structure looks like:

typedef unsigned long  uflags;
typedef char  sint;

struct flgstruc
uflags f_flags;
sint  f_rstat;
union

{
long  f_xxx;
} f_pad;
h

'f_flags’ is the new flags for the window.

The following flags may be altered: LOCK, NOOVER, NOCURSOR, NOMOVE,
ALLSCR, KEYSCROLL, WRITSCROLL, NOCPIN, NOCPOUT, REL_ULC, REL_URC,
REL_LLC, and REL_LRC.

The following flags are ignored: PMODE, LMODE, SAVETEXT, SAVEBITMAP,
OVERLAP, SPECIAL, ALTMPNT, RELATIVE, TXTSIZE, and NGROUP.

The the bits not used in the flags word should be zero to guarantee
compatibility with future versions.

'f_rstat’ is the return status:

W_0K - everything is 0K.

WE_LORO - the flags can not be altered in this way because
the window is overlapped or it is not on the top
level.

WE_ALLSCR - the whole virtual screen is not visible and the
ALLSCR flag was set.

6.8 Get Window Status

To get the current status of a window, use the request

Winstat(fd, bp);
int fd;
struct winstruc *bp;

The winstruc structure was described in section 6.1.

On exit all the members are set to their current values. Only one of
portrait or landscape mode coordinates and font is returned,
depending on the mode of the screen. Which one is indicated by the
PMODE and LMODE flags.

The return status 'w_rstat’ is:

H_0K - all is well.
WE_NOTCR - the window has not been created yet.

6.9 Insert a Header in a Window Border

To insert a header, such as the program name, in the border of a
window, use the request



Aug 5 18:37 1985 window_hnd.doc Page 12

693
684
685
686
687
638
689
690
691
692
693
694
95
696
697
692
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

Winheader (fd, bp);
int fd;
struct headstruc *bp;
where the headstruc structure looks like:

typedef unsigned short word;

struct headstruc

{
char  h_hdr [HDRSIZE];
word  h_flags;
union
{
long  h_xxx;
} h_pad;
L

'h_hdr[]' is the header string, 'h_flags’ contains some flags:

H_INVHD - Invert the window header (relative the window
background).
H_INVTOP - Invert the top window header (relative H_INVHD).

The remaining bits should be zero to guarantee compatibility with
future versions.
Note that the header can be added before the window is created.

6.10  Icon Support

The window handler can automatically take care of decoding cosmands
given by first pointing to an icon, menu itea, etc. and then pressing
an appropriate key on the mouse or the keyboard.

The request

Winicon(fd, bp);
int fd;
struct winicon *bp;

is used to specify that when the pointer points inside a specified
area in the window, a specified code sequence shall be sent to the
calling process by putting it in the keyboard input buffer for the
window.

The winicon structure looks like:

typedef short pix_d;
typedef unsigned short word;
typedef char  sint;

struct winicon

{
pix_d ip_xorig;
pix_.d il xorig;
pix_d ip_yorig;
pix_.d il yorig;
pix_d ip_xsize;
pix_.d 1l xsize;
pix_d ip_ysize;
pix_d il _ysize;
char  1_cmdseq[ICONSEQLEN];



Aug 5 18:37 1985 window_hnd.doc Page 13

745
746
747
748
749
750
751
752
753
754

755
756

757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
738
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

word  i_flags;
sint  i_rstat;
union
{
long  i_xxx;
} i_pad;
|5

'ip_xorig’, 'il_vorig’ and 'ip_yorig', 'il_yorig' is the lower left
corner of the area relative to the lower left corner of the virtual
screen in portrait and landscape mode, respectively. 'ip_xsize',

‘il xsize’ and 'ip_ysize', 'il_ysize' is the width and height of the
area in portrait and landscape mode, respectively.

'i_cadseq[]’ is the sequence to be sent to the calling process (it
can be of zero length).

'i_flags' contains some flags indicating the type of icon and some
attributes:

1 _PMODE - Portrait mede coordinates are given.

I_LMODE - Landscape mode coordinates are given.

1_PRESS - Send the sequence when the mouse pointer points to
the area and the left button is pressed.

1_RELEASE - Send the sequence when the mouse pointer points to
the area and the left button is released.

1_INVERT - Invert the area occupied by the icon when the
pouse pointer is pointing to it.

1_ENTER - The sequence is sent when the mouse pointer moves
into the area. The area does not have to be
visible. The I_INVERT flag is ignored.

I_LEAVE - As I_ENTER but the sequence is sent when we leave

the area.

I_REMOVE - The icon is removed when the sequence has been
sent.

I_RAST - The sequence is sent only if there is a pending

read request to the window.

When I_ENTER and/or I_LEAVE is set, it is checked
if the mouse pointer is inside or outside,
respectively, the specified area, and if so the
sequence is sent immediately.

The sequence is sent only if it is the level zero
window.

The coordinates and sizes of the icon is supposed
to be given in term of characters instead of
pixels. Note that 'ip_xorig’ and 'ip_yorig’ or
'il_yorig’ and ’il_yorig’ in this case are inter-
preted as the character position relative the
upper left corner of the virtual screen.

when the default font is changed, the locations
and sizes of icons set up with this flag set are
adjusted.

I_SETCHK

I_LIERO

I_TEXT

The remaining bits should be zero to guarantee compatibility with
future versions.

Note that if no one of I_PRESS, I_RELEASE, I_ENTER, or I_LEAVE is
given, I _PRESS is assumed. I _ENTER and I_LEAVE overrides I_PRESS and
T_RELEASE.

The return status 'i_rstat’ is:
W_0K - everything is well.

WE_NOTCR - the window is not created yet.
WE_ILPARA - any of the input parameters are illegal.



Aug 5 18:37 1985 window_hnd.doc Page 14

807
208
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
31
832
833
834
835
836
837
838
39
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868

WE_NOICON - no memory left for the new icon.

WE_ONICON - the icon will come above another icon in the same
window.

WE_ILMOD - no coordinates are given for the current screen
node.

6.11  Remove Icon's

To remove all set up icon’s for a window, use the request:

Reicons{fd);
int fd;

6.12  Mouse Substitute Keys

To make it possible to use the window handler without a mouse, the
different functions supported by the mouse can be simulated by
function and other special keys on the ABC99 keyboard (these keys
generates codes with the most significant bit set).

To specify these keys, use the request:

Winmsub(fd, bp);

int fd;

struct substit *bp;
The file descriptor used must be the one obtained when the window
handler was activated (the first open request to the handler). The
structure substit looks like:

typedef char  sint;

struct substit

{
sint ¢_initflg;
unsigned char  c¢_keys[SUBSTKEYS];
unsigned char c¢_step;
unsigned char ¢_lstep;
union
{
long  c_xxx;
} c_pad;
L

The meaning of the different meabers are:

¢_initflg If ON the mouse simulation keys will be enabled after
this request. If OFF they will initially be disabled.

¢_keys[] The keys used as substitue for the mouse.
¢_step Step for normal mouse pointer move (no. of pixels).
¢_lstep Step for long mouse pointer move (no. of pixels).

The index for the different keys in the 'c_keys[]’ array are:

S_ONOFF The key used to toggle the mouse simulation keys onm or
of f. When off, the keys behaves as normal {except
'S_ONOFF').

S_MPU Move mouse pointer up.

S_MPD Move mouse pointer down.

S_MPL Hove mouse pointer left.



Aug 5 18:37 1985 window_hnd.doc Page 15

869
870
871
872
873
874
875
876
877
a7e

879
880

881
882
883
884
085
886
887
808
89
890
891
892
893
294
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
11
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930

S_HPR Move mouse pointer right.

S_MPUL Move mouse pointer up - left.

S_MPUR Move mouse pointer up - right.

S_MPDL Move mouse pointer down - left.

S_MPDR Move mouse pointer down - right.

S_LMPY Hove mouse pointer up long.

S_LMPD Hove mouse pointer down long.

S_LMPL Hove mouse pointer left long.

S_LMPR Move mouse pointer right long.

S_LMPUL Move mouse pointer up - left long.

S_LMPUR Move mouse pointer up - right long.

S_LMPDL Move mouse pointer down - left long.

S_LMPDR Move mouse pointer down - right long.

S_PCND Point to command key (replaces the left key on the
mouse).

S_CHWIN Change window level key (replaces the right key on the
mouse).

S_MCA Mark text area to copy (replaces the middle key on the
nouse).

Pressing and releasing a button on the mouse is replaced by pressing
the chosen keyboard key twice.

Note that no keys will be occupied by these keys if this request has
not been issued.

6.13  Alter the Background Pattern

To alter the pattern of the background, use the request:

Winchbg(fd, bp)
int fd;
struct chbgstruc *bp;

'fd' must be the file descriptor obtained when the window handler was
activated.
The chbgstruc structure looks like:

typedef unsigned short word;

struct chbastruc

{
word  cb_bitmap[BGPSIZE];
union
{
long  cb_xxx;
} c¢b_pad;
|8

‘cb_bitmap[]’ is the bit pattern of a 16 x BGPSIZE pixels area which
will be repeated all over the background.

Note that the most significant bit in a “word" is displayed to the
left on the screen.

6.14  Get the Visible Parts of a Window or the Background

To get the visible parts of a window or the background, use the
request:



Aug 5 18:37 1985 window_hnd.doc Page 16

931 Wingetvis(fd, bp, bc)

932 int fd;

933 struct buffer #*bp;

934 int be;

935

936 'fd' is the file descriptor for the window, or the file descriptor
937 obtained when the window handler was activated if the visible parts
938 of the background are desired.

939 'be’ is the size of the buffer structure.

940 The buffer structure looks like:

941

942 struct buffer

943 {

944 struct visdes v;

945 struct rectdes b[VSIZE];

946 k

947

948 The visdes structure is a parameter structure and looks like:

949

950 typedef char  sint;

951

952 struct visdes

953 {

954 short  v_nrect;

955 sint  v_rstat;

956 union

957 {

958 long  v_xxx;

959 } v_pad;

960 b

961

962 The rectdes structure describes one rectangle which the visible part
963 of the virtual screen or the background can be divided into:

964

965 typedef short pix_d;

966

967 struct rectdes

968 {

969 pix_d r_xorig;

970 pix_d r_yorig;

971 pix_.d r_xsize;

972 pix_d r_ysize;

973 |5

974

975 where 'r_xorig’ and 'r_yorig’ are the x and y coordinates respectively
976 of the lower left corner of the rectangle. 'r_xsize’ and ’r_ysize’ are
977 the width and height, respectively, of the rectangle.

978 When this request is executed the 'v_nrect’ member of visdes should
979 contain the number of rectdes structures (VSIZE) in the buffer

980 structure. The request returns the actual number of rectangles that
981 the virtual screen (or the background) can be divided into in

982 'v_nrect’.

983 'v_rstat’ is the return status:

934

985 W_0K - Ok

994 HE_HOTCR - The window has not been created yet.

097 NE_SPACE - Not enough space to hold the rectangles {i.e. VSIZE
938 is too small).

939

990

991 6.15  Inverse Video

992 Zzzzzzzzzzzzs



Aug 5 18:37 1985 window_hnd.doc Page 17

993

294

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1627
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

The request:

Winivideo(fd)
int fd;

changes the screen to inverse vides. 'fd’ must be the file descriptor
obtained when the window handler was activated.

6.16  Normal Video

The request:

Winnvideo(fd)
int fd;

restores the screen to normal video. 'fd' must be the file descriptor
obtained when the window handler was activated.

6.17  Make the Cursor Visible in the Window

To make the cursor visible in the window, use the request:

Wincurvis(fd)
int fd;

If the whole cursor is not visible, the window is scrolled.

6.12  Change Mouse Pointer

To change the layout of the mouse pointer, use the request:

Winchapnt(fd, bp)
int fd;
struct npstruc *bp;

If 'fd’ is the file descriptor obtained when the window handler was
activated, the global mouse pointer is altered. Otherwise the souse
pointer for the window indicated by the file descriptor is altered
{in this case, the ALTMPNT flag for the window must be set).

The npstruc structure looks like:

typedef short pix_d;
typedef unsigned long  dword;
typedef unsigned char  byte;
typedef char  sint;

struct npstruc

{
piv_d np_xsize;
pix_d np_ysize;
pix_.d np_xpnt;
pix_d np_ypnt;
dword  np_and[MPSIZE];
dword  np_or [MPSIZE];
byte  np_flags;



Aug 5 18:37 1985 window_hnd.doc Page 18

1055 sint  np_rstat;

1056 union

1057 {

1058 long  np_xxx;

1059 } np_pad;

1060 };

1061

1062 'np_xsize’ and 'np_ysize’ are the width and height, respectively, of
1063 the new mouse pointer. The maximal width is 32 pixels and the height
1064 MPSIZE pixels.

1065 'np_xpnt’ and 'np_ypnt’ are the pixel which is the pointing part of
1064 the mouse pointer. It shall be specified relative the upper left
1067 corner of the mouse pointer.

1068 'np_and[]’ and 'np_or[]’ are masks used to construct the mouse

1069 pointer.

1070 Each pixel row of the mouse pointer is constructed by the operation:
1071

1072 {(x & np_and[prow]) | np_or[prow]

1073

1074 where 'x’ is the contents of the graphic memory. Note that the most
1075 significant bit in a "dword" is displayed to the left on the screen.
1076 'np_flags' is reserved for future use and should be zero to guarantee
1077 compatibility with future versions.

1078 'np_rstat’ is the return status:

1079

1080 W_0K - Ok.

1081 WE_ILPARA - An illegal value was specified.

1082 WE_NOTCR - The window has not been created vet.

1083 WE_NOMP - The ALTMPNT flag for the window is not set, and
1084 therefore the mouse pointer can not be changed.
1085

1086

1087 6.19  Get Number of Open Windows

1088 ZIZoszzsszzsIsoIzzozIzoIoo:

1089

1090 To find out how many windows which are open and/or created, use the
1091 request:

1092

1093 Wincnt{fd, bp)

1094 int fd;

1095 struct nuwstruc *bp;

109¢

1097 'fd’ is the file descriptor obtained when the window handler was
1098 activated or the file descriptor for a window.

1099 The nwstruc structure looks like:

1100

1101 struct nustruc

1102 {

1103 short  nw_open;

1104 short nw_created;

1105 union

1106 {

1107 long  nu_xxx;

1108 } nw_pad;

1109 h

1110

1111 'ni_open’ is the number of windows currently open and "nuw_created’ is
1112 the number of windows currently created {(and opened).

1113

1114

11185 6.20  Restore Screen

1116 sozzzzzsooooz:



Aug 5 18:37 1985 window_hnd.doc Page 19

1117

1118 To restore the screen, i.e. rewrite the whole screen, use the request:
1119

1120 Winrestor(fd)

1121 int fd;

1122

1123 'fd’ sust be the file descriptor obtained when the window handler was
1124 activated.

1125

1126

1127 6.21  Get Text Contents of Window

1128 ZsoZzzzozoszsoossoszsszzzoos

1129

1130 To get the text contents of a window, use the request:

1131

1132 Wingettxt(fd, bp, bc)

1133 int fd;

1134 struct buffer #bp;

1135 int be;

1136

1137 'fd" is the file descriptor for the window. The structure buffer
1138 consists of a parameter structure followed by a buffer with space
1139 to hold the desired text contents:

1140

1141 struct buffer

1142 {

1143 struct txtstruc s;

1144 char b[BSIZE];

1145 h

1146

1147 The txtstruc structure looks like:

1148

1149 typedef short cur_d;

1150 typedef char  sint;

1151

1152 struct txtstruc

1153 {

1154 cur_d  tx_row;

1155 cur_d  tx_col;

1156 cur_d  ty_rent;

1157 cur_d  tx_cent;

1158 sint  tx_rstat;

1159 union

1160 {

1161 long  ta_xxx;

1162 } tx_pad;

1143 b

1164

1165 'tx_row’ is the row number of the first row to be read and ’tx_col’
1164 the number of the first column. 'tx_rcnt’ and 'tx_cent' is the nuaber
1167 of rows and columns, respectively, to be read. BSIZE must be at least
1168 tx_rent ¥ tx_cent.

1169 'ty_rstat’ is the return status:

1170

171 W_0K - Everything is ok.

1172 WE_TSAVE - The text contents of the window is not saved.
1173 WE_ILPARA - Illegal parameters was given.

1174

1175

1176 6.22  Test if Window Handler is Activated

1177 b ededededededdotfefefafrfegetafeutotofetafaiededefetaefetefaa

1178



Aug 5 18:37 1985 window_hnd.doc Page 20

1179 To test if the window handler is activated, use the request:
1180

1181 Wintest(fd)

1182 int fd;

1183

1184 'fd' is the file descriptor for a window or the one obtained when
1185 the handler was activated.

1186 If a negative value is returned, the window handler is not present.
1187

1188

1189 6.23  Set Initial Driver and Terminal Parameters

1190 e etddededefefetedofedadedtedeeted ettt

1191

1192 This request is used to set the initial driver and terminal parameters
1193 for windows. The request is:

1194

1195 Winsinit(fd, bp)

1196 int ;

1197 struct wininit *bp;

1198

1199 'fd’ must be the file descriptor obtained when the window handler was
1200 activated.

1201 The wininit structure looks like:

1202

1203 typedef unsigned long t_stop;

1204 typedef unsigned short word;

1205

1206 struct wininit

1207 {

1208 t_stop td_tbstop[TSTOPSIZE];

1209 word  td_term;

1210 struct

1211 {

1212 unsigned short c¢_iflag;

1213 unsigned short c¢_oflag;

1214 unsigned short ¢_cflag;

1215 unsigned short c¢_iflag;

1216 char ¢_line;

1217 unsigned char  c¢_ccs[8];

1218 } td_driver;

1219 union

1220 {

1221 long  td_xxx;

1222 } td_pad;

1223 |5

1224

1225 "td_tbstop[]’ contains the tab stops. A set bit indicates a tab stop.
1226 The least significant bit of the first element corresponds to the
1227 first character position of a row.

1228 'td_tera’ contains initial Y7-100 terminal flags:

1229

1230 TD_NL linefeed newline mode.

1231 TD_WRAP auto wrap mode.

1232 TD_ORIGIN origin mode.

1233 TD_USCORE underscore character attribute.

1234 TD_REVERSE reverse character attribute.

1235 TD_SCREEN screen mode.

1236 TD_CUNDER underline cursor.

1237 TD_NONBLNK non-blinking cursor.

1238 TD_PHASE phased pattern mode.

1239 TD_NOSCR no scroll (page) mode.

1240



Aug 5 18:37 1985 window_hnd.doc Page 21

1241
1242
1243
1244
1245
1244
1247
1248
1249
1250

1251
1252

1253
1254
12585
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1272
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302

The remaining bits in "td_term’ should be zero to guarantee
compatibility with future versions.

"td_driver’ is a structure which contains the driver parameters. It is
the same structure as the termio structure (see the header file
(sys/termio.h) and the documentation for the ioctl() unix systes
call).

The default tab stops are every eight position, of the terminal flags
the TD_WRAP flag is set by default, and the driver parameters are the
same as those of the console when the window handler was activated.

6.24  Get Initial Driver and Terminal Parameters

To get the values of the initial driver and terminal parameters, use
the request:

Winginit(fd, bp)
int fd;
struct wininit *bp;

'fd’ must be the file descriptor obtained when the window handler was
activated.

6.25 Set Up a Zoom List for a Window

A z00m list is a list of fonts to change between when the mouse
pointer points to the zoos box and the left button of the mouse is
pressed. Every time this happens, the next font in the zoom list
becomes the default font for the window. When the end of the list
is reached, the next font will be the first one in the list.

When a zoom list is set up, the current default font will become
the first font in the list followed by the fonts specified in the
zoomlst structure.

To set up a zoom list, use the request:

Winzoom(fd, bp)
int fd;
struct zoomlst *bp;

'fd* is the file descriptor for the window. The zo0mlst structure
looks like:

typedef unsigned char  byte;

typedef char  sint;
struct zo0mlst
{
char  zp_list[700MSIZE];
char  z1_list[Z00MSIZE];
byte  z_flags;
sint  z_rstat;
union
{
long  z_xxx;
} z_pad;
L

zp_list[]’ is the list of fonts to be used in portrait mode and
'71_list[]" is used in landscape mode.



Aug 5 18:37 1985 window_hnd.doc Page 22

1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364

'1_flags’ contains some flags:

I_PMODE - Portrait mode zoom list is given.
1_LMODE - Landscape mode zoom list is given.

The remaining bits should be zero to guarantee compatibility with
future versions.
The return status 'z_rstat’ is:

W_0K - everything is ok.
WE_ILPARA - an illegal font was specified.
WE_ILMOD - no list is given for the current screen mode.

Note that this request can be used before the window has been created.

6.26  Change the Default Font for a Window

To change the default font for a window, use the request:

Winndchr (fd, bp);
int fd;
struct dfltchr xbp;

'fd’ is the file descriptor for the window and the dfltchr structure
looks like:

typedef short cur_d;
typedef unsigned char  byte;

struct dfltchr

{
char  dcp_font;
char  dcl_font;
cur_d  dep_x;
cur d  del_x;
cur_d dep_y;
cur_d  del y;
byte  dc_rstat;
union
{

long  dc_xxx;

} de_pad;

h

‘dep_font’ and 'dcl_font' are the new default font in portrait and
landscape mode, respectively. If the specified font is zero, the next
font in the zoom list is used.

'dep_x', 'dep_y’, 'dcl_x', and 'dcl_y’ is the character coordinates in
portrait and landscape mode, respectively, for the middle character in
the window after the default font has been changed.

'dc_flags' contains some flags:

2_PMODE - Data has been given for portrait sode.
1_LMODE - Data has been given for landscape mode.

The remaining bits should be zero to guarantee cospatibility with
future versions.
'de_rstat’ is the return status:

H_0K - everything is ok.



Aug 5 18:37 1985 window_hnd.doc Page 23

1365 WE_NOTCR - the window has not been created yet.

1344 WE_ILMOD - no data is given for the current screen mode.
1367 WE_ILPARA - an illegal font andfor illegal character

1368 coordinates were given.

1369 HE_TSAVE - the text contents of the virtual screen is not
1370 saved.

1371 WE_ALLSCR - the ALLSCR flag for the window is set.

1372 WE_NOMOVE - the NOMOVE flag for the window is set.

1373 WE_NOFONT - the specified font does not exist.

1374

1375 This request does not (if possible) change the size of the window.
1376 The size of the virtual screen is however adjusted so it contains the
1377 same number of character rows and columns.

1378

1379

1380 6.27  Turn the Screen

1381 ZozzzzzzszzIzos

1382

1383 To turn the screen from portrait to landscape mode or vice versa, use
1394 the request:

1385

1386 Winturn{fd, bp)

1387 int fd;

1388 struct modstruc *bp;

1389

1390 All channels, except the one obtained when the window handler was
1391 activated, must be closed.

1392 'fd’ must be the file descriptor obtained when the window handler was
1393 activated. The modstruc structure looks like:

1394

1395 typedef char  sint;

1396

1397 struct modstruc

1398 {

1399 sint  a_sode;

1400 sint  a_rstat;

1401 union

1402 {

1403 long  a&_xxx;

1404 } p_pad;

1405 |5

1406

1407 'n_mode’ will on return be M_PORT if the new mode is portrait mode or
1408 M_LAND if it is landscape.

1409 'm_rstat’ is the return status:

1410

1411 W_0K - everything is ok.

1412 WE_OPEN - there are windows open.

1413

1414

1415 6.28  Get Screen Mode

1416 IIIZZIZzZZZzzZzZzZzzzZz:z

1417

1418 To get the current screen mode (portrait or landscape), use the
1419 request:

1420

1421 Winmode(fd, bp)

1422 int fd;

1423 struct modstruc *bp;

1424

1425 'fd’ is the file descriptor obtained when the window handler was

1426 activated or the file descriptor for a window. The modstruc structure



Aug 5 18:37 1985 window_hnd.doc Page 24

1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488

was described in section 6.27. The 'a_mode’ member contains the
current mode (M_PORT or M_LAND) and ’s_rstat’ is always W_OK.

6.29  Add a User Defined Box

User defined boxes are 16x16 pixels boxes in the left side of the
window border. When the mouse pointer points to a user box and the
left mouse button is pressed, a signal is sent to the process(es)
running in the window.

When a window is created, the maximal number of user defined boxes
for the window must be specified (see the Wincreat{) request).

To set up a user defined box, use the request:

Winubox(fd, bp)
int fd;
struct userbox *bp;

'fd' is the file descriptor for the window. The userbox structure
looks like:

typedef unsigned short word;
typedef unsigned char  byte;

typedef char  sint;
struct userbox
{
word  bx_bmap[UBOXSIZE];
short  bx_sig;
byte  bx_flags;
sint  bx_rstat;
union
{
long  bx_xxx;
} bx_pad;
|5

'bx_bmap[]’ contains the bitmap for the box. Note that the most
significant bit in a "word" is displayed to the left on the screen.
'bx_sig’ is the signal to be sent when the box is used.

'bx_flags' is reserved for future use and should be zero to guarantee
compatibility with future versisns.

"bx_rstat’ is the return status:

W_0K - all is well.

WE_NOTCR - the window has not been created yet.

WE_SPACE - the maximal nuaber of user defined boxes have
already been set up.

WE_ILPARA - an illegal signal number was specified.

6.30  Alter Help Box Sequence

The help box is a box in the upper side of the border containing a
question mark which when used puts a character sequence on the key-
board input buffer. The intention is that all programs use this
facility so help can be requested in a similar manner in all programs.
When a window is opened, the help box sequence is initialized to a
single question mark (?). To alter this to another sequence, use the
request:



Aug 5 18:37 1985 window_hnd.doc Page 25

1489

1490 Winhelp(fd, bp)

1491 int fd;

1492 struct helpst *bp;

1493

1494 'fd’ is the file descriptor for the window. The helpst structure looks
1495 like:

149¢

1497 typedef unsigned short word;

1498

1499 struct helpst

1500 {

1501 char  hlp_seq[HLPSIZE];

1502 word  hlp_flags;

1503 union

1504 {

1505 long  hlp_xxx;

1506 } hlp_pad;

1507 |

1508

1509 "hip_seq[]’ is the new help box sequence. 'hlp_flags’ is reserved for
1510 future use and should be zero to guarantee compatibility with future
1511 versions of the window handler.

1512 Note that the help box sequence can be altered before the window has
1513 been created.

1514

1515

1516 6.31  Keyboard Input Signal

1517 IIZzzozzzoszzzzzsoozo:

1518

1519 To make it possible to know when there is something to read from the
1520 keyboard buffer, a signal can be set up for this purpose. The signal
1521 will be sent when there is no pending read request to the window and
1522 reading the keyboard buffer will not lead to wait.

1523 The request is:

1524

1525 Winkysig(fd, bp)

1526 int fd;

1527 struct kysigst *bp;

1528

1529 'fd’ is the file descriptor for the window and the kysigst structure
1530 looks like:

1531

1532 struct kysigst

1533 {

1534 sint  ks_sig;

1535 byte  ks_flags;

1536 sint  ks_rstat;

1537 union

1538 {

1539 long  ks_xxx;

1540 } ks_pad;

1541 |

1542

1543 'ks_sig’ is the signal to be sent. If zero, no signals are sent.
1544 'ks_flags’ is reserved for future use and should be zero to guarantee
1545 compatibility with future version.

1546 'ks_rstat’ is the return status:

1547

1548 W_0K - everything is well.

1549 WE_ILPARA - an illegal signal was specifiead.

1550



Aug 5 18:37 1985 window_hnd.doc Page 26

1551
1552
1583
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1534
1585
1586
1587
1538
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612

6.32  Read the Contents of the Picture Memory

To read the contents of the picture memory for a window or the whole
screen, use the request:

Wpictrd(fd, bp, bc);

int fd;
struct buffer *bp;
int be;

'fd" is the file descriptor for the window or, if the contents of the
whole screen is desired, the file descriptor obtained when the window
handler was activated. The buffer structure consists of a parameter
structure followed by a buffer big enough to hold the contents of the
specified picture memory area:

typedef unsigned char  byte;
struct buffer

{
struct wpictblk p;

byte b[BSIZE];
L
The wpictblk structure looks like:
typedef short pix_d;

struct wpictblk

{
pix_d p_xaddr;
pix_.d p_yaddr;
pix_d p_width;
pix_.d p_height;
union
{
long  p_xxx;
} p_pad;
¥

'p_xaddr' and 'p_yaddr’ are the x and y pixel coordinates,
respectively, of the lower left corner of the area to read. 'p_width’
is the pixel width of the area and 'p_height’ the pixel height.

BSIZE must be at least p_height ¥ (p_width + 7) / 8.

Data areas in buffer.b[] corresponding to non-visible areas of a
virtual screen will contain zeroes, i.e. cleared bits.

Note that the most significant bit in a byte is displayed to the left
on the screen.

WARNING: At the moment this request is extremely slow and the computer
seens to hang up while this request is served.

6.33  Alter the Spray Mask

This request changes the 32 times 32 pixels pattern used by the spray
escape sequence {see wh_escapes.doc).
The request is:

Spraymask(fd, bp)



Aug 5 18:37 1985 window_hnd.doc Page 27

1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674

int fd;
struct sprayst *bp;

'fd’ is the file descriptor for the window and the sprayst structure
looks like:

typedef unsigned long  dword;

struct sprayst

{
|

dword  sp_mask[8*sizeof (dword)];

where 'sp_mask[]’ contains the bit pattern for the spray mask.
Note that the most significant bit in a "dword® is displayed to the
left on the screen.

7. Other I/0 Control Commands

This is a list of 1/0 control requests which are identical or similar
to their counterparts in the tty device driver:

PFNKLD Load ABC99 function kevs. The file descriptor
can be both the one for a window and the one
obtained when the window handler was
activated.

PFNKRD Read ABC99 function keys. The file descriptor
can be both the one for a window and the one
obtained when the window handler was
activated.

PTOKBD Write data to the ABC99 keyboard. The file
descriptor must be the one obtained when the
window handler was activated.

TIOCGETP Fetch the basic parameters for the terminal
(v7).

TIOCSETP Flush and then set the basic parameters {v7).

TIOCSETN Set the basic parameters (no flush) (v7).

TIOCEXCL Set "exclusive-use” mode (v7).

TIOCNXCL Turn off “exclusive-use” mode (v7).

TIOCFLUSH Flush input and output queues (v7).

TIOCSETC Set the special characters {v7).

TIOCGETC Get the special characters {v7).

FIORDCHK Check if any character on input (v7).

TCSETAF Wait for output to drain, then flush the input
queues, and set the parameters for the
terminal.

TCSETAN As above, but do not flush the input queues.

TCSETA Set the parameters for the terminal.

TCGETA Get the parameters for the terminal.

TCFLSH Flush the input, output, or both the input and

output queues.

It should be noted that the set up of the ABC99 function keys is
common for all windows. Hence the PFNKLD and PFNKRD requests should
be used carefully.

8. Window Groups



Aug 5 18:37 1985 window_hnd.doc Page 28

1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714

1715 -

1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736

ALl windows belonging to the same process group and with the WGROUP
flag set, belongs to a window group.

The parent window in a group is the first window in a process group
created with the WGROUP flag set.

A child window is a window which is not a parent and which has the
WGROUP flag set (i.e. the remaining windows in a group). If the
parent disappears {i.e. is closed), the children looses their group
connection.

It is guaranteed that all windows in one window group always are on
consecutive levels.

9. Some Notes about the Storage of the Text Contents of a

If the SAVETEXT flag for a window is set, the window handler will
internally store the text contents of the virtual screen and
automatically update the window when necessary.

There are two cases when the window handler stops remembering the
text contents and regards text as graphics:

i) If the escape sequence ESC : (n) H is sent to the window or
ii) If the font is changed using the Select Character Set escape
sequence.

There exists two possibilities to force the handler to start
remembering the text contents again:

i) Send the Reset to Initial State escape sequence (ESC ¢) to the
window or

ii) Send the ESC : J escape sequence to the window when the current
font is the same as the default font for the window.

Method 1) has some side effects, so method ii) is to be prefered.

10. Functions Automatically Supported by the Window Handler

The handler automatically moves a pointer around the screem when the
mouse is moved.

If the pointer points to a region marked by the Winicon() request, the
area is inverted if the I_INVERT flag is set and if the left button

on the mouse is pressed, the specified code sequence is sent to the
appropriate process.

If the pointer points to a marked area in the lower right corner of

a window border and the left button on the mouse is pressed, the size
of the window can be changed by moving the mouse around. The operation
is suspended when the left mouse button is released. If the windou is
a parent of a window group, the children will also be moved if
appropriate.

To move a window (including the virtual screen) around, put the
pointer on the mark at the upper right corner of the border, press the
left button on the mouse and move the window by moving the mouse. To
stop the operation, just release the button. If the moved window is a
parent of a window group, the children will also be moved if
appropriate.



Aug 5 18:37 1985 window_hnd.doc Page 29

1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770

To change the part of the virtual screen which is visible in the
window put the pointer on one of the four scroll arrows and press the

_ left button on the mouse. This will cause the window to scroll one

row or coluen in the direction indicated by the arrou.

An alternative is to put the mouse pointer on the horizontal or the
vertical visible indicator, press the left button, and drag the
indicator to the desired location. The window is scrolled when the
left button is released.

If the pointer is put on the mark at the upper left corner of the
border and the left button on the mouse is pressed, a signal (if
specified) will be sent to all processes in the window.

To copy a region (a rectangle) of text from one window to another, put
the pointer at the upper left character of the rectangle, press the
middle button on the mouse and a rectangle can now be made by moving
the pointer to the lower right character and releasing the button. The
marked region is now indicated by four lines surrounding it. To

abort the operation, press any button, except the siddle one,
otherwise move the pointer to the destination window and press the
middle button once more, causing the marked region to be copied. Note
that this operation will also work with programs not knowing about the
windows, since the text contents of all the windows are stored by the
window handler.

To make a window the top level window, put the mouse pointer on the
window and press the right mouse button. If the window already is the
top level window, the window is moved to the bottom instead.

If the pointer is pointing to the background or a special window, the
top level window is put at the bottom.

If the window to be moved to the top or the bottom belongs to a window
group, the whole group is moved without affecting the relative levels
inside the group.



