
ABC 1600

Basic III with MIMER

LUXQR.
Computers

PURPOSE OF THIS DOCUMENT

This document is a Programmer's Reference Manual. It is to be used
by experienced programmers as a reference tool. It is not intended
for use as a learning aid by non-programmers.

The material contained herein is supplied without representation
or warranty of any kind by Dataindustrier AB (DlAB).
Dataindustrier AS (OIAS) assumes no responsibility relative for
the use of this material and shall have no liability,
consequential or otherwise arising from the use of this material
or any part thereof. Further. Dataindustrier AS reserves the right
to revis& this pUblication and to make changes from time to time
in the content hereof without obligation to notify any person of
such revision or changes.

CONTENTS

Section 1
Introduction 1-1

Section 2
Working with Basic III .•...........••••••••••.••.•••••••••.••. 2-1

Section J
Conventions and Syntax ••••••••••••••••••••••••••••••••••••••• 3-1

Section'
Control Comma nd s ••• 4-1

Section 5
Stat emen t s •.•......•••••.•.••••••.•••••••••••••.•••••••...... 5 - 1

Section 6
Functions•.....................•.•.•..•...•......... 6-1

Section 7
Adv~nced Programming•...........•...•..•............... 7-1

Section 8
ISAM Database Option•.....•..••.•.••••••.•......•• 8-1

Section 11
Quick Reference Summary ••••.•.•••••••••••••••••••••••••.•••. 11-1

Appendix A
BAS I C ASCI I Character Set••.•.••..•..••..•.•••.. A-1

Appendix B
Error Messages B-1

Appendix 0
Differences between BASIC III
and Earlier DataBoard Versions••...•............... 0-1

Appendix F
Available BASIC Versions and Options ..•.........•...••..•.... F-l

2

LIST Of TABLES

Table

4-1

5-1

5-2

5-3

6-1

S-2

6-3

6-3

7-1

B-1

Title Page

Basic III Control Commands 4-1

Data Statements 5-1

Input/Output Statements 5-15

Program Control Statements 5-42

Hathem~tical Functions 6-1

String Functions 6-10

CVT Conversion Functions 6-18

Miscellaneous Functions and Statements 6-22

Advanced Programming Statements and 7-1
Functions

Error Messages B-1

3

" INTROQutTION

Contents

1 . 1 0ve r view 0 f BAS I C I I I ••••..•..••••.. .. • . • . . • • . • • • • • . • . • . . . 1- 1

1.2 Text Symbols and Conversions ..• , •••.••••.••••••••••••...• 1-2

1 .3 Character Set ••..•.•••....••.••.•••••.•••••••••••••••.•.. 1-3

1 .4 Organization .of this Manual •...•••••••••••••.••••••.••..•. 1-3

1 • 5 Abbreviations .•..•.•...•..•••••••••.•••••••••••.•.•••.•.•• 1- 4

OIAS BASIC III 84-06-01

Introduction

1. INTRODUCTION

1.' Overview of DIAB BASIC III

1-1

This manual describes DIAB's Extended BASIC III hereafter referred
to as BASIC III. BASIC III is a comprehensive, commercially
oriented, semi-compiled language which is available for computers
running D-NIX operating system. It is an implementation of the
BASIC language initially developed by Dartmouth College and
standardized by the American Standards Institute (American
National Standard for Minimal BASIC. ANSI X.360-1978).

It must be emphasized th~t this is a Programmer's Reference Manual
and not a tutorial. Hence, it is designed to be used primarily as
a reference device by experienced programmers.

BASIC is one of the simplest of all programming langu·ages
because of its small numbe~ of ~owerful but easily understood
statements. functions and commands and its easy application to
problem solving. Nevertheless. the language is comprehensive
enough to allow versatile and efficient solutions to most
problems. The wide use of BASIC in scientific, business, and
education installations attests to its value and straight forward
application.

BASIC III is an interpreter program stored on disk and called into
memory by the user when required. An interpreter is a type of
compiler which checks or interprets your source program as you
enter it line by line. The source program resides in memory along
with the interpreter for as long as the user requires and can be
saved and run whenever needed. This is in contrast to~other

compilers which save the computer readable form (i.e. the object
program) and then eMecute the object program whenever needed.
Because BASIC III is ~n interpretive language. a syntaMerror will
result in an immediate error message on the screen. You can also
run the program at any time to test portions that have been
entered. This is called interactive programming and is in many
cases the most efficient way of programming. However, interactive
programming does not solve all the problems. When formal errors
have been eliminated from the program. logical errors may still
remain. These can only be detected when the program is executed
with the proper data.

BASIC III contains elementary statements to write simple programs.
Advanced programming features 3nd statements are also provided ~o

produce more complex and efficient programs. The keyword here is
efficient. Almost any problem can be solved with the simple BASIC
statements. Later in the user's programming experience, the
advanced techniques can be added.

BASIC III also allows the use of multi-character variable names
and free use of comments and spaces, which aid in creating
programs that are self-documentering and maintainable

The available BASIC versions and options are described in
appendix F.

DIAB BASIC III 84-06-01

Introduction

1.2 Text symbols and conventions

1-2

Throughout this manual specific documentation conventions are used
to describe formats for writing BASIC III commands, statements,
and functions. The following conventions are in effect:

Symbol

1. CAPITAL LETTERS

2. Lower ca se

Description and Use

Capital letters are used for all keywords,
commands, functions, and statements that
are to be explicitly typed.
Example: LIST

Lower case letters specify variables which
are to be supplied by the user according
to the rules explained below and in this
text.
Example: DATA <list>

3. < > Angle brackets enclose fields that are
required for valid Basic III syntax.
They are never to be typed unless -not
equal to· is to be specified by -<>-.
Example: ·LET <variable> = <express>

LET A = 4

4. () • -

5 • []

6. ... • ...

7. ~

8.

9. CTRL-H

DIAB BASIC III 84-06-01

Parentheses enclose required elements or
keywords of a statement. Commas and dashes
are separators. All must be typed as
shown.
Example: COMPZ(A$,B$)

LIST 100-400

SQuare brackets enclose optional elements
of a statement or indicate an optional
choice of one element among optional
elements.
Example: GET <stringvar> [COUNT bytes]

Ellipsis (three dots) indicate multiple
arguments are allowed.
Example: POKE <address>,<data>

The symbol .~M indicates the depression of
the RETURN key.
Example: LIST~

The symbol .-. is a BASIC symbol with the
ASCII value 126 dec. used in formatted
printing in section 5.
Example: PRINT USING w##-II_ 21.15

Control character. Depress and hold CTRL
key while striking another key
(represented by H).
Example: CTRL C

CTRL H

Introduction

1,3 Character set

1-3

BASIC III is designed to utilize the American Standard Code for
Information Interchange (ASCII) for its character set. This set
includes:

1 • Printable Characters
a. Letters A through Z
b. Lower case letters a through z
c. Numbers o through 9
d. Special punctuation characters and symbols

2. Control Characters

Appendix A shows the complete set of BASIC ASCII characters and
their respective decimal codes.

1.4 Organization of this manual

This manual is organized into 11 sections and appendices. Sections
2 and 3 contain information necessary to understand and work with
BASIC III. There are many types of BASIC in use today. Hence.
these sections define the procedures and language elements within
the context of DIAB BASIC III language.

Sections 4 through 6 describe the individual control commands.
statements. and functions available in BASIC III. Statements are
divided into three sections: Data. Input/Output and Program
Control statements fo~ ease of reference. For each command.
statement. ot function. the following information is included:

1. Function - Summarizes purpose of statement.
2e Hode - Specifies which mode applies - Direct.

Program or both.
3. Format ~ Shows the command syntax.
4. Arguments - Defines the format variables.
5. Use - Describes in detail how the command is used

inclUding restrictions and exceptions.
6. Example - lists program examples illustrating the

various uses of the command.

Section 7 contains advanced file information and BASIC III
statements and functions to be used for sophisticated programming.
Detailed knowledge of BASIC III and the operating system is
required before this information can be applied.

Section 8 contains information on options to the BASIC III.

Section 11 contains a quick reference summary of BASIC III
commands. statements. and functions.

Appendix A shows the complete set of BASIC ASCII characters and
their respective decimal codes.

Appendix B contains a list of error messages with comments.

DIAB BASIC III 84-06-01

Introduction 1-4

Appendix 0 describes the differencies between BASIC III and the
earlier BASIC versions.

Appendix F describes the aVJilable BASIC versions

1.5 Abbreviations

The following abbreviations are used in this manual:
line no. Line Number
fd File descriptor
vol Volume
PR .Printer
string'var String Variable
channel no. Channel Number
record no. Record Number

DIAB BASIC III 84-06-01

,~

2. WORKING WITH BASIC III

Content.

2.1 Initiating and Terminating BASIC III ~ e""'D •••• ~.~ •• 2-1

2.2 Hodes of Operation •.......•.•..•...••......•••••••••..... 2-3
2.2.1 Program mode
2.2.2 Direct Hode
2.2.3 Run Mode

2.3 Line entry•..•...•••..• 0 ••••••••••••••••••• 2-4
2.3.1 Procedure
2.3.2 Immediate Corrections
2.3.3 Deleting a Statement

2.4 Editing a Program o••••••• r •• c •••••••• ~ ••• e ••••• Cle.2-6

2 . 5 Executing a Program e •••• e e •••• " e •• 2- 6
2.5.1 Start Execution
2.5.2 Stop Execution

2.6 Documenting a Program . e e •• 0 " •••••• 2-7

2.7 Program Communication .e .. ~ 2-8

2.8 File Usage ••..........••.........•...•........•. : •....... 2-8
2.8.1 File Creation
2.8.2 Access methods

2.9 logical Units•..•. C1 ••••••••••••••••• 2-12

2.10 Error Handling e ••••••••••• 0 AI ••• ,. ••• e • Po •••• C> " •• e •• e " •••• 2-13

DrAB BASIC III 84-06-01

Working with DIAB BASIC III

2. WORKING WITH PlAe BASIC III

2.1 Initiating and terminating Basic III

2-1

To load the Basic III interpreter the user entes the word -basic N

in response to the operating system promt:

S basic
(note:

[-d -x -i -mJ [file] ~

e=Return key)

where the switches have the following meaning:

-d Set floating precision to DOUBLE

-x Set EXTEND mode

-i Set INTEGER mode

-mXX Get XX number of kbytes. Extra memory (default 32 k)

If -file w is specified the file -file- is loaded and executed
immeditely by the interpreter.

Example:
Start basic in INTEGER and EXTEND mode:

basic -i -x

Basic III begins loading and when ready displays:

Basic III Ver X.XX
Copyright Dataindustrier DIAB AB, Sweden 1984

basic

(X.XX refers to version number and update number.)

During startup, one of the warning messages can appear:

1: NO TERH environment variable.
Meaning: Before startup of basic the shell variable
TERM should be set to the terminal type you are using.

Example:
If you are using a vt100 terminal:

$ TERM =
S export

vt100
TERH

2: No termcap entry for: XX
Meaning: The TERM variable is wrong or there is no
entry in the terminal capability database file
(·Ietc/termcap~) for your terminal type.XX. For
information about how to create an entry in termcap,
refer to your D-NIX manual Ctermcap (5)).

DIAB BASIC III 84-06-01

Working with DIAB BASIC III 2-2

3: No bascap entry for: XX
Heaning: There is no entry in the file
(-'usr!etc/bascap-) for your terminal type xx.

In the bascap file you should define the input control
characters for the editor. The same syntax as for
termcap is used:

Example: For an ADHJa terminal the entry could look
like this:

laoadm3aoJaolsi adm3a:O
:ku=-K:kd=-N:kr=-l:kl=-H:ij
:ei=-U:ic:-I:dc=-E:cd=-D:O
:dl=-X:

giving the same keys as default. (See below.)

Note:
If warning 1 or 2 appears. the interpreter works but no
editing is possible since it does not know how to move
the cursor on your terminal.

If warning 3 apppears. default values are used.

The file etermcapc contain~ the information about what
control characters (or sequences) to SEND to the
terminal while the file -bascap~ co~tains the
information about what to RECEIVE from the user.

Abrev. Termcap Bascap Default Heaning

-kr-
-kl-
-ku c

-kd-
-cm-

""...... -cl-
t. -ic·

-ei-
·de-
·cd-
-dl-
and·
-up·
-am-
·bw·
·co·

)(

)(

)(

x
)(

x

x
)(

)(

)(

)(

)(

x
)(

)(

)(

x
x
)(

)(

yes
no
80

right arrow key
left arrow key
up arrow key
down arrow key

cursor positioning
clear display

enter insert mode
exit insert mode
delete character
delete to EOl
delete line

non destructive space
move cursor up
automatic margin
back wrap
I of columns

The arrow key entries in bascap overrules the ones in
termcap if specified in both.

Note:
In the description of editing functions (sections 2.3.
4.2) the default control characters are used and should
be replaced by the character or function key defined in
-!usr/etc/bascap· or ·bascap-.

OIAB BASIC III 84-06-01

Working with DIAB BASIC III 2-3

From the basic. shell commands can be executed by
starting the line with an exclamation mark (!). The
rest of the line is then passed to a new shell which
executes it.

Example 2:
Start basic with 10 kbytes of extra memory (for a total
of 42 kbytes)

basic -m10 e

Basic III
Copyright

Ver X.XX
Dataindustrier OIAB AS, Sweden 1984

tbasic*
;SYS(2)

42806
basic

(memory available)

Example 3:
If a basic program

10; "Hej
20 BYE

is saved in file -hejpgm.bac". Execute it:

$ba sic .hejpgm
Hej
S

To remove Basic III from working memory and return to the
operating system type:

BYE ~.

2e2 Modes of operation

Basic III allows for three modes of operation:
1. Program Hode
2. Direct Mode
3 . Run Mode

2.2.1 Program Mode

Basic III distinguishes between statements intended for immediate
execution and statements intended for delayed execution. This
difference is based solely on the absence or presence of a line
number in front of a statement. A statement preceded by a number,
for example:

1eo INPUT X.V

is noted as being intended for delayed execution. Statements
discussed in this text to which this definition is applicable have
"Program" specified after the Hode declaration.

DIAB BASIC III 84-06-01

Working with DIAB BASIC III

2.2.2 Direct Mode

2-4

,""""

Conversely. the absence of a line number in statements such as:

PRINT 1000/12.

cause the interp~eter program to execute it directl~ after
depression of the RETURN key. This is called t~e direct mode and
so specified for applicable statements in this text.

The Direct mode also allows for immediate solution of problems,
generally mathematical. which do not require interactive program
procedures. For example:

A=1.5: 8=3: PRINT A, S, -ANS-- (A+B*A)

Another use of the direct mode is as an aid in program development
and debugging. Through use of direct statements. program variables
can be altered or read. and program flow may be directly
controlled.

Direct statements in combination with program variables can be
used in the following cases:

-after CTRl/C
-when an error occurs during program execution
-after a STOP-statement

This facility is not available at normal end of program.

2.2.3 Run Mode

A program consisting of a series of numbered statements can be
executed only in the Run Hode. Execution (run mode) begins When
the RUN command is entered: For example:

80 A = 5.
100 PRINT Ae
RUNe
s
basic

2.] line entry

Basic III is a -free format- language - the computer ignores extra
blank spaces in a statement. For example. these four statements
are equivalents:

30 PRINT S
30 PRINT S
JOPRINTS
30P RINT S

Basic III ignores spaces totally. A program is listed in I format
that has no connection to the spaces you use to make your input
more readable. It is important to note that spaces are significant
in the following areas:

DIAB BASIC III 84-06-01

Working with DIAB BASIC III

1. REM Statements
2. Extend Hode
3. Data Statements

2.3.1 Procedure

2-5

Lines input to Basic III are either executed immediately (Direct
Mode) or stored in the user program area for later execution
(Program Hode). Program mode statements can also be saved on disk
for future execution. Basic III accepts lines when it is not
executing a program.

T~e RETURN ~ key must be pressed after each line.

Example:
10
20
30
40
50

INPUT A,B,C.D.E~

LET S=(A+B+C+D+E)/5~

PRINT S~

IF A <= 999 GO TO 10~

ENO~

Pressing RETURN .~. informs Basic III that the line is complete.
Basic III then checks the line for mistakes. If mistakes were
made, an error message is displayed on the screen. (Refer to
Section 2.4.)

2.3.2 Immediate Corrections

CTRL H acts as a backspace. deleting the immediately preceding
character. (Note that CTRL X"key deletes all preceding characters
in a line.)

Typing these characters:
is equivalent to typing:

20 LR CTRL H ET S=10
20 LET S=10

And, typing these characters: 30 LET CTRL HHH PRINT S
~s equivalent to typing: 30 PRINT S

The ED command (refer to Section 4) provides the facility to
change characters after the line has been entered.

2.3.3 Deleting a Statement

To delete the statement being typed. depress CTRL X. This deletes
the entire line being typed. For example:

20 LET S = 12X CTRLX

To delete a previously typed statement. type the statement number
followed by a RETURN .~ •. For example:

5 LET S = 0
10 INPUT A.B.C.O.E
20 LET S = (A+B+C+D+E)/5

DIAB BASIC III 84-06-01

Working with DIAB BASIC III

To delete Statement 5, above, type:

5e

2-6

To delete blocks of statements, refer to ERASE, Section 4.

2.3.4 Changing a State.ent

To change a previously typed statement (in program mode). retype
it with the desired changes. The new statement replaces the old
one.

To change statement 5 in the above sequence, type:

5 LET S = 5(1

The old statement is replaced by the new one. Use the LIST command
to check what is left of the program.

If a single or a few characters need to be corrected, use the ED
command. (Refer to Section 4.)

Blocks of statements from another program can be inserted by the
HE~GE commands. The user thereby has the possibility to handle
programming on a modular basis.

2.4 Editing a program

Lines may be deleted. inserted or changed acc~rding to' the
procedures described previously in this section and the commands
that are available in Basic III. The LOAD command places the
desired program into working storage. The MERGE command allows you
to combine or change your program with a set of statements loaded
from a disk file. The ERASE command deletes blocks of statements.
The ED command facilitates corrections of an e)(isting line on a
character basis.

When editing a program. you want to increase or decrease
increments between selected lines. This is done by the RENUMBER
Command after additions or deletions have been done.

If there is a synta)(error in the previously typed statement. an
error message is printed. This line is not entered but is retained
in I save area and displayed on the screen with the cursor
positioned at the character where the interpreter recognized the
error. The erroneous line may be immediately edited using the same
set of special keys as specified for the EDIT command. (Refer to
Section 4.)
E)(ample:

10 PRONT CUR (2,30) -TROUBLE REPORT-.
UNDECODEABLE STATEMENT
10 PRONT CUR (2,30) -TROUBLE REPORT-

(Use CTRL-L until the cursor is positioned on the 0 in
PRINT. enter I. Then press RETURN.)

10 PRINT CUR(2.30) -TROUBLE REPORT-(R)

DIAB BASIC III 84-06-01

Working with DIAB BASIC III

2.5 Executing a program

2.5.1 Start execution

2-1

The RUN command is provided to start the execution of a program.
When the command (RUN ~) is entered, Basic III starts to execute
the program in the user's program area at the lowest numbered
line. Execution continues until either one of these conditions is
encountered:

STOP
BYE
END
ERROR

or until the operator breaks by CTRL-C .

When the program executes a STOP or END statement it halts and all
the variables are still in existence. The user can examine the
variables by simply addressing the respective ones by the variable
name. For example, you want to know the values of the variables A,
S. and K%. Enter the following command:

PRINT A,S.KZ~

The computer will then write the current values of the variables
when program execution was stopped.

Errors cause an error message to be written on the screen. See
Appendix B for the complete set of error messages.

2.5.2 Stop execution

CTRL-C Stops a running program.

A stopped program: CONT (or CON) Continue execution.
CTRL-Z Single step the program.

The program may be listed and variables
examined before execution continues, but if any
part of the program is changed (or even
attempted to be changed) the program can not be
continued.

2.6 Documenting a program

Basic III permits the programmer to document a program with notes,
comments and messages. There are two methods available: Standard
REM statements and text preceded by an exclamation point. The
latter type of comments are easier to use since they can occur
without a colon.

Examples:
a. 10 A = 7: REM ASSIGN -7 M TO THE VARIABLE -A-
b. 10 A = 7 ~ ASSIGN -7- TO THE VARIABLE -A-

DIAB BASIC III 84-06-01

Working with DIAB BASIC III 2-8

,~

RE~ lines are part of I BASIC program and are printed when the
program is listed; however. they are ignored when the program is
executing. Any series of characters may be used in I comment line.
The remarks are usually marked with some clearly visible
character. making them easily noticed in a program. For example:

100 REM*** CAUTION ***

A comment cannot be terminated by a colon. The colon is treated as
part of the remark. In the example below.

150 REM ***INITIALIZER***:LET R1=3.5E2.1

the assignment statement will not be executed. The entire line is
considered to be a non-executable comment.

Indentation is another method of documentation. The structure of
hierarchy of a program can then be easily shown. This is done
automatically for some BASIC statements, for example FOR ... NEXT.

2.7 Program communi,a1:igD

When several programs are executed in a multi-user environment.
program communication may be through special drivers or through
pipes. Refer to the description of the state.mentOPEN.

This should not be confused with the BASIC COMMON statement. which
only keeps data in memory when a new program is loaded and started
as the same task with the CHAIN statement.

2,8 file usage

Basic III facilities to define and manipulate input and output
data on file structured devices like disk drives. as well as non
file structured devices, like console. printers and othersn

Two methods are supported:

- Sequential (one record after another from the beginning of the
file or random from a defined point in the file)

- Indexed Sequential (random by key). Indexed Sequential access is
available with the ISAH option.

A data file consists of a sequence of data items transmitted
between a BASIC program and an external input/output device. The
external device can be the user's.terminal. printer. disc or other
device defined in the operating system.

Each data file is externally identified by a name. the file
designator name (e.g. ABC123). Internally in the user's program.
the file is accessed as a channel number. PREPARE. OPEN and CLOSE
statements are used to establish and terminate a channel for the
data transfer. All further references tu the file in the program
will be to the channel number (e.g. 11) not to file name - ABC123~

DIAB BASIC III 84-06-01

Working with DIAB BASIC III 2-9

Random I/O permits the user's program to have complete control of
110 operations. Properly used, Random 1/0 is the most flexible and
efficient technique of data transfer available under Basic III. It
is, however, not as simple as Sequential I/O. Less experienced
users should first experiment with the Sequential I/O techniques
before attempting Random I/O. Random I/O is explained in detail in
section 2.8.1 and 2.8.2.

The file number is defined in the program by means of one of the
instructions PREPARE or OPEN. These statements will open the file,
i.e. set up a channel for the data transfer. To close such a data
transfer channel the instruction CLOSE is used. The instructions
INPUT and PRINT or GET and PUT are used for the data transfer.

A buffer area is created by the system when a file is opened. All
data transfer to and from a file is buffered.

Opening a File

To open an existing file the OPEN statement is used. If the file
shall be created, it should be opened with a PREPARE statement.

Example:
10 OPEN ~mast1· AS FILE I

opens existing file named mast1 for
input/output and assigns logical unit 1, for
110, to that file.

Data Transfer To/From a File

The transfer of data takes place directly between the internal
channel (the file number) and the string variable or the value of
the expression in question. All data transfer refers to either a
one-byte or one-character string (the characters followed by a
carriage return). Using the line I/O statements INPUT, PRINT or
INPUT LINE. the BASIC converts internal variables to strings and
vice versa.

The following instructions can be used:

INPUT" #

INPUT LINE #

PRINT I

GET I COUNT nn

PUT #

Reads values to variables or strings from the
position of the file pointer to a line feed.

Reads a value to a string variable from the
position of the file pointer to a line feed.
'The line feed is replaced by a carrige return
and line feed in the string variable.
Also accepts embedded spaces and commas.

Writes the contents of variables into the file.

Reads one byte or the given number of bytes
from the position of the file pointer.

Writes a string into the file. In Record I/O
mode, one record is written.

DIAB BASIC III 84-06-01

Working with DIAB BASIC III 2-10

POSIT I Hoves the file pointer to the desired positione

If no file number is given in the GET statement, it will attempt
to read from the keyboard. If the COUNT option is not used, GET
will read one byte. i.e. one character.

Example:
20 GET 11.02$ COUNT 51

will read file number 1 from the position of the file
pointer six characters on. These characters are put in
the string D2$.

For random access to • file. the instruction POSIT is used to
position the file pointer at the given position in the file. The
number of characters always refers to the beginning of the file
(position 0). POSIT can be used together with anyone of the other
file handling instructions.

Example:
LIST
40 OPEN ·pearl· AS FILE
50 POSIT 11,5
60 GET 11.AS COUNT 3
70 PRINT A$
80 ; POSIT (1)
90 END
RUN
FGH
8
basic

·pearl· contains ABCDEFGHIJK.

The function POSIT«f11. number» reads the position of the file
pointere In the example above, POSIT(1) returns the value 8~ when
the example has been executed. POSIT returns a floating point
value, so that very long files can be~handled.

Cloling I Fil.

The data transfer to or from a file will not be correctly
terminated until the file is closed~ The contents of the buffer
area are then transferred.

There are two ways of closing a file:

CLOSE n[,n1, ...]

CLOSE

closes the file(s) associated with file
number n, n1,e.e

closes all files

Note! It is essential that files, which has been written to, is
properly closed.

288.1 File creation

Basic III supports data files with the following type of record:

DIAB BASIC III 84-06-01

Working with DIAB BASIC III

Variable Length Records

2- 11

That is. the size of the file subdivisions to which records
correspond may be of variable length.

Only files with variable length records are available.

Variable Length Records

To allocate a data file of variable length records use the PREPARE
statement. Data can be written, for example. using a PUT or PRINT
statement as shown in the procedure below.

Examples:

PREPARE -filea- AS FILE 1 I
INPUT -NUHBER OF RECORDS?- R1 I
FOR IX = 11 to RZ I

INPUT -ASCII DATA?- AS I
PRINT #l%,A$ I

NEXT IX I
I
I

Fixed Length Record.

PREPARE -fileb w AS FILE 2%

INPUT -NUMBER OF BYTES?N R%
FOR 1%=1% TO R%

INPUT -BINARY DATA?- AS
PUT #21. AS

NEXT II

For creating an ISAH index file and its associated data file refer
to the ISAM option descr~ption.

2.8.2 Access methods

Variable Length Records

Data files containing variable length records are accessed
sequentially. with or without a random starting point. as shown in
the following procedure: Note that the PREPARE statement always
creates files with variable length records.

1. Specify OPEN statement with Byte I/O and READ/WRITE mode
desired.

Examples:
OPEN ·vol:filelist- AS FILE 1 !BYTE I/O
OPEN ·vol:filewrite W AS FILE 2 MODE 11 ! WRITE HODE

2. Sequential Access from the beginning of the file.

The input/output is done from a point in the file. indicated
by a file pointer. When a file is opened. the file pointer is
automatically set to the beginning of the file. After an I/O
operation the file-pointer is left on the next available
character in the file. The POSIT statement may be used to set
the file pointer to the desired position before I/O is
performed.

DIAB BASIC III 84-06-01

"''''fII1IIII

Working with DIAB BASIC III 2-12

2a. Use the INPUT or INPUT lINE statements to input lines of text
from text files in ASCII formate Each line should be
terminated by a 'LF' character (ASCII value 10 decimal). The
maximum line length is 160 characters including two bytes for
the 'CR' 'IF' characters.

The INPUT statement requires each data item in the line to be
separated by a comma and ignores leading spaces input.

The INPUT LINE statement re~ds only to a string variable and
also reads spaces. commas etc., but inserts the two characters
'CR o

, 'IF' (ASCII 13.10) at the end of the string.

Examples:
INPUT Il.A.BS,eX
INPUT LINE 11,C$

When reading from the console device only, the characters are
echoed.

2b. The GET statement is used to input 8-bit binary data. The
number of characters to input must be given, unless only one
character shall be input~ If COUNT is omitted in the
statement, only one byte is read.

Examples:
GET 11,A$ COUNT 289

Note:
GET without file number reads binary data from the terminal.
This data is 1 bit binary data (i.e. the most significant bit
is always 0).

2c. The PRINT statement are used to output lines of ASCII text,
followed by a line feed character elF'. unless the' "
is given at the end of the PRINT statement.

Examples:
PRINT 11, ·STRING=-;A$

or
PRINT 11, A$;
PRINT 11. BS to build a line with two statements.

The normal file handling assumes that PRINTing is done
sequentially and that the file ends after the last printed
line.

2d. The PUT statement is used to output binary data. An entire
st~ing are output to the file as a string of 8-bit data.

Example:
PUT .1,AS

It is essential that a file, which has been written to. is
properly closed.

3. Random access are done by defining a starting point with the
POSIT statement, from which data is read sequentially.

DIAB BASIC III 84-06-01

Working with DIAB BASIC III 2-13

The POSIT statement sets the file pointer for the subseQuent
GET, INPUT, INPUT LINE, PUT or PRINT statements.

Example: Read 10 bytes from byte number 235 in the file.
POSIT 11,235
GET 'l.AS COUNT 10

2.9 logical units

Basic III ensures independence from physical input/output devices
through the use of file numbers. The file number can be treated as
a logical unit and is handled with the instructions OPEN, PREPARE
and CLOSE. The file number may, for instance, represent a printer
or a file on a disc.

Example:
10 - -
20 OPEN ·PR:· AS FILE 2 Open the printer
30
40
50 CLOSE 2 Close the printer
60 END

Note: Refer to section 4 for information about colon expression
replacement.

2.10 Error handling,

Certain errors can be detected by Basic III when it executes a
program. These errors can, for instance. be computational errors
(such as division by 0) or input/output errors (reading and end
of-file code as the input to an INPUT statement). Normally, the
occurrence of any of these errors will cause termination of
program execution and the printing of a diagnostic message or an
error number, depending on the presence of the basicerr.txt file.
Compare appendix B.

Some applications may require that program execution continues
after an error has occurred. To accomplish this, the user can
include an ON ERROR GOTO <line number> statement in the program.

The ON ERROR GOTO statement should be placed before all the
executable statements with which the error handling routine deals.

When an error occurs in a program, Basic III checks to see if the
program has executed an ON ERROR GOTO statement. If not, a message
is printed at the screen and the program execution is terminated.

If an ON ERROR GOTO statement has been executed, the program
execution will continue at the line number specified by that
statement. The subroutine at that line number can test the
function ERRCODE to find out precisely what error has occurred and
decide what action is to be taken. The exit from the error routine
may be to the statement. causing the error. or to another
statement in the same program segment. .

DIAB BASIC III 84-06-01

Working with DIAB BASIC III 2-14

If there are portions of the program in which any errors detected
are to be processed by the system and not by the subroutines of
the program, the error subroutine can be disabled by executing the
ON ERROR GOTO statement without the line number reference.

line number ON ERROR GOTO

The computer will then attend to all errors as it would do if no
ON ERROR GOTO <line number) had ever been eKecuted.

One of two types of error handling sequences are possible.
regarding how to eKit from the error routines. The system searches
before start. for any RESUME statement in the program code. If any
RESUME statement is found, the standard error sequence is
selected. otherwise the optional sequence is used.

Standard error .equence:

Exit from an error routine. for continuous execution. HUST be with
a 'RESUME' or 'RESUME line.no· statement. to restore the error
condition.

Standard error handling is according to the following: •
1. ON ERROR 60TO line.no sets the 'Error Trap' flag and defines

the error routine~ entry line. no.

2. When an error is detected. the error routine is executed under
the following conditions:

The 'Error Trap' flag is reset. defining that all errors
shall cause a system error message and termination of the
programo The only way to re-enable a new user error
routine. is to exit with a RESUME statement.

Any 'ON ERROR GOTO line. no' statement may define a new
user error routine entry point.
NOTE. however, that this will be activated first after the
exit from the present error routine.

A blank 'ON ERROR GOTO' statement can be used to exit from
the error routine. but will terminate the program with a
system error message.

The 'RESUME' or 'RESUME line.no· statement defines the
exit from an error routine, restoring the error conditions
for continuous execution.

3. The 'RESUME' statement restores the 'Error Trap' and returns
to the statement. where the error occurred. The defined user
error routine is enabled.

If continuous execution is not possible, the program is
terminatedo

If the error was an 1/0 error. the statement is executed
again from the beginning.

DIAB BASIC III 84-06-01

Working with DIAB BASIC III 2-15

If the error was not an I/O error, the return is to a
point after the operation, causing the error. and the rest
of the statement is executed.

Example 1: I/O error

LIST
10 ON ERROR GOTO 50
20 INPUT ·X=" X
30 ; X
40 END
50 t • RESUME
RUN
X=ABC <error causes a new display of 'X:')
X=56
56
basic

Example 2: Calculation error. The result of the division
with zero will be set to the highest possible
value, approx. 1.1E+38. before the rest of
the statement is executed.

LIST
10 ON ERROR GOTO 50
20 X=5/0/1.1E+38
30 PRINT X
40 END
50 RESUME
RUN
1.00083
basic

4. The 'RESUME line.no· statement does the same as the 'RESUME'
statement. but the return is not to the erroneous statement.

NOTE! that the return must be to a statement at the same
subroutine or function level as the erroneous statement. to
continue the program execution with the correct system stack
pointers.

Optional error handling sequence:

If no RESUME statement exists in the program, no automatic return
to the erroneous statement is available. The exit from an error
routine is defined by the execution of a new 'ON ERROR GOTO
line. no' or 'ON ERROR GOTO' statement, which also resets the error
conditions.

Note that also in this case. the error routine must return to the
same subroutine or function level, where the error occurred.

Example of error handling:
LIST 10-120
10 ON ERROR GOTO 100 !At erroneous input go to line 100
20 INPUT -AGE. WEIGHT - A,W
30 ON ERROR GOTO 10 !Disable the error handler

DIAB BASIC III 84-06-01

Working with DIAB BASIC III

40 STOP
100 PRINT !Error handler
110 PRINT· Erroneous input! ~

120 GOTO 20 !Jump to line 20
basic

DIAB BASIC III 84-06-01

2-16

3. CONVENTIONS AND SYNTAX

Contents

3.1 Program Conventions 3- 1
3.1.1 Name Structure
3.1.2 line Numbering
3.1.3 Statements
3.1.4 Expressions
3.1.5 Variables
3.1.6 Constants
3.1.7 Reserved Words

3 . 2 I n t e 9era nd Flo a tin 9 Po i n t 3 - 8
3.2.1 Use of Integers as Logical Variables
3.2.2 Input/~utput with Integers and Floating Point
3.2.3 Integer Arithmetic
3.2.4 Representation of Numeric Data in DataBoard BASIC

3.3 Strings 3-16
3.3.1 String Constants
3.3.2 String Variables
3.3.3 Subscripted String Variables
3.3.4 String Size
3.3.5 String Functions
3.3.6 String Atithmetic
3.3.7 String Input
3.3.8 String Output
3.3.9 Relational Operators

3 . 4 Bas i c Fi 1 e Name Con ve n t ion s .•••••...••..•..•.•..••.••••• 3 - 20

DIAB BASIC III 84-06-01

]. CONVENTIONS AND SYNTAX

].1 Program conventions

3.1.1 Name structure

A user program is composed of one or more properly formed
Basic III statements. constructed with the language elements and
syntax described in the following sections. A statement ,contains
instructions to Basic III. A program line begins with a line
number followed by one or more Basic III statements. up to a
maximum of 1&0 characters. Line numbers indicate the particular
sequence of execution. Each statement begins with a keyword
specifying the type of operation to be performed. A program line
can also contain multiple stat.mentle

Each statement gives an instruction to the computer (in this example
PRINT):

30 PRINT S

The value currently assigned to the variable ·S·, above. is
printed. If the instruction requires further details. operands
(numeric details) are supplied. The operands specify what the
instruction acts upon. (for example. GOTO):

40 GOTO 10

In the above example. the operand ·10· is the line number to which
program control will be transferred upon execution of the ·GO TO·
statement.

The last statement in a program, as shown here, is an END statement.

10 INPUT A.B,e.D.E
20 LET S = (A+B+C+D+E)/5
30 IF A=999 GOTO 60
40 PRINT S
50 G010 10
60 END

The END statement informs the computer that the program is
finished. but its presence is not mandatorys

301.2 line numbering

Each program line in the program mode is preceded by a line
number. A line number has the following effects.

1. Indicates the order in which the statements are executed.
The statements may be written in any order.

2. Enables the normal order of evaluation to be changed by
G010. GOSUB statements. etc.

DtAS BASIC III 84-06-01

Conventions and syntax 3-2

3. Permits program modification of any specified line without
affecting any other portion of the program.

The line number is chosen by the programmer. It may be any integer
from 1 to 65,535 inclusive. The system uses the line numbers to
keep the program lines in order and for the execution required.

Program lines may be entered in any order; they are usually
numbered by fives or tens so that additional statements can be
easily inserted. The computer keeps them in numerical order no
matter how they are entered. For example, if the program lines are
input in the sequence 30, 10, 20, Basic III rearranges them in
order: 10, 20. 30. There are commands for automatic line numbering
(AUTO) and for renumbering (REN).

3.1.3 Statements

A program line begins with a line number followed by a Basic III
statement. The keyword of a Basic III statement identifies the
type of statement. Basic III is thereby informed what operation to
perform and how to treat the data - if any - that follows the
keyword.

Multiple Statements on I Program Line

The user is allowed to write more than one statement on a single
line. Each multi-statement (except the ~ast) is terminated with a
colon. Only the first statement on the program line can have a
line number preceding it.

Example:
100 PRINT A,B,C

is a singlestitement program line.
200 LET X=X+1 : PRINT X : IF Y = , GOTO 100

is a multiple statement program line containing three
statements: LET, PRINT and IF-GOTO.

As a rule any statement can be used anywhere in a multiple
statement line. The exceptions to the rule have been explicitly
specified in individual statement descriptions.

3.1.' Expressions·

Expressions are a fundamental building block used in many Basic
III statements. The primary elements of expressions are constants,
variables, arrays and functions. These elements are then combined
using arithmetic. relational and/or logical operators, to form
expressions. This and succeeding sections will define these terms
within the context of Basic III.

Arithmetic &xpressions

An arithmetic expression has an arithmetic value which is either
floating point or integer. Mixed expressions (i.e., both floating

DIAB BASIC III 84-06-01

Conventions and synta~ 3-3

point and integer) yield a floating point value. The following
mathematical operators can be used in arithmetic expressions:

----!--------------!---------------------------------~---~-----~--

Operator

+

*
I

or **
- (unary)

Function

Addition
Subtraction
MUltiplication
Division
Exponentiation (using 'up-arrow' or two stars)
Subtraction or negation

No two mathematical operators may appear in sequence and no
operator is ever assumed (e.g., A++B and (A+2) (B-3) are not
valid) .

Examples of Arithmetic expressions:
4.123
3 + A
AX +50
8 * (C**3 .. 1.5)
PI *R**2

Relltional expr•••ions

A relational expression yields a truth value that reflects the
result of comparing two values. Symbolically it can be defined
as:

<expression><relational operator><expression>

Expression can be either an arithmetic term or a string t&rm but
not both in a single expression.

The relational symbols Basic III allows are:

Mathematical Basic III
Symbol Symbol Example Meaning

,.t1fII1""'.

-~-~---~~~---~-~-~~-~-~---~~--~~----~~--~------~-~-~-----~~~---~~

= = A=B A is set equal to 8
< < A<B A is less than B
)) A>B A is greater than 8, <.= A<=B A is less than or

equal to 8
>)= A>=B A is greater than or

equal to B

- () A<>B A is not equal to B

Example:
x>y
NUH8(=O

A=B

Examples of string relational symbols are shown in Section 3e~e

DIAS BASIC III 84-06-01

conventions and syntax

logical expres.ions

3-4

A logical expression yields a truth value that reflects the
existence or nonexistence of a particular condition.

A logical expression is one of the following:

1. An integer expression (FALSE if 0, TRUE if <> 0).

2. A set of relational expressions, corrected by logical
operators.

3. A set of integer expressions, or logical expressions, or
both, connected by logical operators.

Logical operators are used in IF - THEN and such statements where
some condition is used to determine subsequent operations within
user program.

The logical operators are as follows (where A and B are RELATIONAL
EXPRESSIONS):

Basic III
Operator

NOT

OR

XOR

IMP

EQV

AND

Example

NOT A

A OR B

A XOR B

A IMP B

A EQV B

A AND B

Meaning

The logical negative of A. IF A is true.
NOT A is false.

A OR B has the value true if either or
both A or B are true and has the value
false only if both A and B are false.

The logical exclusive OR of A and B. A
XOR B is true if either A or B is true
but not both, and false otherwise.

The logical implication of A and B. A
IMP B is false if and only if A is true
and B is false; otherwise the value is
true.

A is logically equivalent to B. A EQV B
has the value true if A and B are both
true or both false. and has the value
false otherwise.

The logical,product'of A and A. A AND B
has the value true only if A and Bare
both true and has the value false if A
or B is false.

3.1.5 Variables

A variable is a data item whose value can be changed during
program execution. A numeric variable is denoted by a fixed
variable name.

DIAB BASIC III 84-06-01

conventions and syntax 3-5

Two modes dictate the length of a variable name: EXTEND and NO
EXTEND.

In EXTEND mode variable names of up to 32 characters are
permitted, but spaces are required to delineate names and
functions unless the adjoining characters is a line number or
arithmetic operator. In NO EXTEND mode variabl, names of one
letter and an optional digit is allowed but spaces are
unnecessary. The default is NO EXTEND mode. The following are the
letters and digits which can be used to form variable names:
A.B.e.e.Z and 0.1 •••• ,9.

A name can also have an FN prefix (denoting a function name), a %
suffix (denoting an integer), a • suffix (denoting floating
point), a S suffix (denoting a string), or a subscript suffix
that consists of a set of subscripts enclosed in parentheses.

A string expression is a value that consists of a sequence of
characters, each character occupying a byte. A string expression
can be expressed either as a sequence of characters enclosed in
Quotation marks or as a variable by a variable name with a S
suffix.

Mixing of data types in a statement should be avoided. Use
integers whenever possible.

The same name in combination with various prefi~es and suffixes
can appear in the same program and generate mutually independent
variables. For example, the name A refers to a floating point
variable A. The name A can be used as follows:

A
AX
AS
A(d)
AX(d)
AS(d)
FNA
FNAX
FNA$

floating point variable A
integer variable AI
string variable A$
floating point array A with dimension subscript d
integer array AX with dimension subscript d
string array A$ with dimension subscript d
floating point function A
integer function AX
string function AS

In the EXTEND mode a name can be used as follows:

SECANT
SECANTI
SECANTS
SECANT(d)
SECANT%(d)
SECANT$(d)
FNSECANT
FNSECANTZ
FNSECANT$

floating point variable SECANT
integer variable SECANT!
string variable SECANTS
floating point array SECANT with subscript d
integer array SECANTX with subscript d
string array SECANTS with subscript d
floating point function SECANT
integer function SECANTI
string function SECANTS

Variables are assigned values by LET, INPUT and READ among other
statements. Variables are set to zero before program execution.

It is necessary to assign a value to a variable only when an
initial value other than zero is required. To ensure that later

DIAB BASIC III 84-06-01

Conventions and syntax 3-6

changes or additions will not cause problems it is good
programming practice to always initialize all variables to zero.

Subscripted variable. (array) and the DIM statement

In addition to the simple variables the use of subscripted
variables (arrays) is allowed. Subscripted variables provide the
programmer with additional computing capabilities for dealing with
lists, tables, matrices. or any set of related variables.
Variables are allowed one (vector) or two or more (matrix)
sUbscripts.

The name of a subscripted variable is any acceptable variable name
followed by one or two integers enclosed in parentheses. For
example. a list might be described as A(I) where I goes from 0 to
5 a s follows: A(0). A(1). A(2 l , A(3). A(4). A(5) .

This allows the programmer to reference each of six elements in
the list. which can be considered a 1-dimensional algebraic vector
as follows:

ACO)
A (1)
A(2)
A(3)
A (4)

A (5)

A 2-dimensional matrix B(I.J) can be defined in a similar manner.
It is graphically illustrated below:

B (0,0) B(0.1) 8(0,2) B(0.3) B(O.J)
B (1 .0) B(1 • 1) B(, .2) B (1 .3) B(1 , J)
8(2.0) B (2 ,1) 8(2,2) 8(2,3) B(2,J)
B(3.0) B (3 • 1) B(3.2) B (3 .3) B (3. J)

. B(1.0) B(I • 1) B(I ,2) B(I .3) B(I , j)

Subscripts used with subscripted variables can only be integer
values. SUbscripts are truncated to integers if they are of
floating type.

A (DIM) dimension statement is used to define the maximum number
of elements in an array.

Arrays may start with sUbscript 0 or 1. An array dimensioned A
(5). will have 5 elements if option base 1 is specified or 6
elements if option base 0 is specified. The default is option base
O. If an option base is specified, it must be declared before any
array is dimensioned or used.

If a SUbscripted variable is used without a DIM statement. it is
assumed to be dimensioned to length 9 or 10 in each dimension
(that is, having 10 or 11 elements in each dimension. 1 through 10
or 0 through 10 respectively). DIM statements are usually grouped
together among the first lines of a program.

DIA8 BASIC III 84-06-01

Conventions and syntax 3-1

The first element of every matrix is automatically assumed to have
I subscript of (0,0), if OPTION BASE 1 is not specified~

Example: OPTION BASE 0

10 REM - MATRIX CHECK PROGRAM
20 DIM A(4.8)
30 FOR 1=0 TO 4
40 LET ACI.O)=I
50 FOR J=O TO 8
60 LET A(O,J)=J
70 PRINT A(I.J);
80 NEXT J
90 PRINT
100 NEXT I
999 END

RUN
0 1 2 3 4 5 & 7 8
1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

Example: OPTION BASE 1

10 REM - MATRIX CHECK PROGRAM
15 OPTION BASE 1
20 DIM A(4.8)
30 FOR 1=1 TO 4
40 LET A(I,1)=!
50 FOR J=1 TO 8
60 LET A(1 sJ)=J

10 PRINT ACI.J);
80 NEXT J
90 PRINT
100 NEXT I
999 END

RUN

1 2 3 4 5 6 7 8
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0

Notice that a matrix element. like a simple variable. has a value
of 0 until it is assigned a value.

3.1.6 Constants

Numeric constants retain a constant value throughout a program.
They can be positive or negative. Numeric constants can be
written using decimal notation as follows:

DIAB BASIC III 84-06-01

Conventions and syntax

+3

-4.567
12345.6
-.0001
-1.234E+5

3-8

The example constants would be stored as floating point, since
they have no % suffix.

The use of an explicit decimal point or percent sign is
recommended in all numeric constants to avoid unnecessary data
conversions and to improve documentation.

3.1.7 Reserved words

ASS
ADD
ASCII
ATN
AUTO
BYE
CALL
CHAIN
CHR
CLEAR
CLOSE
CLS
COMMON
COMP
CONTINUE
COS
CUR
CVT
CVTF
DATA
DEF
DIGITS
DIM
DIV
DOUBLE
EDIT
ELIF
ELSE
END
ERASE
ERRCODE
ERROR
EXP

EXTEND
FIELD
FIX
FLOAT
FN
FNEND
FOR
GET
GOSUB
GOTO
HEX
IF
IFEND. ELSE
INP
INPUT
INSTR
INT
INTEGER
KILL
LEFT
LEN
LET
LIST
LOAD
LOG
LOG10
LONG INT
MERGE
HID
HOD
MUL
NAME
NEW

NEXT
NO
NOT RACE
NUM
OCT
ON
OPEN
OPTION BASE
OPTION EUROPE
OR
OUT
PEEK
PEEK2.
PEEK4
PI
POKE
POSIT
PREPARE
PRINT
PUT
RANDOMIZE
READ
REM
REN
RENUMBER
REPEAT
RESTORE
RESUME
RETURN
RIGHT
RNO
RUN
SAVE

SCR
SGN
SHORT INT
SIN
SINGLE
SLEEP
SQR
STAT
STATUS
STOP
STRING
SUB
SWAP
SWAP2
SYS

. TAB
TAN
THEN
TIME
TRACE
UNSAVE
UNTIL
USING
VAL
VARDOT
VARPTR
WEND
WHILE

3.2 Integer and floating point

Normally, all numeric values (variables and constants) specified
in a Basic III program are stored internally as floating point
numbers. If the numbers to be dealt with in a program are

DIAB BASIC III 84-06-01

Conventions and syntaK

intergers. significant economies in storage space can be achieved
by use of the integer data type. Integer arithmetic is also
faster than floating point arithmetice Thi~ section discusses
integer and floating point operations within the conte~t of
Basic III. Higher precision may be obtained. using the string
arithmetic functions with numeric values as strings with max. 126
digits length. Refer to section 3.3.

A constant. variable or function can be specified as an integer by
ending its name with the X character.

Example:
AX
-8%

FNX% (y)

Z3%

The user always has to specify with a X-character to indicate
where an integer is to be generated. Otherwise. a floating point
value is produced. The opposite holds when t,he non-default INTEGER
mode has been selected 0 In the INTEGER mode, all variables etc.
are considered as integers if not marked with a decimal point
after the name.

Example in INTEGER mode: A FNX(y)
- 8. 23.

integers
floating point

When ra.1.s1.ng to an integer power. the power. value should be
indicated explicitly as an integer.

Basic III automatically converts integers and floating point
variables to the desired format, required '5 argument to Basic III
statements or functions.

Floating Point Value.

Floating point values range from:

2.93874 K 10_39 through 1.70141 x 1038 - single precision

1Q79769313486232E+308 through
4.4501477170144E-308 - double precision

All floating point variables and expressions are calculated to
single or double precision. Hixing of precision is not possible.
The default is single precision.

Single precision allows for six digits of significance and double
precision allows for sixteen digits. Numbers are internally
rounded. using 5/4 round method to fit the appropriate precision.
Numbers may be entered and displayed in three formats:

1. Whole - 153
2. Fractional - 34.52
3. Scientific Notation (E-format) - 136E-2

DtAS BASIC III 84-06-01

Conventions and syntax

Integer Values

The range of integer numbers is:
-2147483648 through 2147483647

3.2.1 Use of integers as
logical variables

3-10

Integer variables or integer valued expressions can be used within
IF statements in any place that a logical expression can appear.
Any non-zero value is defined to be true and an integer value of
0% corresponds to the logical value false. The logical operators
(AND, OR, NOT, XOR, IMP. fQV) operate on logical (or integer) data
in a bit-wise manner.

Note: The integer -1% is normally used by the system when a true
value is required. Logical values generated by Basic III
always have the values -1% (true) and 0% (false).

Logical operations on integer data

Basic III permits a user program to combine integer ~ariables or
integer valued expressions using a logical operator to give a bit
wise result.

, For the purpose of logical operations the truth tables following
are valid. A is the condition of one bit in one integer value and
B is the condition of the bit in the corresponding bit position of
another integer value.

The truth tables are as follows:

A B A AND B A OR B A XOR B A EQV B A IMP B NOT A

1
1
o
o

1
o
1
o

1
o
o
o

o
1
1
o

1
o
o
1

1
o
1
1

o
o
1
1

The result of a logical operation is an integer value generated by
combining the corresponding bits of two integer values according
to the rules shown above.

The result of any logical operation can be assigned to an integer
or a floating point variable.

Example:
10 REM BIT VALUES: 13 = 00001101. 14 = 00001110
20 REM ** 13 or 14 = 00001111 = 15
30 A% = 13% OR 14%
40 PRINT AI
RUN
15
basic

DIAB BASIC III 84-06-01

Conventions and syntax 3-11

Variables and valued expressions can be operated on by AND. OR.
XOR. EQV. IMP and NOT to give I bit-wise integer result~ If
logical operations are done on floating point variables or
floating point valued expressions. conversion to integer format is
done before the execution of the logical operation.

Example:
100 IF AI AND 1% THEN

is the sime IS:
100 IF AX AND 106 THEN

3.2e2 Input/Output with integers
and floating point

Input Ind output of integer variables is performed in exactly the
same manner as the corresponding operations on floating point
variables.

Any number which can be represented by up to six significant
digits in single precision mode (or 15 digits in DOUBLE precision
mode) is printed without using the exponential form.

Any floating point variable that has an integer value is
automatically printed as an integer but is internally still a
floating point number.

If more than six digits fsingle precision) or fifteen digits
(double precision) are generated during any computation using
floating point numbers, the result is automatically printed in
E-format:

[-])(E
where: ~ = Sign of the number. if number is negative
x = A maximum of six digits for single precision and

fifteen digits for double precision
E = Represents the expression -times 10 to the power of·
y = An exponent in the range (-38 through +38) single

(-308 through +308) double
Examples:

SE-06 = 5><1°. 6 = .000005

-125E+4 = -125 x 104 = -1250000

Input allows all the formats used in output. When a floating point
value is assigned to an integer variable. then the fractional
portion is lost and rounded off to an integer.

3.2.3 Integer arithmetic

Arithmetic with integer variables is performed in modulo 2**32.
The number is -2147483648 to +2147483647 and can be regarded as a
continuous circle with -2147483648 following +2147483647.

Integer division forces truncation of any remainder. Note that the
function HOD makes the remainder available~

DIAS BASIC III 84-06-01

Conventions and syntax

Example:
3%/4% = 0 and 283%/100% = 2.

3-12

When an operation is performed with both integer and floating
point data, the operation is executed with floating point
precision but the result is stored in the format indicated as the
resulting variable.

Example:
10 LET BZ = Z7. + 3/X

The result is truncated to give ex an integer value.

Mathematical operations

When more than one operation is to be performed in a single
formula, rules are observed as to the precedence of the operators.
The arithmetic operations are performed in the following sequence.
Operation described in item 1 has precedence.

1. Any formula within parentheses is evaluated first. Then the
parenthesized quantity is used in further computations. Where
parentheses are nested the innermost parenthetical quantity is
calculated first. For example, (A+(B*{C**3))) is evaluated as
follows:

Step 1 - (C**3>, Step 2 - (8*((**3)), and Step 3
(A+(B*(C**3))).

2. In absence of parentheses the following precedence is
performed:

a. Intrinsic or user-defined functions
b. Exponentiation {**}
c. Unary, minus (-l, that is, a negative number or variable
d. Multiplication and division (* and /)
e. Addition and subtraction (+ and -)
f. Relational operators (=. <>. >=, <, <=, »
g. NOT
"h. AND
i. OR and XOR
j. IMP
k. EQV

Thus, for example, -A**B with a unary minus, is a legal
expression and is the same as -(A**B). This implies that -2**3
evaluates as -8. The term A**-B is not allowed; however,
A**{-B) is allowed.

3. In absence of parentheses, operations on the same level are
performed left to right, in the order the formula is written.

User defined integer functions

An user function is defined to be of integer type by inclUding
the ·Z· suffix following the function name.

DIAB BASIC III 84-06-01

Conventions and syntax

Example:
10 DEF FNAZ(XX) = XX * (Z% + XI)

A floating point function could be written as:

Example:
10 DEF FNV (XX)=XX*(Z.XX)

3.2.' Representation of numeric
data in Basic III

3-13

There are three possible way to represent numeric data: INTEGER.
STRING or FLOATING POINT. Each representation has its advantages
and disadvantages. The choice of representation depends on:

1. The range of values of the data

2. The memory space available for the data storage

J. The required computation speed
4. The required accuracy of computation

INTEGER data

INTEGER data is - exact
- fast
- requires only 4 bytes of storage
- limited in range to 9 1/2 digits
- requires awareness of ov.r~low possibility

Integer data. variables, constants and arrays are stored in four
byte~, i.e. 32 bits with two's complement binary notation. The
value range is limited to ~2147483648 to ~2147483647.

Add, subtract and multiply operations produce .xect result. but be
careful of overflow, as Basic does not trap overflow as long as
the result is within the 32 bit un-signed range (0 - 4294967295).
An integer divide produces the truncated Quotient Q=A/B and the
remainder of AlB may be obtained by R=A-Q*8.

STRING data

STRING data is exact within the selected range
- slow (1/2 the speed of floating point

depending on accuracy selected)
- requires large memory space. one byte/digit

plus sign and decimal point.
- large range, selectable max 126 digits

Strings containing legitimate numeric values can be manipulated
with built-in functions. The string has the same form as a numeric
constant.

The ADOS and SUBS functions provides explicit control over the
number or decimal places in the result. The HUL$ and DIV$

DIAS BASIC III 84-06-01

Conventions and syntax 3-14

functions allow either decimal place control or precision control:

ADO$(A$,BS,n)
SUB$(A$.B$,n)

MUL$(A$,B$,n)
DIV$(A$,B$,n)

VAL(A$)

NUH$(F)

COHPZ(A$,B$)

yields a result string with n decimal places.

yields a result string with n decimal places
if n is positive, but with '-n' digits of
precision if n is negative.

converts a numeric string to a floating point
number.

converts a floating point number to a string
with the number of digits according to the
earlier given DIGITS statement.

compares the algebraic values of two strings.

String numeric data provide the largest range of any data type. Up
to 126 digits (including sign and decimal point) can be handled.
In addition all computation is exact within the programmer defined
limits of decimal places and/or precision.

The disadvantage of the string variables is their size. One byte
for each digit, plus two for possible sign and decimal point plus
the normal overhead tables common to all string variables. Also a
string arithmetic statement requires more program space than an
equivalent integer or floating point stateme~t.

The string result of a string arithmetic function is always left
justified. The length of the result string varies with the result.

Floating point data

FLOATING POINT is inexact
- larger significance:

7 digits in SINGLE prec.mode
15 digits in DOUBLE prec.mode

- ~ar~er range 2.9E-39 to 1.1E+38 Single
-IE-30B Double

- 4 bytes in SINGLE precision mode
8 bytes in DOUBLE precision mode

- slow, 3 - 5 times slower than INTEGER

It is not possible to mix precision modes in a program.

Care must be taken when using floating point variables when
comparing two numbers, due to:

- floating point calculations are by their nature inexact.

- since floating point numbers are internally stored as
binary numbers, with a binary exponent, conversion
between decimal and binary must be performed whenever a
decimal number is moved to or from a variable, like when
a variable is printed or input.

DIAS BASIC III 84-06-01

Conventions and syntax 3-15

The inexactness is due to the fact that only 7 or 15 digits
(approx) is retained in any computation. As an example. adding two
nearly equal numbers with opposite signs introduces insignificant.
figures. As a consequence. (A+B)+C in a floating point computation
is NOT always equal to A+(8+C).

Example: A = 2222223
B = -2222221
C = 1e544444

then A+B = 2.000000
(A+B)+C = 3.544444

but B+C = -2222219
A+(8+CJ = 4.000000

The binary decimal conversion problem is mainly due to that
decimal fractions are not always exactly representable as binary
fractions. In particular the decimal fraction 0.1 has the binary
expansion 0.00011 0011 0011 ••.•• (a~ infinite expansion).
Converting the 0.1 (decimal) to floating point must be either
rounded or truncated~ which introduces a small error. This can
become magnified. depending on the calculation. performed and show
up in a significant digit later.

One possible approach when the accuracy must be kept high. is to
bias th~ variables so that they always take integer values. As an
example currency should be expressed in the smallest coin (Swedish
crowns should be expressed in 'oere'. i.e. 1 SEK = 100 oere). This
approach requires the programmer to remember any scale factors
used and adjust the computations acco~dingly. The FIX function can
be used if necessary to keep variables as pure integers and
perform roundinge

Example:
FIX(A*O.5 + .5) calculates 501 of A. but still rounded to
a whole number.

If the programmer decides to retain variables with their natural
radix point the DIGITS statement can be used to specify the
number of decimal digits obtained in binary to decimal
conversions. This specification applies to the PRINT and the NUMS
statements. The DIGITS statement is dynamic, so that various
precisions can be used in the program.

Comparing floating point numbers, whQse values may not be exact.
can be a problem. There are three ways to overcome this:

- Use the FIX function to limit the number of decimal
places.
IF FIX(A*100) = 0 .e •...

2 - Use the NUMS and COMPI functions to convert the floating
point number, according to the DIGITS precision and
compare the items as string vari~bles.

COHP%(NUH$(A).·O·) = 0

DIAB BASIC III 84-06-01

Conventions and syntax 3-16

3 - Compare the values. but define a small difference to
mean that the values are equal.
IF (A > -.001) AND (A < 0.001) .

Physical representation of floating point numbers

Every floating point number is represented by the exponent part
(e) and the fraction part (f), such as

Number = [-] f t 2
e 1/2 (= f < 1

Example: the number 1.5 is represented by 0.75 * 2,

The single, double representation follows the IEEE standard for
floating point.

Single:
<1) <--8--> <---23--->

s e f

The first byte contains the sign of the fraction and the 1 most
significant bits of the exponent.

The least significant bit of the exponent is stored in bit 7 of
the second byte.

The exponent is biased by 128 to avoid using any sign in the
exponent.

Double:
<1> <--11--) <--52-->

s e f

The remaining 23 or 52 bits hold the fraction as a positive binary
fraction in the range 1/2 <= f < 1. This value is said to be
normalized. i.e. no leading binary zeroes are allowed. As all
numbers are normalized. the first bit is always 1. which is used
in Basic III, to achieve one bit more in precision. The first bit
is never stored in the memory and the second bit is stored in bit
6 or bit 3 (Double) of the second byte etc. to achieve 24 bits of
accuracy in the fraction. An example is the decimal number 0.5,
which can be exactly represented by:

exponent = 0
sign = 0
fraction = 0

3.3 Strings

(stored in first byte as 128 dec.)

(Hidden bit gives number = 1 * 2)
-1

Besides the manipulation of numerical information Basic III also
processes information in the form of character strings. A
character string is a sequence of characters. This section defines
string elements within the context of Basic III.

DIAB BASIC III 84-06-01

Conventions and synta~

3.3.1 S~ring constan~s

3-17

Character string constants are allowed analogous to numerical
constantse Character string constants are delimited by either
single (') or double (-) quotes. If the delimiting character
occurs twice in a string sequence it is considered as p.rt of the
te~t constant.

The value LET'S can be expressed in two ways: -LET'S· or
• LET' 'S' •

Examples:
10
20
30

A1$ = -CHARLES-
IF A$ = -GOOD- 6010 40
BS = 'DON' 'T' (has the value DON'T)

3.3.2 String variables

Any legal name followed by a dollar sign ($) character is a legal
name for string variable.

Examples:
A$.B4$ are simple string variables.
B$(S).H5$(N.0).J$(K) are sUb~cripted string variables.
AHOUNT$(4) - (EXTEND HODE ONLY)

Note: The same ~ame, without the S. denotes a numeric variable
which can be used in the same program.

The same name can be used as a numeric variable and as a string
variable in the same program.

Example:
A.A$ and AX are allowed in the same program.

3.3.3 Subscripted string variables

The DIM-statement is used to define string lists and string
matrices.

Examples:
DIM W$(2,4)=8 !STRING LENGTH 8 maximum subscript values

2 and 4
DIM R5$(9.9) !STRING LENGTH UP TO 80; ma~imum sUbscript

values 9 and 9
DIM NAME$(7.6.3.2)=10 !STRING LENGTH 10; four

dimensional matriK with maximum subscript
values 7.6.3 and 2

3.3.4 S~ring size

The length of a non-dimensioned string variable is automatically
set to the current length the first time the string is assigned a
non-null value «>").

DIAB BASIC III 84-06-01

Conventions and syntax 3-18

If less than 80 characters are used, then a default length of 80
characters is assigned.

Each string. both scalar and each array element. has two lengths:

1. Max length is the number of bytes allocated to the string.

2. Current length is the number of bytes currently in use.
Current length may vary between zero and max length. The
current length is the only visible length; this length may be
examined by the function LEN etc.

Both lengths are initiated to zero as a program is started. They
are modified when the string is dimensioned or assigned. If a
string is assigned a null value (=_M) the current length will be
set to zero. No further action is taken.

If a string is assigned a non-null value and has a non-zero max
length, the string length is checked. If the string length is
sufficient. a number of bytes will be allocated to store the data
and the current length will be set to the number of allocated
bytes. If the string length is not sufficient. an error message
will be written. A maximum of 80 bytes is always allocated if OIM
is not used.

3.3.5 String functions

Basic III provides various functions for use with character
strings. These functions permit the program to:

.perform arithmetic operations with numeric strings

.concatenate two strings

.access part of a string

.determine the number of characters in a string

.generate a character string corresponding to a given number
or vice versa

.search for a SUbstring within a large string etc.

Section 6.2 discusses each string function in detail.

3.3.6 String arithmetic

The string arithmetic features functions that treat numeric
strings in arithmetic operands. This is a way to perform
calculations with greater precision. Numeric string variable names
must be suffixed with a dollar sign ($) character. Numeric
string constants must be bounded by quotation marks (-) or
apostrophes t '}.

The maximum size of a string arithmetic operand is 126 characters
including the sign and the decimal point.

OIAB BASIC III 84-06-01

Conventions and syntax

3.3.7 S~ring input

3-19

The READ. DATA and INPUT statements can also be used to assign
data to string variables in a program.

Example:
10 INPUT ·YOUR ADDRESS?-;A$.
20 INPUT ·YOUR NAHE?-;B$

is the same as
10 PRINT -YOUR ADDRESS-;
20 INPUT A$
30 PRINT ·YOUR NAME-;
40 INPUT BS

INPUT LINE is useful for string input because it accepts embedded
blanks. commas, etc. It accepts only one line from the keyboard
including carriage return and line feed.

Example:
10 INPUT LINE OS

Example:
10 READ A. B. CSt D
20. DATA 17.14,61.4

This results in the following assignments:
A = 11
B = 14
C$ = character string -6'-
D = 4

The INPUT statement is used to input character strings exactly as
though accepting numeric values. String constants are not allowed
in string input statements.

3.3.8 String ou~put

Only those characters that are within quotes are printed when
character string constants are included in PRINT statements. The
delimiters are not printed:

Example:
10 PRINT 'ALL IS OKAY
RUN
ALL IS OKAY
basic

Strings can also be stored in files on an output device.

3.3.9 Rela~ional opera~ors

The relational operators. when applied to string operands~

indicate alphabetic sequence.

Example:
15 IF A$(I)<A$CI+1J

DIAB BASIC III 84-06-01

GOTO 115

Conventions and syntax 3-20

When line 15 is executed the following occurs: AS(!) and A$(I+1)
are compared; if A$(I) occurs earlier in alphabetical order than
A$(I+1). execution continues at line 1'5.

The chart below contains a list of the relational operators and
their string interpretations.

Operator Example Meaning

= A$=B$ The strings A$ and BS are eQuivalent.
< A$('e$ The string AS occurs before B$ in

collating sequence.
(= A$<=B$ The string AS is equivalent to or occurs

before BS in collating sequence.
> A$>B$ The string AS occurs after BS in

collating sequence.
>= A$>=B$ The string AS is equivalent to or occurs

after BS in collating sequence.
<> A$<>B$ The strings AS and as are not equivalent.

~-~-~------~~------~~--~---~-~--~~~~--~------~------~--~---~--~~

When two strings of unequal length are compared, the shorter
string (of length n) is compared with the first n characters of
the longer string. If this comparison is not equal, that
inequality serves as the result of the original comparison. If the
first n characters of the ,strings are the same, the longer string
is greater than the shorter string.

A null string (of length zero) is less than any string of length
greater than zero.

3.4 Basic file name conventions

A file is a program or a collection of data stored on a disc-type
storage device. Files stay in the system permanently unless they
are explicitly removed. Files are identified by a File Descriptor,
hereafter referred to as 'fd· in the formats shown in this manual.

The file descriptor contains the file name.

The format can be expressed in two ways:

1. <filename>

2. <fil~name>.<ext>

where:

filename

ext

Name of the file. It may be from one to twelve
characters, the first alphabetic and the
remaining alphanumeric.

Ext is one to three alphabetic characters,
describing the type of data within a file.
Refer to the D-NIX Manual for details.

DIAB BASIC III 84-06-01

Conventions and syntax 3-21

For Basic III commands (SAVE.UNSAVE,LIST.
MERGE. LOAD. and RUN) the system recognizes two
different types:

.bac BAC-BASIC compressed form

.bas - BASIC uncompressed ASCII form

When the file type is omitted in these commands
(except LIST and HERGE),BASIC will look for
type .bac (compressed form) first and then
.bas (uncompressed form)o If type .bas is
specified only .bas will be searched for in the
library. The SAVE command produces the type
.bac as default, while the LIST and HERGE
commands use .bas if the type is not
explicitly given.

Example.:

Examples of legal file descriptors are:

LIST PR:

MERGE main

LOAD pack/main

UNSAVE pack/main.bac

DIAD BASIC III 84-06-01

The current program is displayed on
printer.

Merges lines from file main from the
current Directory into the current
program.

Loads program main from sUbdirectory
pa~k into working memory. main.bac is
searched first, and if not found,
main. bas is searched.

Deletes program main.bac from
subdirectory pack.

4. CONTROL COMMANDS

Contents

4.1 Introduction 4-1

4.2 Control Commands ••••••••••••••••••••••••••••••••••••••.•• 4-1
4.2.1 Control Commands

DIAB BASIC III 84-06-01

Control commands

4. CONTROL COMMANDS

4.1 Introdyction

It is possible to communicate with the Basic III interpreter
entering direct commands from the keyboard. Also. certain other
statements can be directly executed when they are given without
statement numbers 0

Commands have the effect of causing Basic III to take immediate
action. A Basic III language program, by contrast. is first
entered into the memory and then executed later when the RUN
command is given.

When Basic III is ready to receive a command. the promt *basic*
is displayed on the screen. Commands should be typed without any
line numbers.

After a command has been executed. the user will either be
prompted for more information. or Basic III will again be
displayed. This indicates that Basic III is ready for more input.
either another command or program statements.

Example:

1.00
110
<command>
basic

<command>

basic

4.2 Control Commands

Commands control the editing and execution of programs and allow
files to be manipUlated. Each command is identified by a keyword
at the start of the line. Keywords are shown in upper-case
letters. All characters of the keyword are mandatory.

Table 4-1 lists the Basic III control commands described in this
section along with a short description for each.

Table 4-1. Basic III Control Commands

Command Description

AUTO Generates line numbers automatically.

CLEAR Clears all variables and closes all files~

DIAB BASIC III 84-06-01

Control commands 4-2

Command

CONTINUE
(or CON)
ED

ERASE

LIST

LOAD

MERGE

NEW
(or SCR)

RENUMBER
(or REN)

RUN

SAVE

STATUS
(or STAT)

UNSAVE

Description

After CTRL C operation this command (CONTINUE)
restarts the program on the line where it stopped.
Gives program editing facilities.

Deletes blocks of lines from a Basic III
program.

Outputs a program to a specified file or device.

Loads the program requested into memory from a
specified device.

Inputs lines from a program on disc to the
current program.

Deletes the current program and resets all
modes to their default value.

Enables recording of lines.

Executes a Basic lIt program.

Stores the current program on a disc.

Gives information about interpreter modes and
program, data sizes.

Deletes a non-protected program from the disc.

The following sections describe the function, type, format,
arguments and use of each of the above commands. Examples are
included to show how the command can be used. Errors may occur
when using a command incorrectl~ or syntaxically wrong. A complete
list of error messages is shown in Appendix B.

4.2.1 Control Commands

AUTO

Function:

Hode:

Format:

Arguments:

Generates line numbers automatically after each
carriage return.

Direct

1. AUTO
2. AUTO <line no.l>
3. AUTO <line no.1>.<step>

Line no.1 specifies the start line and step
specifies the step value.

Both 'line no.1' and 'step' are optional. If no
arguments are given, then the line numbering starts
with the next whole loth number (i.e. f 10, 20, 30,

DIAB BASIC III 84-06-01

Control commands

etc.) after the existing line numbers. The step is
set to 10 if the new step is not included.

Use:

Examples:

CLEAR

Function:

Auto facilitates freedom from line numbering. It is
continuously available during the programming work.
Automatic line generation stops when the carriage
return is entered as first character on a line. If a
line entered causes an error message, lutomatic line
numbering is stopped and the line can be edited. The
line numbering can be started by a new AUTO commande

The automatic line numbering can be overridden by
entering a line number anyhow before the statement.
This doesn't stop the AUTO line numbering mode,
instead it will re-prompt with the same
line number once again.

Ex. 1
AUTO 10.5
The first line number will be 10 and the line number
will be incremented by 5 for each line.

AUTO 10.5
10 LET A=1
15 4C

20 -
25

Ex. 2
AUTO
10 INPUT ·CYLINDER HEIGHT =., H
20 INPUT ·CYLINDER RADIUS :., R
30 PRINT ·CYLINDER VOLUME - 2*PI*R*H
40 END
50
basic
NEW
AUTO 50
50 INPUT ·CYLINDER HEIGHT :., H
60 INPUT ·CYLINDER RADIUS :., R
70 PRINT ·CYLINDER VOLUME - 2*PI*R*H
80 END
90
basic
NEW
AUTO 100,5
100 INPUT ·CYLINDER HEIGHT =·,H
105 INPUT ·CYLINDER RADIUS :·,R
110 PRINT ·CYLINDER VOLUME -·,2*PI*R*H
115 END
120
basic

Clears all variables and closes all open files.

DIAB BASIC III 84-06-01

Control commands 4-4

Mode:

Format:

Action:

Example:

CON

Function:

Hode:

Format:

Action:

Use:

Direct

CLEAR

CLEAR does not affect the existing program which is
still left in memory_ CLEAR is necessary before
changing the precision with SINGLE or DOUBLE if
variables have already been allocated.

10 A7.=1234Z
20 END
RUN
basic
; AI

1234
basic
CLEAR
basic
; AI
o

basic
A%=4567Z
basic
; AI
4561

basic

Continues program, execution from where it was
stopped by either CTRL C entered twice or a STOP
statement.

Direct

CON

Execution of ·CON" causes the program to restart at
the line at which it stopped.

A variable may be displayed and changed using a
direct mode statement before ·CON" is used. If the
program is edited or an "END" statement caused the
program to be terminated, the ·CON" command will
cause an error and should not be used.

Example: 1 0 FOR I = 1 to 10000
20 ; 1 ;
30 NEXT I
40 END

RUN
1 2 3 4 5 ...
CTRL C
CTRL C (enter twice)
CON

DIAB BASIC III 84-06-01

Control commands

(Continue Printing)

basic

EDIT

Function:

Hode:

Format:

Argument:

Use:

Note:

CTRL-H
(Backspace)

CTRL E
(oct 005)

CTRL Ie
(oct 013)
CTRL N
(gct 016)

CTRL-D
(oct 004)

CTRL-X
(oct 030)

CTRl-I
mode

Allows a previously entered program line to be
edited.

Direct

ED <line no.)

Line no. is the line to be corrected. If line no. is
omitted the first line in the program is edited.

Once the command is entered. the line" specified will
be displayed. The cursor is positioned after the
last character on the line. The following terminal
keys will become active and can ba used at this
point.

In the description of editing functions (sections
2.3. 204. 4.2) the default control characters are
used and should be replaced by the character or
function key defined in ·usr/etc/bascap· or
·bascap·.

Hoves the cursor to the left of the current
cursor position.

Erases with the cursor on the character to erase.

Hoves the cursor one position to the right for each
touch of the key.

With the uparrow key (CTRL Ie) and downarrow key
(CTRL N) you can step up and down the program line
by line in edit mode. All lines passed (and possibly
edited) are entered into memory.

The intension is to simplyfy editing of a program
area without having to specify linenumbers for each
line.

Kills the characters from cursor to end of line.

Kills the line in the editor buffer (not in memory
if it has been entered earlier)

Enter Insertion mode. Written characters will be
placed after the the cursor until an CTRL-U
(oct 025) or Return (oct 015) is given. After ESC
editing can continue. but after Return the line is
entered into memory.

DIAB BASIC III 84-06-01

Control commands 4-6

Examples:

ERASE

Function:

Mode:

Format:

Arguments:

Use:

If an error message is displayed, when entering
a line, the cursor moves to the error position on
the line. Edit the erroneous line with CTRL-I etc.
Pressing CTRL-X at this point negates any changes
made after entering the EO-command.

When giving the ED command, all files are closed and
variables zeroed. Continued execution with CON can
not be done.

Any character (letters, digits and other printable
characters) with an octal code between 040 and 0177
replaces the current character when written.

LIST
10 A$="'.472S"
20 8$=-7.75"
30 ;ADO$(A$,B$,4)
basic

1. To change 1.4126 to 1.26 in line 10 do the
following:
a . ED 10
b. Depress CTRL-H (leftarrow) four times
c. Depress CTRL-E (Erase) twice
d. Depress RETURN key

2. To insert 423 before 75 in line 20, do the
following:
a. ED 20
b. Depress CTRL-H (leftarrow) two times
c. Depress CTRL-I (enter insert mode)
d. Enter 423
e. Depress RETURN key

LIST 20
20 BS = -7.42375·

Deletes blocks of lines from the current program.

Direct

ERASE <argument>

Argument can be the single line number or a range of
line numbers to be listed. A single line number can
have a __" appended to or before it (e.g .. 10-, -10)
to designate all lines up to 10 or from 10 to the
end of the program are to be listed, respectively.

All lines between and inclUding the two line numbers
are removed.

DIAB BASIC III 84-06-01

Control commands 4-7

Examples: ERASE 20-200 ERASE LINES 20 UP TO AND INCLUDING
200

ERASE -100 ! ERASE ALL LINES UP TO AND INCLUDING
LINE 100

ERASE SO- I ERAS~ FROM LINE 50 TO END OF PROGRAM

LIST

Function:

Hode:

Lists all or part of the current program to the
console. printer or to a file.

Direct

Format: 1. LIST
2. LI 51
3. LIST

[fd] [,argument]
[argument]
<PR:) [.argument]

Arguments:

Use:

fd is the file descriptor as previously defined in
Section 3.4.

Argument can be the single line number or a range of
line numbers to be listed. A single line number can
have I ~_. appended to or before it (e.s., 10-. -10)
to designate all lines up to 10 or from 10 to the
end of the program are to be listed. respectively.

PR: specifies that the lines will be listed on th~

printer.

1. LIST pgm/xyz
Saves a program in an uncompressed way on the disc
in directory 'pgm' under specified file name
xyzobas. Note that only a file saved with LIST can
be accessed by a utility outside of Basic III.
The MERGE command also requires a file in
LIST form. While loading a file. saved with LIST,
BASIC checks for syntactical errors and gives the
operator a possibility to correct erroneous lines.
(Compare the note under the LOAD command).

2. LIST
The entire program is listed.

3. LIST 100
Line 100 is displayed on the screen.

4. LIST 100-1000
All lines between 100 and 1000 inclusive are
displayed on the screen.

5. LIST <PR:>
The entire program is output on the printer.

6. LIST -1500
All lines up to 1500 are listed.

DIAB BASIC III 84-06-01

Control commands 4-8

Note:

Examples:

LOAD

Function:

Mode:

Format:

Arguments:

Use:

Note:

7. LIST subfil,2000-
All lines from 2000 through the last line are listed
to the file ·subfil.bas·.

Large volumes are displayed on the screen one page
(screen) at a time. The next line will be displayed
when you press the space bar. The next page if you
press CTRL-N.A long listing may be stopped by
pressing CTRL-C, RETURN or entering any Basic III
command/statement.

LIST acc~/payroll ! SAVE FILE 'payroll' in directory
'acct'
LIST ! LISTS THE ENTIRE PROGRAM ON THE SCREEN
LIST 100 ! LISTS LINE 100
LIST 100 - 500 ~ LISTS LINES 100 TO 500
LIST PR: ! LISTS THE ENTIRE PROGRAM ON PRINTER
LIST PR: ,100-200 ! LISTS LINES 100-200 ON PRINTER

Loads a Basic III program from external storage
into working storage.

Direct

LOAD <fd>

fd is the file descriptor as previously defined in
Section 3.4.

Note that when the file type is omitted, the
computer will-look for type .bac (compressed form)
first and then .bas (uncompressed form).

If type .bas is specified, only .bas will be
searched for in-the directory.

Loads the specified file after having cleared the
working memory.

All open files are closed, the program area and
buffers are reset. All variables are erased.

If the file has been saved in un-compressed form
with the LIST command, BASIC does syntactical checks
of each line as if the lines were entered by the
operator. Erroneous lines are reported. but are
still loaded as comment lines, which may be edited
by the operator. The time to load a program in
compressed form is much shorter than when loading
from an un-compressed file.

The code in compressed files, saved with the SAVE
command. depends on the BASIC version and may not be
possible to load with another BASIC version. Save
the program with LIST for compatibility. The first

DIAB BASIC III 84-06-01

Control commands 4-9

Examples:

MERGE

Function:

Hode:

Format:

Arguments:

Use:

Note:

Example:

byte in a file with compressed code contains the
BASIC version number.

Ex. 1
LOAD test/abc200

Filename abc200 in the sUbdirectory 'test'is read,
not to the END statement. but the entire file.

Ex. 2
LOAD mast
LOAD mast. bas

Filename 'mast' in un-compressed format is to be
loaded into working storage.

Merges lines from a file in un-compressed form into
the program.

Direct

HERGE <fd)

fd is the file descriptor as previously defined in
Section 3.4.

The numbered lines from the specified file are
inserted in line number sequence in the current
program. The lines are validated on input. New lines
are inserted in line number sequence. If a new line
has the same lin.' number as an existing line then
the old line is replaced by the new. All variables
are initializedo

The entire file is read.

The program being merged must have been saved using
the LIST command.

Existing program xray

LIST xray
5 Y=1
10 PRINT

/ __ 2.0 FOR L= 1 TO 10.
30 PRINT L TA8(Y) -1-;
40 READ Y
50 FOR 1=1 TO Y
60 PRINT - * -i.
70 NEXT I
80 PRINT
90 PRINT TA8(Y) -I
100 NEXT L
*basic·

DIAB BASIC III 84-06-01

Control commands 4-10

NEW

Function: '

Mode:

Format:

Use:

Note:

Example:

The following program file is stored on an external
disk under the name 'table'
200 DATA 5,4,0,3.1
300 DATA 10,15,28,15,6
999 END

The commands: LOAD xray
MERGE table

add lines 200 to 999 into the existing program.

LIST xray
5 Y=1
10 PRINT
20 FOR L=1 TO 10
30 PRINT L TAB(Y) -1-;
40 READ Y
50 FOR 1=1 TO Y
60 PRINT - * -
70 NEXT I
80 PRINT
90 PRINT TAB(Y) -I-
100 NEXT l
200 DATA 5,4,2,3,1
300 DATA 10.15,28,15,6
999 END

Clears the user's program area from working storage.

Direct

NEW

Clears working storage and all variables and resets
the pointers. The effect of this command is to erase
all traces of the program from memory and to start
over.

All open files are closed.

Use this command before typing in a new program.

The SCR command can also be used. It works just like
NEW.

Existing program
RUN

basic
NEW

Type in a new program

RUN Run the second program

DIAB BASIC III 84-06-01

Control commands

RENUMBER

Function:

Hade:

Format:

Arguments:

Use:

Example:

Changes the line numbering in the current programe

Direct

1. REN
2. REN <1st line no.><.increment)
3. REN <1st line nO.>(,increme,nt>(.start line

-last line>

1st line no. is required in formats 2 and 3 above
and is the number to be given to the first line. The
default is 10.

Increment is required in formats 2 and 3. It is the
increment desired between lines. The default is 10e

Start line-last line is the range of lines to be
renumbered. As format 3 shows, both -1st line no.~

Ind the -increment- must be specified.

All line references in the program will be changed
according to the REN commando

Any references to line numbers in GOSUB, GOTO. IF,
ON and RESUME statements are changed to the new
numbers i'f ne ces sary.

If any statement in the program references a line
number and that line number does not exist. an error
message is printed on the terminal. Renumbering is
not done.

Existing Program
LIST
2 A = 1
3 B = A+2
7 PRINT A,B
10 END
*basic·
REN
basic
LIST
10 A = 1
20·8 = A+2
30 PRINT A.B
40 END
basic
REN 10,5
*basic·
LIST
10 A = 1
15 B = A+2
20 PRINT A,B
25 END
tbasic*
REN 100,20,15-25

DIAB BASIC III 84-06-01

Control commands

basic
LIST
10 A =
100 B = A+2
120 PRINT A,B
140 END
basic

RUN

4-12

Function:

Mode:

Format:

Arguments:

Use:

Note:

Examples:

loads and executes a Basic III program or executes
the current program.

Direct

RUN [fd]

fd is the file descriptor as previously defined in
Section 3.4.

The type specification in fd is the kind of file
.bac
.bas

Note that when the file type is omitted, the
computer will look for type .bac (compressed form)
first and then .bas (uncompressed form). If type
.bas is specified only .bas will be searched for in
the directory.

1. RUN
All variables and arrays in the program area
are erased and all buffers are cleared. The
actions of a RESTORE statement are performed
and then execution of the current program is
started at the lowest numbered line.

2. RUN <directory> <filename>
The action of a LOAD command is performed.
Execution of the loaded program is then started
at the lowest numbered line.

Compare the note under the LOAD command.

Ex. 1
10 READ A,B
20 LET A = A + B
30 PRINT A
40 DATA 2,3
50 END
RUN

5
basic

If the same program is a file in the current
directory,with the name aaplusb' then:

DIAB BASIC III 84-06-01

Control commands

Ex 0 2
RUN aplusb

5
basic

SAVE

'.

Function:

Hode:

Format:

Arguments:

Use:

Note:

Example:

SCR

Function:

Hade:

Format:

Use:

Creates a disc file and stores the current program
into that file in compressed format.
Direct

SAVE <fd>

fd is the file descriptor as previously defined in
Section 3.4.

The command causes the program, which is currently
in the working storage. to be saved in compressed
form under the given file name (type .b~c). No other
type can be specified. The program is saved in a
compressed way to enable faster loading.

If the file already exists on the disk the old
contents in the file will be destroyed and replaced
by the new program~

If the file is saved via SAVE. the file cannot be
listed by a utility outside of Basic III. If this is
desired. refer to LIST command.

Compare the note under the LOAD command. concerning
the difference between program files in compressed
and un-compressed forme.

10

999 END
SAVE ACT

. Clears the user's program area.

Direct

SCR

Clears working storage and all variables and also
resets the pointers. The command erases all traces
o~ the existing program from memory and starts over
againe

DIAB BASIC III 84-06-01

Control commands 4-14

Note:

Example:

STAT or
STATUS

Function:

Mode:

Format:

Use:

Example:

UNSAVE

Function:

Type:

Format:

Arguments:

All open files are closed. Use this or the NEW
command before entering a new program.

NEW and SCR are just different names for the same
command.

100 -THIS IS A TEXT-
200 A = 4
300 A
RUN
THIS IS A TEST

4
basic
SCR
RUN
basic

Gives information about the status of the
interpreter: modes. program size. data size.

Direct

STAT

To check that the interpreter is set to the·wanted
modes.

STAT
NO EXTEND. FLOAT. SINGLE. LONG INT
NO PROGRAM
basic
10 EXTEND
RUN
basic
STAT
EXTEND. FLOAT, SINGLE, LONG INT
PROGRAM SIZE 35 bytes, READY TO RUN
DATA SIZE 0 BYTES
basic

Erases a file from a specified disk.

Direct

UNSAVE <fd>

fd is the file descriptor as previously defined in
Section 3.4.

Note that when the file type is omitted, the

DIAB BASIC III 84-06-01

Control commands 4-15

Examples:

computer will look for ebac (compressed form) first
and then ebas (uncompressed)~

If type .bas is specified. only obas will be
searched for in the directory.

Ex • 1
After the user has completed all work with file XYZ
in the current directory, the file can be removed
from storage by executing the following statement:

UNSAVE XYZ

Ex. 2
Erase file 'proga' which is a text file with type
.txt.

UNSAVE proga.txt

DIAB BASIC III 84-06-01

5. STATEMENTS

Contents

5.' Introduction .··.· · 5- 1

5.2 Data Control Statements•........... 5-1
5.2.1 Data Control Statements

5 . 3 In put lou t put Stat erne n t s•......•....•..••••••••••.... 5 - 14
5.3.1 Input/Output Statements

5.4 Program Control Statements 5-38
5.4.1 Program Control Statements

DIAB BASIC III 84-06-01

Statements

5. STATEMENTS

5.1 Introdyction

5-1

Statements that are used to write programmes are divided in three
main groups:

1. Data control statements
2~ Input/Output statements
3. Program control statements

The statements, their function, mode, format, use, and assorted
examples are given in the following sections.

'.2 Data control statements

Data control statements consist of the set of statements shown in
Table 5-1. Each data control statement is described in detail
following this table.

Table 5~1. Data Control Statements

Statement Description

DATA Assigns values to variable (via READ).

DIM Defines size of vector/matrix and strings.

DOUBLE Designates all subsequent floating point variables
and expressions to be double precision.

EXTEND Specifies that spaces are significant, which allows
for variable names of up to 32 characters in length.

FLOAT Sets listing and input format to float mode.

INTEGER Sets listing and input format to integer mode.

LET Assigns a value to a variable.

LONG INT Sets CVTZ format to 32 bit integer.

NO EXTEND Specifies that spaces are not significant and allows
for variable names of one letter and an optional
digit.

OPTION BASE Defines an array's low order member position.

RANDOMIZE Selects a random starting point for a function.

READ Assigns value(s) to variable(s).

RESTORE Hoves data pointer.

SHORT tNT Sets eVTZ format to 16 bit integer.

DIAB BASIC III 84-06-01

Statements

SINGLE

5-2

Designates all subsequent floating point variables
and expressions to be single precision.

5.2.1 Data control statements

DATA

Function:

Hode:

Format:

Arguments:

Use:

Examples:

Assigns values to variables; used in conjunction
with READ statement.

Program

DATA <value list>

All DATA statements, no matter where they occur in a
program, cause data to be combined into one data
list. Commas are used as data separators while
single' or double quotes are used to enclose items
that contains commas or spaces.

A DATA statement must be the only statement on a
line.

READ and DATA statements are not used without the
other. See the READ statement for more information.

Ex. , .
10 FOR 1=1 TO 3
20 READ AS
30 PRINT"!" AS "!"
40 NEXT I
50 END
60 DATA"HELLO: HOW ARE YOU?" ,-TODAY IS DEC.13, 1980"
70 DATA"GOOD-BYE"

RUN

HELLO: HOW ARE YOU?!
TODAY IS DEC. 13. 1980!

! "GOOD-BYE"!
basic

Ex. 2
10 OPEN ·PR:- AS FILE 1
20 READ AS
30 PRINT #1 AS
40 READ AS
50 PRINT #1 AS
60 FOR 1=1 TO 6
70 READ AS
80 PRINT #1 AS
90 NEXT I
100 READ AS
110 PRINT #1 AS
120 DATA ABC,DEF,GHI,JKL.HNO,PQR.STU.WXYZ
130 DATA ABCDEFCHIJKLHNOPQRSTUVWXYZ
140 END

DIAB BASIC III 84-06-01

Statements

DIM

Function:

Hode:

Format:

Arguments:

Note:

Use:

5-3

RUN
ABC
DEF
GHI
JKL
MNO
PQR
STU
WXYZ
ABCDEFGHIJKLHNOPQRSTUVWXYZ
basic

Defines the ma~imum number of elements in a vector
or in a matrix. Also defines a stringOs maximum
length.

Direct/Program

1. OIM <variable(n». [variable(n,m),].~.

2. ·DIM (stringvariable(n». [stringvariable(n,m),].e

3. DIM <stringvariable(s ••.. » = <expression>

4. DIM <variablefj:k)

nand n,m are the maximum subscript values. The
lower limit is either 0 or 1 depending on the most
recent OPTION BASE statement. The default value is o~

s is a one or two dimensioned subscript (more than
two is possible; however, memory constraints may not
permit its use).

expression is the maximum variable length.

j and k are the upper and lower subscript valuese
j may be negative.

The lower limit (0 or 1) indicated above can be
overridden individually for each index. This is
done by replacing the single maximum index for each
dimension by two values (j:k) separated by a colon
(format 4). Note that also negative values of 'j'
may be used.

A dimensioned variable can be redimensioned only if
the new DIM statement defines a smaller dimension.

All values used in DIM statements will be truncated
to integer.

If a subscripted variable is used without appearing
before in a DIM statement, it is assumed to be
dimensioned to length 11 in each dimension (O-10)e

DIAB BASIC III 84-06-01

Statements

DIM A$(N)

DIM A$(N)=I

DIM A$(N,M)

DIM A$(N,H)=5

DIM A$=I

5-4

The first element of every matrix is assumed to have
a subscript of zero unless it is overridden by using
format 4 above. All variables have a value of zero
until it is assigned a value.
Vector and matrix elements can be treated as
ordinary variables in the program.

A non-dimensioned string variable's max length is
automatically set to the current length the first
time the string is assigned a non-null value (-<)-)u

If less than 80 characters are used then a standard
length of 80 characters is assigned.

Example:
C (1,1) = A (10,20) + 8(4,7)

adds the two elements A (10,20) and B (4,7)
into a new element C (1,1) in the matrix C.

The following DIM statements for strings are
available:

Defines a string vector with N + 1 strings
A$(O) - A$(N). Each string has its own
automatic max length. (See above.)

As above but each string's max length is forced
to I characters.

Defines a string matrix with (N+1)*(H+1)
strings each with its automatic ma~ length.

As the matri~ above but each string's max
length is forced to 5 characters.

Forces the max length of the single string AS
to I characters.

DIM B$(-N:M)=200 Defines a vector of (N+M+1) strings, where each
string is 200 bytes.

DIM A(-N:M)

Examples:

The following DIM statement for arrays is available:

Defines a vector with elem~ents A(-N) to A(H)
which are totally independent of the current
lower limi t .'

10 DIM X(S), Z(4,3), A (10,'0)
12 DIM A4 (100)
14 OIM A$(20), 8$(10,20)
16 DIM C$(40) = 4
18 DIM 0$(10,10) = 8
20 DIM as = 253%
30 DIM A(-2:2) ! YIELDS VECTOR WITH FIVE
40 ! ELEMENTS A(-2),A(-1),A(O),A(1) and A(2)

50 DIM B$(-3:4)=300

DIAB BASIC III 84-06-01

Statements

DOUBLE

Function:

Hode:

Format:

Use:

Note:

$ Example:

EXTEND

Functiofi~

Hode:

Format:

Use:

Note:

5-5

Sets double precision mode. Changes all variables
and expression with floating'point numbers to double
precision (15 digits).

Direct/Program

DOUBLE

The DOUBLE statement should be placed before the
variables are used in the program and cannot be
changed when the program has been started by RUN.
This change can be made when a program line has been
edited or the CLEAR or NEW command has been used.
The default precision is SINGLE.

AS standard e BASIC is delivered with SINGLE as the
default mode at start up. SINGLE and DOUBLE cannot
be mixed in the same program.

Also calculations of functions like SIN(X) etc. are
done with a true higher precision if DOUBLE is
selected.

NEW
basic
10 DOUBLE
20 INPUT A
30 PRINT A
40 END
RUN
? 123456189
123456789
"basic*

Specifies that spaces are significant and allows for
extended length variable names.

Direct/Program

EXTEND

In the EXTEND mode. Basic III requires spaces to
delimit names and functions at input of program
lines. unless the adjoining character is I line
number or an arithmetic operator (- + * ** /).
Variable names can be any length up to 32
characters; all characters are significante This
will allow for more readable and understandable
programs.

The default mode is NO EXTENDe

DIAB BASIC III 84-06-01

Statements

Example:

FLOAT

Function:

Mode:

Format:

Use:

Note:

5-6

If key words are written without spaces they may be
mistaken for long variable names.

BASIC switches to EXTEND mode, at the moment when an
EXTEND statement is entered as a program statement.

When a line with long variable names is listed with
the LIST or ED command, the mode is automatically
switched to EXTEND.

The EXTEND and NO EXTEND program statements should
not both be used in the same program.

10 EXTEND
20 LET SUBTOTAL=UNITS*UNITPRICE

Interprets all numbers without a suffix as floating
point. Integers must have a -ZN suffix.

Direct/Program

FLOAT

As standard, BASIC is delivered with FLOAT as the
default it mode at start up,in which case it is not
necessary to specify it before or during program
entry. Variables to be interpreted as INTEGERS must'
be written with the ·Z· suffix. Suppose a program
was entered and saved in the INTEGER mode. If FLOAT
was entered prior to the loading of this program,
all variables entered without the % suffix (e.g.,
A=12.456) would be interpreted as floating point
variables. Refer to example below and INTEGER
statement for additional information.

BASIC switches to FLOAT also at the moment when a
FLOAT statement is input in a program line.

Examples: Ex.1
9 OPEN -PR:- AS FILE 1%
10 A=12.345
20 8=123%
30 CZ=B
40 D1Z=A
50 PRINT lIZ A,B,C%,DlZ
60 END
SAVE TEXT
RUN
12.345 123
basic

123 12

Ex.2
NEW
basic
10 REM RUN FLOAT PROGRAM AS INTEGER

DIAB BASIC III 84-06-01

Statements 5-7

20 A=10.532
30 8=145%

. 40 C%=8
50 D2%=A
60 ;A.8,CI,D2%
70 END
LIST procb
basic
NEW
basic
INTEGER
LOAD procb
LIST
10 REM RUN FLOAT PROGRAM AS INTEGER
20 A=10.532
30 8=145
40 C=B
50 D2=A
60 ;A,8.C.D2
70 END
RUN
11 145 145 11

INTEGER

Function:

Hode:

Format:

Use:

Note:

Controls the sign suffix for integer and fl~at
variables when entering and listing programs.
Allows conversion of program from float to integer.

Direct/Program

INTEGER

When a program is being entered and the INTEGER
statement has been given, the programmer need not
type the integer suffix X. On the other hand. all
floating point variables should be marked by a
decimal point suffix (.). The strings should have
the usual $ suffix.

A program which is stored in text format
uncompressed and contains floating point variables
can be run as an INTEGER program if the command
INTEGER is given prior to loading the program in
ASCII formate Save the program and you have
converted it into an integer program.

As standard. BASIC is delivered with FLOAT as the
default mode at start up.

BASIC switches to INTEGER mode also at the moment
when an INTEGER statement is input in a program
line.

DIAB BASIC III 84-06-01

Statements 5-8

Examples: Ex. 1
80 REM LISTING FORMATS OF INTEGER
90 INTEGER
100 OPEN -PR:- AS FILE 1
110 A.=10.532
120 8.=145
130 C=8.
140 D1=A.
150 PRINT 11 A. ,B. ,C,01
160 END
RUN
10.532 145 145 11
basic

Ex. 2
LOAD test
LIST test
9 OPEN -PR:- AS FILE 1
10 A.=12.345
20 8.=123
30 C=8.
40 D1=A.
50 PRINT 11 A.,S.,C,D1
60 END
RUN
12.345 123 123 12
basic

LET

Function:

Kode:

Fermat:

Arguments:

Use:

Assigns a value to a variable.

Direct/Program

[LET] <variable> = <expression>

The use of the word LET is optional. The statement
does not indicate algebraic equality but performs
the calculations within the expression.

The LET statement can be used anywhere in a multiple
statement line.

Examples: Ex. 1
10 LET
20 LET
30 LET
40 LET

A = 5.02
X = Y7 Z = 0
89 = 5 * (X/2)

o = (3 * A) /2 * 8

Ex. 2
10 X ="36 : A = J + Ble
20 A$="SMITH-
30 8$=-456.72-

DIAB BASIC III 84-06-01

y = X * Z

Statements

LONG tNT

Function:

Hode:

Format:

Use:

Example:

NO EXTEND

Function:

Hode:

Format:

Use:

Example:

5-9

Sets the integer format used for CVT%$ and CVTX to
32 bit integers, giving 4 byte strings as result.
LONG INT is default.

Direct/Program

LONG INT

To specify if 2 or 4 byte integers should be used
when converting between integers and strings.
(Compere SHORT INT.)

LIST
10 LONG INT
20 A$=CVTXS(4)
30 PRINT LEN(A$)
RUN

4
basic

Disables EXTEND mode and permits spaces to be not
significant.

Direct/Program

NO EXTEND

In NO EXTEND mode. variable names can only be input
as one letter and one optional digit. Spaces are not
significant at input. The default mode is NO EXTEND.

BASIC switches to NO EXTEND mode also at the moment
when the NO EXTEND statement is input in a program
line.

When a line with long variable names is listed with
LIST or ED. the mode is automatically switched to
EXTEND.

The EXTEND and NO EXTEND program statements should
not both be used in the same program.

The NO EXTEND mode needs to be used only for
importing programs from systems that list programs
without spaces between identifiers.

10 EXTEND

200 INPUT cNEXT NAME: c NAMES
210 INPUT ·YOUR ADDRESS:- ADDRESS$
220 IF NAHE$=DEFAULTNAHE$ THEN 100

OIAB BASIC III 84-06-01

Statements

OPTION BASE

Function:

Mode:

Format:

Arguments:

Use:

Ex~mple:

RANDOMIZE

Function:

Hode:

Format:

Use:

5-10

300 IF ADDRESS$=LOCATIONA$ THEN PRINT "HATCH FOUND-;
301 NAMES,ADDRESS$

410 LET B = 400
420 INPUT "NAME IN DEFAULT" AS

Defines an array s low order member position.

Direct/Program

OPTION BASE <n>

n must be 0 or 1. The default value is o.

Option base allows the user to specify the starting
subscript for an array or vector. It allows for a
saving in the memory space used for working storage
when the zero element of an array is not used.

LIST
10 OPTIO~ BASE 1
20 DIM A$(4)
30 A$(1)="JONES'"
40 A$(2}="SHITH"
50 A$(3)="WILE"
60 A$(4)="HOHAN"

100 OPTION BASE 0
1'0 DIM 8(5)
120 8(0)=1:8(1)=2:8(2)=4
130 B(3)=8:8(4}=16:8(5)=32

Selects a random starting value for the function
RND.

Direct/Program

RANDOMIZE

This statement is placed before the first random
number generator call (RND) in a program. When
executed the RND function selects a random starting

DIAS BASIC III 84-06-01

Statements

Note:

Examples:

5-11

value so that if the same program is run twice.
different results will be given.

Randomize should only be used once in a program.

Ex. 1
LIST
10 REM A TEST OF FUNCTIONALITY
15 REM WITHOUT RANDOMIZE STATEMENT
20 REM USING RND------FUNCTION
30 REM
40 INPUT 'HOW MANY NUHBERS?'XZ
50 FOR 1%=1% TO XI
60 PRINT 5*RND+5
10 NEXT II
80 END
basic
RUN
HOW MANY NUMBERS? 4
8.31541
6.22497
8.83965
9.68893
basic
RUN
HOW MANY NUMBERS? 4
8.31541
6.22497
8.83965
9068893
basic

2
REM A TEST OF FUN(TIONALITY OF RANDOMIZE STATEMENT
REM USING RND------FUNCTION.
REM
RANDOMIZE
INPUT 'HOW MANY NUMBERS?' X%
FOR 1%=1% TO XX
PRINT '1%. 5*RND+5
NEXT IX
END

Ex.,
10
20
30
35
40
50
60
65
70
RUN
HOW MANY
5.05425
6.39596
8.10356
6.15174
basic
RUN
HOW MANY
6. 15114
5085948
8.05445
5.07878
basic

NUMBERS? 4

NUMBERS? 4

DIAS BASIC III 84-06-01

Statements 5-12

READ

Function: Assigns values to variables; used in conjunction
with the DATA statement.

Mode: Program

Format: READ <variable list>

Use: READ causes the variables listed to be assigned
sequential values from the DATA statements. Before
the program is run, Basic III creates a data block
from all the DATA statements in the order they
appear. Each time a READ statement is encountered in
the program, the data block supplies the next value.

READ and DATA statements are used together.
If it is necessary to use the same data several'
times in a program, the RESTORE statement will reset
the data pointer within the data block. See RESTORE
statement.

The READ and DATA statements can also be used to
input string variables to a program. See Ex.1.
below.

Examples: Ex. 1
10 READ As.es.CS
20 PRINT AS,BS,CS .
30 DATA CHARLIE, 80B.···STONE···
RUN
CHARLIE
80B
·STONE·
basic

C = 1.8
X2 = 3.14

B = 6
X1 = -86.4

Ex. 2
50 FLOAT
100 READ A,B.C.D.X1,X2
150 DATA 3,6,1.8
200 DATA 6.83E-3.-86.4.3.14
210 PRINT MA:" A,-B=· B,·C=· C
220 PRINT NO=· D,·Xl=· Xl NX2=N X2
230 END
RUN
A = 3
o = .00683
basic

Note: If comma, quote or apostrophe is to be read into a
string it must be enclosed by quotation marks.

RESTORE

Function: Resets data pointer to enable a specific data
statement to be used again.

DIAB BASIC III 84-06-01

Statements

t1ode:

format:

Program

RESTORE [line number]

Examples: Ex e 1
60 RESTORE

Ex. 2
50 RESTORE 100

Sets the DATA statement pointer
to the first DATA statement in a
program"

Sets the DATA statement pointer
to the first data on line 100.

SHORT INT

Function:

Hode:

Format:

Use:

Note:

Ex. 3
10 READ AS
20 PRINT A$
30 READ A$
40 PRINT A$
50 FOR 1=1 TO 6
60 READ AS
70 PRINT AS
80HEXT I
90 RESTORE 120
100 READ ~S

110 PRINT A$
120 DATA ABC,DEF.GHI.JKL.HNO.PQR.STU.WXYZ
130 DATA ABCDEFG.HIJKLHNOPQRSTUVWXYZ
140 END
RUN
ABC
OEF
GHI
JKL
MNO
PQR
STU
WXYZ
ABC
basic

Sets the integer prec~s~on used for CVTZ$ and eVTZ
to 16 bit integers.

Direct/Program

SHORT INT

To specify if 2 or 4 byte integers shouldbe used
when converting between integers and strings.
When precision is set to SHORT INT the functions
CVTXS and CVTZ works with 2 byte strings. (Compare
LONG IttT.)

When SHORT tNT preCls~on is set only the CVT
functions are changed. all integer calculations

DIAB BASIC III 84-06-01

Statements

Example:

SINGLE

Function:

Mode:

Format:

Use:

Note:

Examples:

5-14

are performed with 32 bit integers.

LIST
10 SHORT INT
20 A$=CVT%$(4)
30 PRINT lEN(A$)
RUN

2
basic

Changes all variables and expressions. which are
floating point numbers to single precision (6
digits).

Direct/Program

SINGLE

The SINGLE statement must be placed before any
variables that are used and cannot be changed once
the program has been started by RUN. If a line is
edited or the command CLEAR is given, SINGLE may be
changed to DOUBLE or vice versa. The default is
SINGLE.

As standard, BASIC is delivered with SINGLE as the
default mode at start up SINGLE and DOUBLE cannot be
mixed in the same program.

Ex.
NEW
10 INPUT A,B
20 PRINT A,B
30 END

RUN
?12345,123456789

12345
basic

12345678

Ex. 2
10 DOUBLE
20 INPUT A,B
30 PRINT A,B
40 END
RUN
? 12345,123456789

12345
basic

123456789

DIAB BASIC III 84-06-01

Statements

'.3 Inpyt/Oytpyt statemen!&

5-15

Input/Output statements are program instructions that enable the
user to craate new disk files and perform writing, reading and
maintenance operations with them. Table 5-2 lists the Input/Output
statements discussed in this section.

Table 5-2. Input/Output Statements

Statement Description

CLOSE Terminates I/O between the Basic III program and a
peripheral device.

DIGITS Sets the number of digits to be printed and the
number of digits in the HUMS function.

GET Reads a specified number of characters from a binary
file or from the console into a string variable.

INPUT Fetches data from a source that is eKternal to a
program.

INPUT LINE Accepts a line of input from a source, external to
the program.

KILL Erases a disc file.

NAME Renames a disc file.

OPEN Opens a file.

OPTION EUROPE Allows periods and commas in ·PRINT USING- output to
be replaced by commas and periods. respectively, or
by blanksc

POSIT

PREPARE

PRINT

PRINT USING

PUT

Positions or reads the file pointer.

Allocates and opens a new file.

Writes or lists data to a specified device.

Allows for formatted printing, using the TAB
function.

Writes a record to a disc file'in binary format.

Note that the OUT and INP functions are available for direct
control of the Basic III interfaces. See section 12.

5.3.1 Input/Output statements

CLOSE

Function: Terminates input/output between the Basic III
program and peripheral device(s) and closes the
file(s).

DIAB BASIC III 84-06-01

Statements

Mode:

Format:

Argument:

Note:

Example:

DIGITS

Function:

Mode:

Format:

Argument:

Use:

Note:

Example:

5-16

Direct/Program

CLOSE [channel no., ...]

Channel no. has the same value as in the OPEN
statement and indicates the internal channel number

·of the file to be closed.

The CLOSE statement is used to close one or more
files. If no file number is given, all files will be
closed.

The END statement closes all open files. Ordinary
output with the PRINT instruction will cause the
last buffer to be output when the file is closed.

Files are also closed at an attempt to edit with ED.

5 EXTEND
10 REM CREATE A FILE
20 PREPARE -mast1- AS FILE 2
30 FOR 1=1 TO 5
40 READ M$.MM.DO.YY
50 PRINT #2.M$,HM,DD,YY
60 NEXT I
70 CLOSE 2
eo DATA.
90 DATA. . . .

Sets the number of digits to be printed and the
number of digits in the NUM$() function.

Direct/Program

DIGITS <value>

Value is a number representing the printing accuracy.

A number displayed by PRINT is rounded off to the
nearest value for the last digit. Values too great
to be displayed in this form are printed in exponent
form with the specified number of digits.

The same number of digits will be the result when
converting a number to a string variable with the
NUH$() function.

DIGITS does not affect the accuracy of calculations.

AUTO
10 INPUT A
20 ; A
30 DIGITS 2

OIAS BASIC III 64-06-01

Statements

GET

Function:

Hode:

Format:

Arguments:

Use:

Note:

5-17

40 i A
50 END
60
basic

RUN
? 1268925
1026893E+06
1.3E+06
basic

Reads one or more characters from the specified file
or from the keyboard into a string variable.

Direct/Program

1. GET <stringvar> [COUNT bytes]
2. GET '<channel no.>.<stringvar> [COUNT bytes]

Channel no. refers to the channel number as referred
by the OPEN or PREPARE statement.

Stringvar is the destination variable for the input
transfer.,

Bytes are the number. of characters to be read from
the console (format 1) or from a file (format 2)
starting from the position of the file pointero The
default is one byte.

GET is used to read a specified number of bytes from
either the console or a disc file. The data is
placed into a string variable and can then be
processed. It is important to position the file
pointer to the correct position before each GET.
This is done via the POSIT statement.

Note that if.GET reads from the console. user input
will not be echoed on the screen. Once the correct
number of characters is entered, they are processed
without the return key being depressed.

The GET statement requires the number of bytes that
is specified, independent of any record format. All
types of characters are input. At End-of-file all
data is read into ·stringvar·. which achieves a
length less than the size specified by COUNT. If the
file pointer already is at the end of the file. an
End-of-File-error (dec) is generated.

When GET is used from the key board CTRL-C breaks
the input and the CONTINUE command -:ontinues the
program with the CTRL-C (3) character as the last
character in ·stringvar'.

DIAS BASIC III 84-06-01

Statements

Examples:

INPUT

Function:

Mode:

Format:

Arguments:

5-18

Ex. 1
10 REM **USE OF GET WITHOUT COUHT**
20 GET BS !GET ONE BYTE FROM KEYBOARD
RUN
X (Not shown on console)
;B$
X
basic

Ex. 2
10 GET AS COUNT 6
RUN
AAAAAA (not shown ori consol~)

;A$
AAAAAA
basic

Ex. J
LIST
10 OPEN WdataB W AS FILE 1
20 ! POSITION FILE POINTER TO 10TH BYTE
30 POSIT #1.9
40 GET #1,A$ CaUNT 10
50 ! PRINT 10TH TO 19TH BYTES IN FILE
60 PRINT AS
70 CLOSE
basic

Requests data from a source that is external to the
program.

Direct/Program

1. INPUT I<channel nO.><.list>
2. INPUT <wprompt text w> <list> [;l

Channel no. refers to the channel number as defined
by the OPEN or PREPARE statement.

If the w'<channel no.>" is not included (see format
2 above). the ~ystem assumes data will come from the
user's terminal. When the # channel number (not 0)
is defined and points to another device. then the
prompting function is excluded. The data is read
from a file or device assigned to that specified
channel. (See OPEN statement. Section 8.9). Data
requested from a file must have been placed into the
file by a prior PRINT statement (See Example 2.) and
each field is limited by a line feed-character or a
comma-character in the file.

List contains the names of arithmetic variables,
numeric array elements. string variables or string
array elements.

DIAB BASIC III 84-06-01

Statements·

Use:

Note:

5-19

Prompt text is a character string delimited by
quotes. When included prompting messages can be
specified to query the user for required
information.,

If the optional i after the list in format 2 is
includes, no carriage return/line-feed is echoed
after the input. (Example in section 605 ERRCODE).

During program execution, the programmer can enter
data when prompted. INPUT (format 2 above) causes
the terminal to pause during execution, print the
prompt text Ind wait for the user to enter data. If
no prompt text is included I question mark is
displayed on the screen.

The user then enters numeric values separated by
commas. The values are entered. If insufficient
data is given or too much data is entered. the
system displays error message No. 148 or 150,
respectively (See Appendix B) and no variables are
updatede Depending upon how m,ny values .re to be
accepted by the INPUT command, the programmer may
include a PRINT statement that reminds the user of
the kind of input required. This is conveniently
done with the multiple format shown in example 2,
below.

If CTRL-C has stopped e~ecution while inputting
data, the '1' is output again for new input, if the
CON command is given. The same hold if an error has
occurred and the program returns to the INPUT
statement with the RESUME statement.

Examples: Ex. 1
AUTO
10 INPUT A,B.C
20 ;C,A,B
30
basic
RUN
? 1,2,3
3
basic

Ex. 2
LIST
10 PREPARE -FILEA- AS FILE 1
20 INPUT A,B,C
30 ;'1, A -,- 8 -,- C
40 CLOSE .'! WRITES END OF FILE
50 OPEN -FILEA- AS FILE 1
60 INPUT 1" X.Y,Z
70 ;'X, Y, Z
RUN
? 5.7,9
579
basic

2

DIAB BASIC III 84-06-01

Statements

INPUT LINE

Function:

Hode:

5-20

Ex. 3
10 INPUT ·YOUR NAME : ?-A$
20 INPUT -YOUR ADDRESS : ?-8$

Is equivalent to

1 0 PRINT "YOUR NAME
20 INPUT A$
30 PRINT ·YOUR ADDRESS : -
40 INPUT as

Ex. 4
10 DIM A$(20)
20 OPEN -mast- AS FILE 3
30 INPUT #3. AS

The first 20 bytes will be read from file mast and
be placed in string AS.

Accepts a line of input from the terminal or from
another external device.

DIRECT/PROGRAM

Format: 1 •
2.

INPUT LINE <string variable>
INPUT LINE [#channel no .• J<string variable>

Arguments:

Use:

Channel no. is associated with the OPEN statement and
stands for a device or file as a logical unit.

String variable is any legal string variable where
the text from the keyboard or from a specified file
is placed.

INPUT LINE causes the program to accept a line of
characters from the terminal or from the specified
file.

All characters belonging to the line are read
spaces. punctuation characters, and quotes.

The line termination character is line feed, but
·CR". MLF· is always inserted at the end of the
string.

No text string can be written with the INPUT LINE
statement. This facility is only available in the
INPUT statement. The PRINT statement can be used to
print out the prompt text.

OIAB BASIC III 84-06-01

Statements

Examples:

KILL

Function:

Hode:

Format:

Arguments:

Note:

Example:

5-21

Ex. 1
10 ;-YOUR ADDRESS? ~

20 INPUT LINE AS
30 PRINT TAB(1SJ A$
RUN
YOUR ADDRESS? Enhagsvaegen 9. 183 30 laeby

Enhagsvaegen 9, 183 30 Ta.by
basic

Ex 0 2
LIST
10 INPUT LINE BS
20 B$=LEFT$(A$.LEN(A$)-2)
*basic·

Line 20 removes CR and LF from string 8$.

Erases the file. named by the string. fr9m the
user's file area.

Program/Direct

fd is the file descriptor as previously defined in
Section 3.4.

A user is not allowed to KILL a file if it is write
protected.

LIST
10 ,
20 ! THIS IS A SIMPLE EXAMPLE OF A
30 ! BACKUP PROCEDURE USING NAHE
40 ! AND KILL STATEMENTS.
50 !
55 !
60 OPEN -file'- AS FILE 1
10 PREPARE -file2- AS FILE 2
80 PRINT '2. TIME$! PRINT TIME FIRST ON FILE.
90 ON ERROR GOTO 140
100 INPUT 11,A$
110 PRINT 12.AS
120 GOTO 1O~O

130
140 IF ERRCODE<>14 STOP! STOP IF NOT EOF.
150 CLOSE
160 KILL -file1- DELETE OLD FILE.
110
180' ! RENAME NEW FILE TO THE OLD NAME.
190
200 NAME -file2- AS -file1
210 CLOSE
220 END
basic

DIAB BASIC III 84-06-01

Statements

NAME

Function:

Mode:

Format:

Arguments:

Examples:

OPEN

Function:

Mode:

Format:

Note:

Arguments:

5-22

Renames a file on disc.

Program/Direct.

The directory <directory> is not required if you are
renaming a file in the current directory.
fd1 is a string literal specifying the name of the
file descriptor you want to rename. fd1 previously
defined in Section 3.4.

fd2 is the new name.

Ex. 1
100 NAME atst/old a AS aneta

The instruction NAME- AS cannot transfer a file
from one device to another.

Ex. 3
120 NAME -NJTTa AS aNJTT1·

changes name of file NJTT to NJTT1 in the current
directory.

Opens an existing file for sequential or random
access on a file-structured device (disc) or
enables communication between Basic III programs
and the D-NIX shell.

Direct/Program

OPEN <string expr> AS FILE <channel no> [MODE a%+b%J

If MODE is excluded, the default access mode is
READ and WRITE.

The possible modes are:

o Z READ only
1 Z WRITE only
2 Z READ and WRITE

Note that accessing a write protected file requires
HODE 0 I.

- string expr ~orresponds to an external file
specification for the file to be opened of the
following types:

- String ~onstant <-fd-> where fd is the file
descriptor as previously defined in Section 3.4.

DIAB BASIC III 84-06-01

Statements 5-23

or
- string variable for example. A$

or
• -colon-expression· for example ·PR:-

The channel no. after AS FILE must have an integer
value, in the range 1 to 250. corresponding to the
internal channel number on which the file is opened.

Use: OPEN is used to open files which already exist. When
more than a few items are to be read or written.
then the technique used by the READ. DATA and INPUT
statements is inefficient. When a seq~ence of data
items is to be transferred. the data can be
conveniently handl.d as a data file through the use
of a ·channel-.

After an OPEN statement the file pointer is
positioned at the beginning of the fileo

A data file and a volume (or device) has both an
external name by which it is identified within the
system and a BASIC channel number that references
the file. The OPEN statement associates the external
file specification with the internal channel number.

The channel number is referred to by use of the
symbol' (number sign) and is followed by the
channel number. After the OPEN statement. the file
pointer is positioned at ihe beginning of the file.

OPEN ·PIPEIN:<cmd>- AS FILE .1
The OPEN statement has been modified to allow
opening of pipes. A pipe looks. to the user, like a
file, but can only be opened for either re.d or
write. This restriction has been imposed to avoid
deadlock situations.

Writing and reading from a file is done by use of
INPUT and PRINT statements of a special form. The
PRINT and INPUT formats to be used with the OPEN
statements are:

line no. PRINT' (channel no.>. <liat>
line no. INPUT' <channel no.>, <list>

The (channel no.) is the same value as the
expression in the OPEN statement <channel no.) and
the <list> isa list of variable n~mes. expressions,
or constants as described in the PRINT and INPUT
statement descriptions.

GET and PUT are used to read from and write to a
binary file respectively with random access. POSIT
is used to move the file pointer before GET or PUT.

DIAS BASIC III 84-06-01

Statements

Note:

Examples:

5-24

To create a file. use the PREPARE statement before
OPEN is used. When data is to be read from an
existing file. the file should be opened with OPEN.

Ex. 1
50 OPEN --test-- AS FILE 1

Ex. 2
10 OPEN -data-- AS FILE 2
20 INPUT #2.A
30 INPUT 12.B
40 INPUT 12.C7$

The values of the variables A,B. and C7$ are read
from the file, which was opened as file number 2.
The values are read directly after the values last
read. If reading is to be done from the beginning of
the file. it must be opened again with the.OPEN
instruction.

3
PREPARE -data-- AS FILE 1
CLOSE 1
INPUT A,B.C$
;A.B.C$
OPEN --data-- AS FILE 2
PRINT #2. CS-- ,--A-- .-8
CLOSE 21
A=O: 8=0: CS= ..
;'A. B. C$
OPEN -data- AS FILE 4
INPUT 14, OS.E,F
;E.F,DS
CLOSE 4
END

Ex.
10
20
30
40
50
60
70
a-o
90
100
, 10
120
130
140
RUN
? 12.24.HElLO

12
o
12

basic

24
o
24

HELLO

HELLO

Ex. 4
To open a file for READ and WRITE
10 OPEN -file-- AS FILE 1
20 OPEN AS AS FILE 2

Ex. 5
To open a file in subdirectory 'test' for READ only
10 OPEN -tst/file-- AS FILE 1 MODE 0%

Ex. 6
To open a file for WRITE only
10 OPEN -file" AS FILE 1 HODE 1%

Ex. 1
OPEN NPIPEIN:echo *- AS FILE #,
The command echo * is sent to the shell and the

DIAB BASIC III 84-06-01

Statements

Colon ex
pressions

OPTION EUROPE

Function:

5-25

pipe is created~ The standard output from process
echo will be connected through the pipe to file .1
in the Basic III program. When the OPEN statement is
executed. process echo will be started and the
output can be read by the Basic III program with
INPUT LINE .1 or GET 11.

Ex. 8
OPEN ·PIPEOUT:print· AS FILE '2
File 12 will be connected through a pipe to the
standard input of the process print. Everything
written to file .2 will be sent to process print
through the pipe. In this case printed on the
lineprinter with format according to print.

STRING REPLACEMENT in OPEN
To simplify often used OPEN strin9s.translation
strings can be defined in the file
-'usr/etc/translate.txt- or -translate.txt-. This
file 'can be created with an editor or a simple
Basic III program. It consists of pairs of lines.
The first contains the string to be searched for
and the second the string to replace the original
one with.

Example:
Instead of writing

OP~N -PIPEIN:echo *.bas· AS FILE .1

we would like to write

OPEN -LIB:- AS FILE .1
In file translate.txt we add the two lines

LIB:
PIPEIN:8cho *.bas

When the OPEN statement is execu~ed. the given
string is scanned for a colon. If there is a colon
(and it was not PIPEIN : or PIPEOUT:) the 'file
translate.txt is read until a translation is found
(if not. an error is indicated).

Note:
It is the string up to and including the colon which
is replaced. the rest stays as it iSe

The only colon expressions allowed in the
replacement string is PIPEIN: and PIPEOUT:.

Replaces periods and commas in -PRINT USING- output
by commas and periods respectively.

DIAB BASIC III 84-06-01

·Statements

Hode:

Format:

Arguments:

Use:

Note:

Example:

POSIT

Function:

5-26

Direct/Program.

OPTION EUROPE n

n can be either 2, 1 or O. A value of 1 replaces
periods and commas as previously specified while a
value of 0 (default) negates the replacement.

The value of 2 gives the character space as
separator character and period as terminal
character. This is default.

This statement is used before the PRINT USING
statement to allow output to conform to European
notation. That is, commas in numbers are replaced by
periods and periods by commas.

In either case, the same format control characters
are used in the PRINT USING format string.

Note! that the character .-. is used as a format
control character.

LIST
5 OPEN ·PR:" AS FILE
10 DOUBLE
20 A=1.23456789E+06
30 ;.1 "FORHAT:"
40 AS="###~###.## 1,111,1#1.11 #%1##%###.##·
50 A$=A$+" 1###111-11 1,11',#1'-'1 .%IIIZ.II-#."
60 ,#1 AS
70 FOR 1=0 TO 2
80 OPTION EUROPE I
90 ; #1 USING "OPTION EUROPE = , I
100 ; #1 USING AStA,A.A,A,A,A
110 NEXT I
120 END
RUN

FORMAT:
#######.## 1,11',#11.11 17.###%###.## 111####-11
1.11#,tll-" #1.###1##'-##

OPTION EUROPE = 0
1234567.89 1,234,567.89 1 234 567.89 1234567 89
1,234,56789 1 234 56789
OPTION EUROPE = 1
1234567,89 1.234.567,89 1 234 567,89 1234567 89
1.234.567 89 1 234 567 89

OPTION EUROPE = 2
1234567.89 1 234 567.89 1 234 567.89 1234567 89
, 234 567 89 1 234 567 89

Positions the file pointer to record or byte

OIAB BASIC III 84-06-01

Statements

Hade:

Format:

Arguments:

Use:

Examples:

5-27

position desired or returns the current position of
the pointer.

Program/direct

1. Position file pointer statement:
P01IT '<channel no.),<position>

2. Read file pointer function:

POSIT «channel no.»)

Channel no. corresponds to the internal channel
number on which th. file is ~p.n.d.

Position is the number of bytes from the beginning
of the file where access is to begin. Position ·0·
is the first byte.

The value given by POStT() is not used until the
next input or output is done.

Each data file contains a point,r specifying the
present position in bytes from the beginning of the
file. This pointer can be read or positioned to a
specific byte position using POSIT.

Format 1. above, is used to move the file pointer to
a specified byte position from the beginning of the
file ~the first position). The first position = o.
POSIT can be used together with all file handling
instructions ..

Format 2. above, yields the current position of the
file pointer.

If a position larger than the file size is given. an
EOF error is generated at input. At output to a
normal file new bytes are allocated up to the 9iven
position. Note that the error does not occur until
the next input statement.

Ex.

80 POSIT '1.15

The file pointer is moved to position 15 (i.e. it
points to the 16th character of file number 1.

Ex. 2

50 A=PO SIT. (1)

A=the position of the file pointer. In Example 1
above, the file pointer is in position 15, i.e.
A=15.

DIAB BASIC III 84-06-01

Statements 5-28

Ex. 3
LIST
10 OPEN -vo11/1ister- AS FILE 2
20 POSIT #2. 10
30 GET 12, AS COUNT 5

·40 PRINT AS
basic

Ex. 4
LIST
10 PREPARE -test- AS FILE 3
20 ;POSIT(3)
30 ;#3, -JOHN ALDER-;
40 ;POSIT(3)
-basic*'
RUN
o
10
basic

PREPARE

Function: Creates and opens a new file for sequential or
random access on a file-structured device (diskette)
with an I/O channel number internal to the Basic III
program.

Hode: · Direct/Program

Format: PREPARE <string expression> AS FILE <channel no.)
[MODE a7.+blJ

Note: MODE corresponds to the UNIX protection mask.

1 Z execute permission others
2% write permission others
4% read permission others
8% execute permission group

16% write permission group
32% read permission group
64% execute permission owner

128% write permission owner
256% read permission owner

If MODE is excluded. the default access mode is READ
and WRITE for owner and READ for group and others.
This corresponds to HODE mask 256%+128%+32%+4%.

Arguments: The String Expression corresponds to an external
file specification for the file to be opened of the
following types:

String constant - <Mfd") where fd is the file
descriptor as previously defined in Section 3.4.

or

string variable for example. AS

DIAB BASIC III 84-06-01

Statements

Use:

Examples:

PRINT

Function:

Hode:

Format:

Arguments:

5-29

The Channel no. after AS FILE must have an integer
value corresponding to the internaL channel number
on which the field is opened. Numbers 1 through 250
are legal.

PREPARE performs the same function as the OPEN
statement with the exception that it does create the
file if it does not exist. The use of OPEN assumes
that the file exists.

The use of PREPARE on existing files destroys the
contents.

Ex. 1
10 REH---T£STING THE USE OF PRfPARE STATEMENT--
20 REM THIS PROGRAM CREATES A FILE ON THE DISC
30 PREPARE -new!ile- AS FILE 3%
40 A$=-AB-
50 B$z-CO-
60 C$=-EF-
70 PRINT #3%. A$+B$+C$
80 POSITION '3%. 0
90 GET 131. DS COUNT 6
100 IDS
RUN
ABCDEF
basic

Ex. 2
To create and open a new file with WRITE and READ

·permission for owner:
10 PREPARE -file- AS FILE 1 HODE 256%+128%

Exo 3
To create and open a new:
10 PREPARE ·file~ AS FILE

Prints data to a device or a file~

Direct/Program.

1. PRINT
2. PRINT <list> [;]
J. PRINT <'channel no.) <list> [;]

Note: PRINT can be replaced in the above formats
with a semicolon. e.g. ; <list).

Channel no. corresponds to the channel number in the
statement. If omitted. the list data will be
displayed on the screen.

List can contain variables. expressions or text
strings. If an element in the PRINT list is not a
simple variable or a constant. the expression is

DIAB BASIC III 84-06-01

Statements

Use:

Examples:

5-30

evaluated before the data is printed. Text strings
are enclosed in quotes.

The positions on a line are numbered from 0 to the
page width, which is 79 characters for the consol.

The line is subdivided into columns. fixed tabulator
positions. starting in positions 0, 15, 30, 45. 60.
and 75. A comma (,) after a variable or a string in
the PRINT list specifies that the next element of
the list will be printed in the next column. Two
commas together in a PRINT statement cause a column
to be skipped. If DOUBLE precision has been
selected. the tabulator positions are spaced 25
columns instead of 15.

A semicolon (;) following a variable or a string in
the list causes the next element in the list to be
printed in the position, i.e. immediately after the
previous character. If the list is terminated by a
semicolon (;) no carriagereturn/line feed will
follow the PRINT statement. In this case the next
print statement continues to print to the same line.

When printing variables, one print position is
reserved for the sign and an extra space in printed
between two variables. separated by in the
statement line.

A PRINT statement without ~ny argument causes a
carriage return and line feed to be printed (i.e.
one blank line).

When a line is filled. the display continues on the
first position of the next line.

The TAB (col) and CUR (y,x) functions are used to
cause data to be printed in certain positions.
These functions instruct Basic III where to print
the next value of the PRINT list. If the cusor is
already beyond the point given in the TAB function,
it moves to the corresponding position on the next
row.

If the #<channel no.) is not written, the system
assumed the user's terminal. When #<channel no.)
(not 0) is defined and points to another device.
then the prompting function is excluded. The data is
output to a file or device assigned to the specified
channel. Channel 0 is directed to the consol. as if
no channel number had been given.

Ex. 1
1'0 PRINT X;Y;5
120 PRINT (spaces one line)
130 PRINT "VALUE= • X3, • SAM2= • A+2

DIAB BASIC III 84-06-01

Statements 5-31

Ex. 2
10 LET A = 5
20 LET B = 2
30 PRINT A.B.A+B.A*B,A-B.8-A,A/B
40 END

Ex 0 3
110 PRINT 1A8(2) B TA8(2*R) C

Ex. 4
Cursor positioning

PRINT CUR(S,1Z) ·TESTSTRI~G·;

Writes TESTSTRING beginning at row 5 and column 12.
The -;- in the PRINT statement above specifies that
no carriage return/line feed will follow.

Ex. 5
100 OPEN -myfile- AS FILE 2
ZOO PRINT 12, A-,-B-,·C;
Opens a disc file by the name 'myfile'c Values are
written (printed) to this file.

TAB in PRINT statements.

Function:

Hode:

Format:

Argument:

Note:

Use:

Tabulate$ to the specified position on a line.

Program/Direct.

TAB«expression»

Expression is evaluated to an integer.

TAB must be preceded on the program line by a _;11) or
·PRINT-. TAB must be used in a PRINT statement.

TAB can only be used with the PRINT statement. The
first position on a line is position 1. The position
specified by expression is always relative to
position 1. (Compare the CUR function. where the
1:st column has number 0).

Hore than one TAB can appear on a line. If a comma
separates each TAB, th~n the data being displayed
will be on separate lines. If there are no commas
between TABs, then. the dita wi11 appear on the same
line with two exceptions. If expression evaluates to
a position number lower than that of the current
position, that TAB will be eMecuted at the specified
position on the next line. If expression evaluates
to a position greater than the page width, printing
will appear on the corresponding position of the
ne)(t line.

DIAB BASIC III 84-06-01

Statements

Example:

PRINT USING

Function:

Mode:

Format:

Use:

Note:

5-32

The page width is 254 characters. unless output is
to the system consol, where the page width is 80
characters.

;TAB(1)-HHHH
HHHH
basic
10 REM ***TAB SPACING***
20 F=2: G=5

30 TAB(F)-X· .TAB(G)Ny •. TAB(G)NA- .TAB(F)-B-
RUN

X y
A

B
basic

Specifies the appearance (format) of printed data.

Direct/Program.

PRINT [1(chan.no.>.JUSING(string1>[.
(string2>, ...] <list>

The PRINT USING statement can be used when a
specific output format is desired. This situation
might be encountered in such applications as
printing payroll checks or accounting reports.
The string may be a string variable. string
expression, or a string constant. which formats the
line to be printed, All the characters in the string
are printed just as they appear. with the exception
of the formatting characters. The list is a list of
the items to be printed. The string is repeatedly
scanned until the string ends and there are no'
values in the value list. If more than one format is
included in the string, the first list item will use
the first format, the second item the second format
and so on. The string is constructed according to
the rules listed in this section.

Note that the -OPTION EUROPE ,- statement can be
specified before the -PRINT USING- statement when

• European notation is desired. The formatting
characters for this option is specified below.

If a numeric field exceeds the right margin.
according to the page width, the field is printed at
the beginning of the next line. The page width is
254 characters. unless the output is to the console.
where the page width is 80 characters. For strings
no check is done regarding the page width.

DIAB BASIC III 84-06-01

Statements

STRING FIgLDS

Character

- ! -

5-33

When strings are to be printed via ·PRINT USING-,
one of the following three formatting characters may
be specified:

Fynction

Specifies that only the first character in the given
string is to be pri~ted.

Example:
10 A$=-LOOK Ill

20 PRINT USING -,- A$
RUN
L
basic

-On spacesO- e~. is 'back-slash' (,) or Swedish upper case 0
with dots with the ASCII code 92 decimal.

Specifies that the first 2+n characters from the
string are to be printed. If the ·0- characters are
typed without any spaces, two characters will be
printed and so on.,If the string is longer than the
field. the extra characters are ignoredo If the
field is longer than the string, the string will be
lef~ justified in the field and padded with spaces
to the right.

Example:
10 A$=-lOOK- :8$=-OUT
20 PRINT USING eOO-;B$
30 PRINT USING -~O -;A$.8$ (Note:
40 PRINT USING cOO e;A$.B$.ft!!-
RUN
OU
LO OU

LOOK OUT "
basic

= blank space)

Example:

Specifies a variable length string field. When the
field is specified with -&-, the string is output
without formatting.

10 A$=-LOOK-: B$=-OUT
20 PRINT USING -'-;AS;
30 PRINT USING -'-;B$
RUN
LOUT
basic

NUMERIC FIELpS

The following formatting characters can be used to
format a numeric field:

DIAB BASIC III 84-06-01

Statements

Character

5-34

A number character I is used to represent each ~igit

position. All digit positions will be filled. If the
number to be printed has fewer digits than the
positions specified. the number will be right
justified (preceded by spaces) in·the field.

Example:
PRINT USING ·'1#1" 88

88

A decimal point may be inserted at any position in
the field. If the format string specifies that a
digit is to precede the decimal point. the digit
will always be printed (0 if necessary). The numbers
will be rounded off it necessary. Note that by
inclUding the ·OPTION EUROPE 1" statement. t~e

decimal point in a numeric field will be replaced by
a comma at the print out.

Examples:
PRINT USING ·~I.#I- .08
0.08

PRINT USING "111.1'" 887.654
e87.65

PRINT USING "##.1# - 20:2.7.3,88.7~9 •. 567
20.20 7.30 88.79 0.56

DOUBLE
OPTION EUROPE 1
PRINT USING ·'######.#1-; 1.23456789E+06
1234567,89

The ".- sign may be used at either the left or the
right of the numeric field. If the number is
positive. the + sign is printed at the specified
side of the number. If the number is negative. a
sign is printed at the specified side of the number.

Example:
PRINT USING -.11.## - -75.95.2.5.88.6.-.8
-75.95 +2.50 +e8.60 -0.80

The "-- sign. when used at the right of the numeric
field. prints to the right of a negative number. If
the number is positive. a space is printed.If
neither - •• nor --- has been specified. the first
digit position contains a minus sign for negative
numbers.

Example:
PRINT USING -1#.#1- • -75.95.44.449 •.-8.01
75.95- 44.45 8.01-

DIAB BASIC III 84-06-01

Statements

**

$$

**$

, or Z

5-35

The -**- placed at the beginning of a numeric field
fills the unused spaces in the leading portion with
asterisks. The -**. also specifies positions for two
more digits (termed ·asterisk fill-).

Example:
PRINT USING ·**1.1 • 22.39.-D.8,543.1
*22.4 *-0.8 543.1

When the S$ is used at the beginning of a numeric
field a $ sign is printed in the space immediately
preceding the number printed. Note that $S Ilso
specifies positions for two more digits. but that
the $ sign itself takes up one of these spaces.

Example:
PRINT USING ·SStl.11 - -123.45
$123.45

The combination -**$. at the beginning of a format
string co~bines the effects of ** and SS. Leading
spaces will be filled with Isteris~s and a dollar
character will be printed before the number. -**$.
specify t~ree more digit positions. one o~ which is
the dollar character.

Example:
PRINT USING ·**$11 .•• • 2.34
***$2.34

A '.' or 'X' to the left of the decimal point. with
at least one 'I' between '.' and · ,'or 'X' in a
formatting string causes a comma or a space to be
printed to the left of every third digit to the left
of the decimal point. A comma at the end of the
format string is printed as part of the string. This
comma serves as the delimiter between two numbers. A
'.' or 'X' specifies one digit position. Note that
by including the statement, ·OPTION EUROPE 1-, the
decimal point . , in a numeric field will be
replaced by a comma and the will be replaced
by '.'.

Examples:
PRINT USING ·,1,.#.1#- ·1234.5-
1.234.5

PRINT USING •••••1 .•#· ·1234.5
1.234.5,

PRINT USING -'1'%1.'· ·1234.5
1 234.5

DOUBLE
OPTION EUROPE 1
PRINT USING ·','11,"1.##- ~1234567.89·

1.234.567,89

OIAB BASIC III 84-06-01

Statements 5-36

DOUBLE
OPTION EUROPE 1
PRINT USING -11###.1- ·1234.5
1 234,5

•.• = Up-arrow, Upper case german U with the ASCII
code 94 decimal.

Four up-arrows may be placed after the digit
position characters to specify exponential format.
The four up-arrows specify the position of E+xx. Any
decimal point position may be specified; the
exponent will be adjusted. Unless a leading + or
leading or trailing + or - are specified, one digit
position at the beginning of the number will be used
to print the minus sign.

Examples:
PRINT USING

1.23E+02
PRINT USING
7.-717777
PRINT USING
+.23E+03

·,1.1,····· 123.45

·.111,····· -777777
<No room for minus sign>

.+.## ••••• 234

.. -.

Underscore ._" has ASCII code 9S decimal.

An underscore in the format string enables printing
characters, otherwise decoded as print control
characters. The underscore causes the next character
to be output ~s a literal character. The literal
character itself may bean underscore if the format
string contains a double underscore •

Example:
PRINT USING ._~##.##_!. 45.67
'·45.67 !

.. - .. is lower case german u (ASCII value 126 decimal)

A .-" may replace the decimal point. the " ... , in a
numeric field format to insert a blank where the
(or" ,N with OPTION EUROPE 1) was to be in the
output. This can be used, for example, when printing
on special forms.

Examples:
DOUBLE
PRINT USING .'%###7.###-.,. 1.23456789E+06
1 234 567 89
DOUBLE

OPEN -PR:· AS FILE 1
PRINT Il,-INVOICE- TAB(30);·S cents·
PRINT #1.STRING$(36,ASCII(·_·»
PRINT'1,·200 Cookies· TAB(26);
PRINT #1, USING ·.,111-.#" 21.15

DIAB BASIC III 84-06-01

Statements

INVOICE

200 Cookies

$ cents

21 15

5-37

~ .

Note:

UAHPLE

Note that if the number to be printed is larger than
the specified numeric field. a percent character is
printed before the number and the field is printed
in stand~rd format. A percent character is printed
also if rounding causes a number to exceed the fielde

Examples:
PRINT USING ••••••• 111.22
% 111.22

PRINT USING •.•••• 999
% .999

The following programs illustrate the formatting
rules presented in this section.

Ex. 1
LIST
5 OPEN ·PR:· AS FILE 4 L=4
10 DOUBLE
20 A=1.23456789E+&
30 A$='I.#I.#.I# .•• 1,1'1,11'." 1%.##%.'1.11'
40 GOSUB 100
50 A$='.,IIIIII.-•• 1.111.'1.-" 1%1111#1.-•• '
60 GOSUB 100 •
70 END
80 !------
100 ; IL -Format:·
110 ; IL A$
120 FOR 1=0 TO 1
130 OPTION EUROPE I
140 i IL USING 'Option Europe=,'.I
150 ; IL USIN~ AS.A.A.A
160 NEXT 1
170 RETURN
RUN

Format:
"'111"'.1' 1."'.111." 1%1••%111.#.
Option Europe=O
1234567.89 1,234.567.89 234 567.89
Option Europe:1
1234567,89 1.234.567.89 234 567,89
Format:
••",.#.1-11 '.11'.111-" .%.#1%1#1-11
Option Europe=O
1234567 89 1.234,567 89 234 567 89
Option Europe=1
1234567 89 1.234.567 89 234 567 89
basic

DIAB BASIC III 84-06-01

Statements 5-38

Ex. 2
10 INPUT AS,A
20 PRINT USING AS A
30 GOTO 10
RUN

(The screen displays a _7_. The numeric field and
value list are entered and the output is displayed.)

7 +#.9
+9
7 +#, 10
% 10
? ##,-2
-2
? +#,-2
-2
7 #,-2
%-2
7 +.###,.02
+.020
7 ##1#.#,100
100.0
7 ##+,2
2+
7 THIS IS A NUMBER #1,2
THIS IS A NUMBER 2
? BEFORE II AFTER,12
BEFORE 12 AFTER
? ####,44444
% 44444
? t:t##,1

• *' ** 1
? **##,12
**12
? **##,123
*123
? **##,1234
1234
? **##,12345
i 12345
? **,1
* 1
? **.22
22
? **.##,12
12.00
? **#### 1

*****1
? $####.##,12.34 (Note: not floating $)
$ 12.34
? $$####.1#,12.56 (Note: floating $)
$12.56
? SS.##,1.23
$1.23
7 $$.##,12.34
% 12.34
? $$###,0.23

OIAB BASIC III 84-06-01

Statements

PUT

Function:

Mode:

Format:

Arguments:

Use:

Example:

5-39

$0

? $$"".11,0
$0.00

? **$.## .•#.1.23
****$1.23
? **$.1'.1.23
*$1.23
? **$.#1.1
****$1
? ',6.9
7
? 1.1,6.99
7.0
? 11-.2

2
? 1#-,-2

2-
? '1+.2

2+
? "+.-2

2-
? ••····.2

2E+OO
? ••••••. 12

1E+01
? 11##•• 1#.···· .2.45678

2456.78DE-03 .
? •.•1,····.123
O.123E+03
? •••••••• ,-123
-.12E+03
? ••••••.•••.• ·.1234567.89
1,234.568.00
(TypingCTRL-C stops the program.)

Writes a string to a file.

Direct/Program.

PUT '<channel no.>.<string>

Channel no. refers to the channel number previously
defined by an OPEN or PREPARE statement.

String is either a string variable or a string
expression.

PUT is used to write I string variable or expression
to a file. POSIT is used to position the file
pointer to the desired point in the file.

LIST
10 PREPARE ·filea- AS FILE 2%
20 ! FILEA/B SPECIFIES BINARY DATA FILE
30 INPUT -BINARY DATA?· AS

DIAB BASIC III 84-06-01

Statements

40 PUT 12%,A$
50 POSIT 12%,0
60 GET 12%,8$ COUNT 10
70 ; a$
RUN
BINARY DATA? -JOHN SMITH
JOHN SHITH
basic

DIAB BASIC III 84-06-01

5-40

Statements

'.4 program c~ntrol statements

5-41

In previous sections •. program examples have been executed top to
bottom in order of their line numbers. In most applications.
however, a programmer needs the flexibility of specifying
altern~te executian routes. For example. branching from one point
of a program to another or reeKecuting a given let of code for a
specifying number of times may be required. Control statements are
the mechanism which allows the programmer to control the flow of a
program, and to interrupt Ind resume sequential execution at will.
Some of these statements may also be used for debugging. Table 5-3
lists the control statements discussed in this section.

Table 5-3. Program Control Statements

Statement

BYE

CHAIN

COMMON

DEF

END -

FNEND

FOR

GOSUB

GOTO

IF-IFEND

Description

Transfers control from Basic III to the
Operating System.

Loads and executes • program from a program
currently being executed.

Allows only integers as index in COMMON
declarations.

Defines single or multi-line user defined
functions.

Terminates executions of a Basic III program.

Terminates a multi-statement function
definition.

Provides the specifications for repetition in a
program loop.

Directs program control to the first statement
of a subroutine.

Transfers control unconditionally to the
statement with the specified line number.

Multiline IF statements, with optional else if
construct.

IF ... THEN ... ELSE .. E~ecutes a specified statement or transfers
control to another line depending upon I stated
condition.

NEXT

NO TRACE

ON ERROR GOroo.

Denotes the end of a loop.

Disables trace mode.

Specifies a user routine for error handling.

DIAB BASIC III 84-06-01

Statements

Statement

ON ••• GOSUB •••

ON ••• GOTO ...

ON ... RESTORE

ON ... RESUME

REM or !

REPEAT-UNTIL

RESUME

RETURN

SLEEP

STOP

TRACE

WEND

WHILE

5-42

Function

Transfers control conditionally to one of
several subroutines or to entry points to one
subroutine.

Transfers control to one of several lines
depending on the va~ue of the expression at the
time the statement is executed.

Restores the DATA pointer to one of several
lines in the program.

Transfers control to one of several places in
error and handling situations.

Insert comments into a user program.

Loop with condition at the end of the loop.

Transfers control from an ERROR subroutine.

Transfers control in a subroutine back to the
calling program or causes a return from a
multi-line function.

Stops the running of a program for a specified
number of seconds.

Stops program execution.

Prints line numbers of designated executed
program line.

Defines the limit of the WHILE loop.

Defines the specific condition for leaving a
loop.

5.~.1 Program control statements

BYE

Function:

Mode:

Format:

Action:

Finishes the working session in Basic III and
returns control to the operating system. If several
BASIC users are in the system, the BASIC interpreter
is not canceled until all users have finished or
have been canceled.

Direct/Program

BYE

BYE closes and saves any files remalnlng open for
that user and returns control to the operating
system.

DIAB BASIC III 84-06-01

Statements

Examples:

CHAIN

Function:

Hode:

Format:

Arguments:

Use:

Note:

5-43

1. *basicc

BYE

2.
EXISTING PROGRAM

100 BYE

Loads and executes a program.

Direct/Program

fd is the fi1. descriptor (a string literal)
specifying the name of I disc file from which a
Basic tIl program is tp be ~oaded. ~ee sec~ion

3.' for I definition of the file descriptor.

If the user program is too large to be loaded into
memory and run in one operation the user can segment
the program into two or more separate programs. The
CHAIN instruction is used as a logical termination
of one program to call the next one. Each program is
called by its name. The program in the computer is
erased and the new one is lo-aded. The lowest
numbered program line is executed first as though a
RUN command had been used. The CHAIN instruction is
the last instruction to be executed. The last
program in a ch~in does not need any CHAIN
statement. but control is often transferred by CHAIN
back to a program that allows the user to select the
program to be run.

When CHAIN is executed, all open files for the
current program are closed. Any files to be used in
common by several programs should be opened in each
program.

Variables can be passed on to a CHAINed program by
means of the tOHHON instruction.

Example: *basic*
NEW
AUTO
10 COHMON A.B$=10,C
20; -A =- A (Note:
30; -8$= • BS
40; C+A
50 END
60
*basic·

= blank)

DIAB BASIC III 84-06-01

Statements 5-44

SAVE test
basic
NEW
basic
AUTO
10 COMMON A,B$=10,C
20 INPUT A
39 INPUT BS
40 INPUT C
50; A,B$,C
60 CHAIN -testa
70
basic .-

COHMON

SAVE TEST
basic
RUN
?1
?A
12

1
A=1
B$=A
3
basic

A 2

Function:

Hade:

Format:

Arguments:

Use:

Note:

Enables variables to be passed from one program to
another when the programs are CHAINed together.

Program

1. COMMON <var><.var> .
2. COHMON <var$=Length>[.var •...]

Var is an integer or floating point variable or
array.

VarS is a string variable or array. which must have
a specified length.

The variables being passed must be present in the
common statement and the common statement(s) must be
executed before any other statement. The passed
variables must be of the same type and size in all
programs where the common variables are to be used.

The length of common string variables must be
declared. The COMMON statement replaces the OIM
statement.

Common variables will only be passed to a compressed
BASIC program and NOT to an un-compressed BASIC
program (.bas).

DIAB BASIC III 84-06-01

Statements

Example:

DEF

Function .~

Hode:

Format:

Arguments:

Use:

5-45

While passing common variables in a CHAINing
process. a check-sum test is performed on the common
sta,tements in the two programs. but the user must
assure that variables are compatible in details to
avoid run-time errors.

As indexea in COHHDN-declarations only integers
are allowed. Floating point numbers will be
converted to integers when the statement is entered
into memory. and will then appear a. integers. for
instance when listing the program.

10 COHHON AX,D(8),F$(20)=40

See also examples in the CHAIN section.

Defines single and multiple line user-defined
functions.

Program

1. OEF FN<name> [(arguments)] : <function>
2 •. DEF FN<name) [<type>] [(argum.ents)] [LOCAL variables]

name is any valid variable name.

type is optional and can be either % (or -.-) or $.

arguments consist of dummy variables. They are
optional. If defined. the same number of dummy
variables must also appear in the"FN function call.

function can be any valid arithmetic or logical
expression containing numbers. variables or
mathematical expressions.

LOCAL variables are temporary variables needed
within a function definition. The LOCAL keyword
makes possible the local variable name option.
Variables should be declared local to the function
in order to protect the global variables from being
disturbed. This eliminates the need for using
different variable names outside the function.
Arrays cannot be declared LOCAL. The length of
string variables specified as LOCAL. must be defined
as constant in the DEF FN statement (S•• examples
below) .

The function VARPTR() can not be used on local
variables or arguments within a function.

Basic III allows the programmer to define user
functions and call these functions in the same
manner as standard functions such as SlN. User
defined functions can consist of a single line (see

DIAB BASIC III 84-06-01

Statements

Note:

-.

5-46

format 1, above) or multiple lines (see format 2). A
multiple line DEF function (format 2) differs from
the single line functions due to the absence of an
equal sign following the function designation on the
first line. Any number of arguments of any type or
any mixture of types may be used including zero.
Within the multiple line function definition there
must be statements of the form: RETURN <expression>
and FNEND.

When the RETURN statement is encountered, the
expression is evaluated and used as the value of ~he

function, and exit is performed from the definition.

The definition may contain more than one RETURN
statement, as can be seen from the example 2 below.

Multiple line OEF functions can be called
recursively; one multiple line function definition
can refer to itself or another multiple line
function definition. The same rules apply here as
for the nesting of program loops. There must be no
transfer from within the definition to outside its
boundaries or from outside the definition into it.
The line numbers used by the definition must not be
referred to elsewhere in the program.

If run-time errors may occur within the function, a
local ON ERROR GOTO statement may be used. At exit
from the function, the error routine entry line
number will automatically be reset to the line
number. active in the calling program. If error
routines are used. they must be designed to fullfil
these criteria. Exit from the error routines must
always be to the same function level where the error
occured.

Do not modify a global string variable within a
function, if the string is used explicitly or
implicitly in the same BASIC statement as the
function. Implicit use of the string occurs when the
function is used more than once in the same
statement. This is because the string handling
routines use pointers instead of copying the entire
string each time it is referenced. Therefore the
string must not be changed if it is referenced more
than once. Below is an example of this. yielding an
un-wanted result. To avoid this. use local strings.

10 OEF FNB$CZ)
20 X$=NUM$(Z)
30 RETURN X$
40 FNEND
50 X$="Number: N

: A$=X$+FNB$(22)

A pointer to X$ is saved before the call to FNB$().
FNB$() modifies the contents of X$. AS will be
-22mber:22" instead of -Number:22"

DIAB BASIC III 84-06-01

Statements

E)(amples:

5-47

E)(. 1
Single Line Function:
10 OEF FNA(X.Y):X+X~Y

E)(~ 2
Multiple Line Function: The function below
determine. the larger of two numbers and returns
that number. Such use of the IF - THEN instruction
is frequently found in multiple line functions:

10 DEF FNH(X.Y)
20 IF y<~X THEN RETURN X
30 RETURN Y
40 FNEND

Ex. 3
Multiple Line Function: This example shows a
recursive function that computes thee N..factorial.
(However. there are more effiei.nt~ non~recursive

routines for the computation of H-factorial.):

LIST
5 EXTEND
10 OEF FNFAK(HZ) .
20 IF H%=1% THEN RETURN 1% ELSE RETURN HI *

FNFAK (HZ-1%)
30 FNEND
32 REH FACTORIAL FACTOR HUST BE <9
35 INPUT ·VAlUE FOR FACTORIAL «9)1: ·;X
40 PRINT X --FACTORIAL EQUAL·S - FNFAK(X)
50 END
RUN

VALUE FOR FACTORIAL: 4
. 4-FACTORIAL EQUALS 24

basic

E)(. 4
This example shows the user of the LOCAL option.
LIST
10 OEF FNA(X) LOCAL A.A$=lO
20 A=33: A$=-tOCAl-
30 PRINT A$
40 PRINT A
50 RETURN 5*X
60 FNEND
100 A=22: A$=-GLOBAL
110 PRINT AS
120 PRINT A
130 PRINT FNA(S)
RUN
GLOBAL

22
LOCAL

33
40

basic

DIAB BASIC III 84-06-01

Statements

END

Function: .

Mode:

Format:

Use:

Note:

Examples:

5-48

Ex. 5
The next example shows a string function:
LIST
100 PRINT FNV1$("AABBCCDDEEFF",5Z10Z)
110 END
120 OEF FNV1$(A$.BZ,CZ)
130 IF BX=CZ THEN RETURN LEFT$(A$,BI) ELSE

RETURN RIGHT$(A$.CZ-BZ)
140 FNENO
RUN

CCDDEEFF
basic

Ex. 6
This example shows the use of the loc~l ON ERROR GOTO
LIST
10 ON ERROR GOTO 100
20 PRINT -Square root of PI * value
30 PRINT SQR(FNA(X))
40 END
50 !---------------
100 PRINT -Only positive numbers allowed!"
110 RESUME 20
120 !--------------
200 DEF FNA(X)
210 ON ERROR GOTO 280
220 INPUT -X= - X
230 RETURN X * PI
240 ! -------
280 PRINT "Only numbers allowed'-
290 RESUME
300 FNEND

Terminates a Basic III program.

Program

END

The END instruction should have the highest line
number in the main program. After END there must be
only subroutines and functions which exit to the
main program. END closes all files.

The variables keep their values after END. END
should be on a line by itself.

Ex. 1
10 REM **
20 A$=-SOOO-
30 OPEN -XRAY" AS FILE 1
40 PUT AS
50 CLOSE
60 END

DIAB BASIC III 84-06-01

Statements

FNEND

Function:

Hode:

Note:

Example:

FOR

Function:

Format:

Hode:

Arguments:

5-49

Ex. 2
NEW
basic
AUTO
10 READ A,B.C
20 IF A=99 GOTO 60
30 ;A B C;
40 GOTO 10
50 DATA 4.5.6.1,2.3.99.99,99
60 END
70
basic

Terminates a multiple statement function definitiono

Dif8ct/Program

This statement must never be reached by sequential
statement eMecution. The function definition should
be exited before this statement by a RETURN (e)Cpr).

LIST
10 DEF FNHOT (X.V)
20 IF Y)=X**3 THEN RETURN X
30 RETURN Y
40 FNEND
basic

Sets up program loops by causing the execution of
one or more statements for a specified number of
times. NEXT statement is also necessary.

FOR (variable) = (expression> TO <expression>
[STEP expr]

NEXT <variable>

Program

The variable in the FOR ••. TO statement is
initially set to the value of the first expression.
AFTER this, the second and third expression is
calculated and temporarily stored.

The statements following the FOR are then executed.
The loop variable may not be a local variable in a
function.

When -NEXT- is encountered, the variable is
incremented by the value indicated as the STEP
interval. The NEXT statement is specified
separately. See NEXT.

DIAB BASIC III 84-06-01

Statements

Use:

5-50

If the variable value exceeds the value of the TO
expression, the next instruction executed will be
one following the NEXT statement.

If the initial value of the variable is greater than
the terminal value, the loop will not be executed at
all.

The expressions within the FOR statements are
evaluated once upon initial entry to the loop. The
test for completion of the loop is made prior to
each execution of the loop.

Program loops have four characteristic parts:

1. Initialization to set up the conditions which
must ~xist for the first e~ecution of the loop.

2. The body of the loop to perform the operation
to be repeated.

3. The modification which alters some value and
makes each execution of the loop differ~nt.

4. The termination condition, an exit test which,
when satisfied, completes the loop. Execution
continues to the program statement following
the loop.

If the STEP expression is omitted from the FOR
statement, +1 is the assumed value. Since +' is a
common STEP value, that position of the statement is
frequently omitted.

The control variable can be modified within the
loop. When control falls through the loop, the
control variable retains the last value used within
the loop plus the step value.

FOR loops can be nested but not overlapped. Nesting
is a programming technique in which one or more
loops are completely within another loop. The depth
of nesting depends upon the amount of user memory
space available.

The field of one loop must not cross the field of
another loop.

It is possible to leave a FOR NEXT loop without the
control variable reaching the termination value. A
conditional or unconditional transfer can be used to
exit from a loop. When reentering a loop which, was
left earlier without being comple~ed. be careful to
ensure that the correct termination and STEP values
are assigned.

DIAB BASIC III 84-06-01

Statements

Note:

5-51

The FOR statement is especially suited for using
integer vari~bles; it results in faster loop
execution ..

Examples: Ex & 1
This program demonstrates a
loop is executed 20 times.
20. control leaves the loop
value of A.A STEP value of
contains no STEP variable.
10 FOR AX=lI TO 20%
20 PRINT -A=- AX
30 NEXT AX
40 PRINT -A=- AX
RUN
A=1
A=2

A=21
basic

FOR - NEXT loop. The
When the value for A is
and displays the last
+1 assumed since fOR

GOSU8

Function:

Hode:

Format:

Arguments:

Use:

The loop c~nsists of lines 10. 20 and 30. The
numbers A=l to A=20 are printed when the loop is
executed. After A=20, control passes to line 40
which causes A=21 to be displayed.

Ex. 2
Acceptable nesting Unacceptable nesting

20 FOR A : 1 TO 10 100 FOR A = TO 10
30 FOR 8 = 2 TO 11 110 FOR B = 2 TO 11
40 NEXT B 120 NEXT A
50 FOR C = TO 10 130 NEXT B
60 NEXT C
10 NEXT A

Transfers control to the first of a sequence of
statements that form a subroutine~

Program

GOSUB <line no.)

Line no. is the first line number of the called
sUbroutine. Control is transferred to that line in
the subroutine.

A subprogram is a sequence of instructions which
perform a task that may be repeated.everal times in
a program. To call such a sequence of instructions.
Basic III provides subroutines and functions.
It is a good programming rule to use functions
instead of subroutines, as functions can be
referenced by name and as BASIC can do a more

DIAB BASIC III 84-06-01

Statements

Note:

Example:

5-52

complete syntax check on functions than on
subroutines.

A subroutine is part of a program that received
control upon execution of a GOSUB statement. Upon
completion of the sUbroutine a RETURN statement is
used to exit the subroutine and continue program
execution. At this point control is transferred to
the statement following the GOSUB statement.

The only instruction that may be used to exit a
subroutine is GOSUB or RETURN. RETURN to the calling
program must be with a RETURN statement to restore
program pointers. If ON ERROR GOTO statements are
used, they must be designed to fullfil this
criteria. Exit from the error routine must be to the
same subroutine level from where the error occurred.

150 GOSUB 1300

300 GOSUB 1300

400 GOSUB 1800

1300 REM ** SUBROUTINE #1**·
1310 FOR I = J TO K
1320 LET 11 = 2 * N
1330 PRINT 11
1340 NEXT 1
1350 RETURN

1aoo REM ** SUBROUTINE # 2**

1900 RETURN
2900 END

Example with ON ERROR GOTO

5 DIM A$=28500

Local

3000
3010
3020
3030
3035
3040
3050
3500
4000
4010
4020

ON ERROR GOTO 5000
GOSUB 4000 ! Contains a local
ON ERROR GOTO 5000 ! Required
X=SQR(A)
PRINT "Result= " X
PRINT "Loop·
GOTO 3000
!
ON ERROR GOTO 4900
INPUT A
RETURN

ON ERROR GOTO
again here!

OIAB BASIC III 84-06-01

Statements

GOTO

4800
4900
4910
4920
4990
5000
5010
5020

5-53

Local error routine
PRINT : PRINT -Local error :e ERRCODE
RESUME ! Try input again
!
! Global error routine
PRINT· -Global error :- ERRCODE
RESUME 3040

Function:

Hade:

Format:

Arguments:

Use:

Note:

Example:

IF ••• IFEND

Function:

Hade:

Transfers program execution unconditionally to a
specified program line.

Direct/Program

GOTO <line no.)

Line no' is usually not the next sequential line in
the program. GOTO may be written GO TO or GOTC.

The GOTO statement is used when it is desired to
unconditionally jump to a line other than the next
sequential line in the pro~ram. It is possible to
jump backward as well as forward within a program.

When written as a part of a multiple statement line.
GOTO should always be the last statement on the
line, since any statement following the G010
statement on the same line will never be executed.

The GOTO statement can be used in the direct mode
after a pause, i.e .. STOP or CTRL C. In this case.
the program is continued from the statement number
given.

110 X = 20
120 PR1NT X
130 X = X + 1
140 IF X = Z THEN 900
150 GOTO 120

900 END

Hultiline IF statements, with optional else if
construct.

Direct/Program

DIAB BASIC III 84-06-01

Statements

Format:

Arguments:

Use:

Note:

Examples:

5-54

IF condition [THEN [:)] statement(s)
[ELIF condition [THEN] -s t a t.ement Ls l l
[ELSE statement(s)]
IFEND

Statement(s) can be a statement or several lines of
statements.

In multiline IF statement explicit 6010 statements
must be used if a jump to a different line is
wanted.

A multiline IF statement is distinguished from an
ordinary IF by leaving the line empty after the
condition, after THEN or by placing a colon
immediately after THEN.

The test is done with respect to the condition after
IF. If the condition is true. the consecutive
statements are executed until an ELIF, ELSE or IFEND
is reached. If the condition is false and ELIF has
been used then this condition is tested and the
consecutive statements executed if the condition was
true.

If neither the IF condition nor any ELIF condition
(if any) is found true, the optional ELSE clause is
executed.

In one IF-ELIF-ELSE-IFENO construction only one
block ·of statements, at the most, will be executed.
A block of statements means the statement(s) between
THEN ELIF, THEN ELSE~ THEN IFEND or ELSE
IFEND.

A multiline IF must always be terminated by an
IFEND.

The ELIF construct can be repeated as many times as
wanted.

Ex. 1
100 IF A<O THEN
110 PRINT "Less than zero·
120 ELIF A==O THEN
130 PRINT "Equal to zero·
140 ELSE
150 PRINT ·Greater than zero·
160 IFEND

RUN
Equal to zero
basic

Ex. 2
100 INPUT ·Select • A
110 IF A=1 THEN
120 R=FNInit()

DIAB BASIC III 84-06-01

ELIF A=2 THEN
R=FNPrint()

ELIF A=3 THEN
R=FNEnter()

ELSE
PRINT ·Wrong select
IFEND

Statements

130
140
150
160
170
180
190
RUN
Select : 0 (R)
Wrong select
basic

5-55

IF •• THEN ••• ELSE

Function:

Hode:

Format:

Arguments:

Note:

Transfers program control to another line or
executes a specified statement depending upon a
stated condition.

Program

IF <conditio.,> THEN <argument1> £EJ,.SE argument21

Condition is a relational expression which may be a
simple constant. variable, alphanumeric constant,
string or an arithmetic expression. The test of
whether or not a given condition is true is
performed by means of relational operators. They
permit comparisons to be performed that determine
the relat~onship of variables, constants. or
expressions to each other.

The result of the comparison is an indication of
whether a given relationship between two data items
is true or false, not a numerical value.

Argument1 can be a line number or a statement.
~ Line number : Control is transferr.d to this line
when the condition (relational expression) is
evaluated to be true (-1).
- Statement: Hay be any Basic III statement(s)
which is executed when the condition (relational
expression) is evaluated to be true (-1).

Argument2 can be a line number or a statement.
The ELSE keyword is required.
- Line number: Control is transferred to this line
when the condition (relational expression) is
evaluated to be false (OJ.

- Statement: Hay be any Basic III statement(s)
which is executed when the condition (relational
expression) is evaluated to be false (O)~

THEN may be replaced by GOTO in the format bvt the
arguments are then restricted to line numbers only.

DIAB BASIC III 84-06-01

Statements

Use:

5-56

IF ... THEN ... ELSE is a built-in test which allows a
program to determine which of two or three routes it
should choose during execution.

The specified condition is tested. If the condition
is met (the expression is logically true), control
is transferred to the line number given after THEN
or the statement given after THEN is executed. If
the condition is not met (the expression is
logically false). the program execution continues at
the program line following the IF statement if the
-ELSE" clause is not included.

THEN may be followed by either a line number or one
or more Basic III statements. I Basic III statements
are given and the condition is met. these statements
will be executed before the program continues with
the line following the IF· statement. The condition
applies to all statements that follow on the same
line as the IF statement.

ELSE. when included. is followed either by a line
number which is used as a jump address or one or
more statements which are executed before the line
following the IF statement. If the condition is
met .. the statement between THEN and ELSE will be
carried out.

Whe~ relational expressions are evaluated. the
arithmetic operations take precedence in their usual
order. The relational operators have equal weight
and are evaluated after the arithmetic operators but
before the logical operators.

The Relational Operators are:
= Equal
<) Not Equal
(Less Than
> Greater Than
(= Less Than or Equal
>= Greater Than or Equal

A relational expression has a value of -1 if it is
evaluated to be true and zero if it is evaluated to
be false. For example:

5+6*5>15*2 is true.

Relational operators can be used to perform
comparisons between two strings for example. whether
A$=B$.

In performing string comparisons. the system does a
left-to-right comparison. This is based on tne
ASCII collating sequence of thenum~ric codes in the
characters of the strings being compared (including
such characters as leading and trailing spaces).

DIAB BASIC III 84-06-01

Statements 5-57

Examples: Ex. 1
170 IF A<B+3 THEN 160
180 IF A=8+3 THEN PRINT ~A HAS THE VALUE ~ A
190 IF A>=8 THEN 11-8
200 IF A$=B$ THEN PRINT -EQUAL -:A=1/8
210 IF A>8 THEN PRINT -GREATER - ELSE PRINT

-NOT GREATER-

INPUT -F.-F
C=(F-32)*5/9
IF F>=O AND F<=32 THEN 70
IF F>=212 THEN 165 ELSE 1~O

REM PATH TAKEN FOR F=O TO 32
REM
REM

IF .•. THEN ..• ELSE EXAMPLE

; -F=- F,-C=- C ! PATH TAKEN FOR F>32 TO <212
GOTO 15

REM PATH TAKEN FOR F)= 212
-END OF TEST-

END

Ex. 2
TRACE
10 REM
15
20
40
50
60
70
80
90
100
110
165
170
180
RUN

10 15
20 F=-30
40 50 60 100 F=-30 C=-34.444
110 15
20 F=21
40 50 60 70 80 90 100 F=21 C=-10.4444
110 15
20 F=38
40 50 60 100 F=38 C=655556
110 15
20 F=400
40 50 60 165
170 END OF TEST
180
basic

NEXT

Function: Terminates a program loop which began with a FOR
statement.

Hode: Program

Format: NEXT <variable>

Arguments: Variable is the same variable specified in the FOR
statement. Together the FOR and NEXT statements
describe the boundaries of the program loop. When
execution encounters the NEXT statement. the
computer adds the STEP e~pression value to the .
variable and checks to see if the variable is still

DIAB BASIC III 84-06-01

Statements

Use:

Example:

NO TRACE

Function:

Hode:

Format:

E)(ample:

ON ERROR G010

Function:

Mode:

Format:

Arguments:

Use:

5-58

less than or equal to the terminal expression value.
When the variable exceeds the terminal expression
value, control falls through the loop to the
statement following the NEXT statement.

When NEXT is encountered the variable will be
incremented by the internal. See FOR statement.

See FOR statement.

Terminates the printout of line numbers initiated by
TRACE statement.

Direct/Program

NO TRACE

10 PRINT "BEGIN ..
20 K=-1
30 TRACE
40 IF K>1 THEN 80
50 K=f(.1
60 PRINT "NUMBER .. K
70 GOTO 40
80 A=K
90 NO TRACE
100 PRINT "STOP"
RUN
BEGIN
40 50 60 NUMBER 0
10 40 50 SO NUMBER 1
70 40 50 60 NUMBER 2
70 40 80 90
STOP

The TRACE function is disabled before line 40 and
after line 90.

Specifies a user routine for error handling.

Program

ON ERROR GOTO <line no>

The specified Line no. is the start of an error
routine.
Compare the description in section 2.10!

Normally the occurrence of an error causes
termination of the user program execution and the
printing of a diagnostic message.
Some applications may require the continued

DIAB BASIC III 84-06-01

Statements 5-59

execution of a user program after an error occurs.
In these situations. the user can execute an ON
ERROR GOTO statement within the program.

This statement is placed ~n the program prior to any
executable statements with which the error handling
routine deals.

The system will then know that a routine exists that
will take over and analyze any I/O or computional
error encountered "in the pro9~am and possibly make
an attempt to recover from that error.

The variable ERRCODE is associ~ted with the
statement and available for the user program.

For Error Codes and Hessages see Appandix B.

If there are portions of the user program in which
any errors detected are to be processed by the
system and not by the user program. the error
routine can b~ disab+ed by:

line no ON ERROR GOTO

Note:

Example:

without a line number following GOTO, which returns
control of error handling to the system.

Read the section 2.10. how to enter into and exit
from an error routine.

10 REM THIS PROGRAHACCEPTS ONLY POSITIVE NUMBERS.
20 ON ERROR GOTO 80
30 REM -CON:- IS OP£N AS FILE 0%
40 INPUT -POSITIVE NUMBER-.
50 Z=SQR(A)
60 PRINT -SQUARE ROOT OF:- A -IS-----)- Z
70 STOP ,
80 FOR 1=1 TO 10
85 ; CHR$ (7) , SYSTEM BEEPS
87 NEXT I
90 PRINT -ENTRY ERROR----ONLY POSITIVE NUMBERS
95 PRINT -ALLOWED-
110 END
RUN
POSITIVE NUMBER? 25
SQUARE ROOT OF 25 IS -----) 5
STOP IN LINE 70
RUN
POSITIVE NUMBER? -10
(system beeps 10 times)
ENTRY ERROR----ONLY POSITIVE NUMBERS ALLOWED

DIAB BASIC III 84-06-01

Statements

ON .•• GOSUB •••

Function:

Hode:

Format:

Arguments:

Use:

Note:

Example:

5-60

Conditionally transfers control to one of several
subroutines or to one of several entry points to one
subroutine.

Program

ON <expression> GOSUB <list of line numbers>

Depending on the integer value of the expression,
control is transferred to the subroutine which
begins at one of the line numbers list~d. Execution
is resumed at the line following the statement. If
the value of the expression addresses a line number
outside the range of the LIST, an error message will
be displayed.

Since it is possible to transfer control into a
subroutine at different points, the ON - GOSUB
statement could be used to determine which part of
the subroutine should be executed.

See also ON ... GOTO statement.

10 FOR X = 1.1 to 5.9 STEP .6
20 PRINT X;
40 ON· X GOSUB 1300. 200, 1300, 400, 1300. 1300
50 PRINT AS
60 NEXT X
70 GOTO 9999
200 LET AS = ·SUB200·
210 RETURN
400 LET AS = ·SUB400·
410 RETURN
1300 lET AS = ·SU81300·
1310 RETURN
9999 END

Control is transferred to:

line 200
200
200

1300
400

1300
1300
1300

for X =
2.3
2.9
3.5
4 • 1
4.7
5.3
5.9

1 .7

RUN
1.7 SU8200
2.3 SUB200
2.9 SUB1300
3.5 SU81300
4.1 SU81400
4.7 SUBI300
5.3 SUB1300

DIAB BASIC III 84-06-01

Statements

ON ••• GOTO

Function:

Hode:

Format:

Arguments:

Use:

Example:

ON ••• RESTORE

Function:

Hode:

Format:

Arguments:

Use:

5-61

5.9 SUB1300
basic

Transfers control to one of several lines depending
on the value of the expression at the time the
statement is executed.

Program

ON <expression) GOTO <line no.1)[.line no.2 •...•...]

Expression can be any legal arithmetic or logical
expression.

Line no. is where control is transferred to as
illustrated in the example below.

ON ... GOTO permits the program to respond to multiple
choices. It elimin~tes the ne~essity of separate
lines for each alternative. The expression is
evaluated and rounded to the nearest integer. This
integer is uaed as an index or as a pointer to ahe
of the line numbers in the list. An error message
will be generated if it is out~ide the range.

100 ON AlB GOTO 1000,1500,1700

transfers control to:

1. line number 100n if .5 < = A/B<1.5
2. line number 1SnO if 1~5 < = AlB (2e5
3. line number 1700 if 2.5 < = AlB (305
4. gives error if AlB < 0.5
5. gives error if AlB) 3.5

Restores the DATA-pointer by the same selection
routine as the ON-GOTO statement.

Program

ON<expression>RESTORE<line no.1>[.line nO.2 •.......]

Expression can by only legal arithmetic or logical
e)(pression.

Line no. is where the DATA-pointer is restored to as
explained below.

This statement can be used to reset the DATA-pointer
to a specific point in the data buffer. The
expression is evaluated and rounded to the nearest
integer. This integer is used as an index to set the

DIAB BASIC III 84-06-01

Statements

Example:

ON .•• RESUME

Function:

Mode:

Format:

Arguments:

Use:

5-62

DATA-pointer to the corresponding list number. An
error message will be generated if it is outside the
range.

AUTO
10 FOR X=1 TO 3
20 READ A,B,C
30 ON X RESTORE 60,70,80
40 PRINT A,B,C
50 NEXT X
60 DATA 1,2,3
70 DATA 4,5,6
80 DATA 7,8,9
90 END
RUN

1 2 3
456

basic

Transfers control to one of several line numbers
depending on the value of the expression in error
handling situations.

Program

ON <expression> RESUME <line nO.1>r,line no.2,]

Expression can be any legal arithmetic or logical
expression.

This statement is used to accomplish a conditional
return from an error handling routine. The
expression is evaluated and rounded to the nearest
integer. This integer is used as an index or a
pointer to one of the line numbers in the list.
ON ... RESUME is used with ON ERROR GOTO as described
in Section 2.10.

Example: 10 ON ERROR GOTO 100

REM

Function:

Format:

100 REM ERROR HANDLER

150 ON B RESUME 1000,2000

Inserts comments into a user's program.

REM [remark]
or

DIAB BASIC III 84-06-01

Statements

Argument:

Result~

Use:

Example:

Note:

REPEATooUNTIL

Function:

Mode:

Format:

Arguments:

Use:

5-63

[remark]

Remark can contain any printing characters on the
keyboard. The Basic III interpreter completely
ignores anything on a line following the letters REM
or !. No colon is needed between a statement and the
remark if! is used.

Must be used IS a statement.

It is often desirable to insert notes and messages
within a user program. Documenting a program enables
easy "referencing by anyone u~ing the program. REM
statements do not offset program execution.

Typical REM statements are shown below:

10 REM ••• THIS PROGRAM CALCULATES MEAN VALUESee
20 ! ***HEAN VALUES ARE AVERAGE VALUES-**
30 DEFFNSEC(X)=1/SIN(X)! DEFINE SECANT FUNCTION

Remarks ar. p~inted when the usez program is listed.

In direct mode the 1 (exclamation mark) at the
beginning of a line informs the Basic III
interpreter to take the r.s~ of the line as a
command to a 5ubshelle

Example:
!1 .
gives a listing of the files in the current
directory.

Initiates a loop with the termination condition at
the end of the loop.

Program

REPEAT
statement(s)
UNTIL condition

When the UNTIL statement is executed, the condition
is evaluated. If the condition is false, a jump is
made to the corresponding REPEAT statement, if it is
true the execution continues on the next line.

REPEAT should be used only in iterative loops where
the loop structure modifies the values that
determines the loop termination.

The REPEAT loop structure is always executed once r

compare with WHILE loop structure.

DIAB BASIC III 84-06-01

Statements

Example:

RESUME

LIST
10 REPEAT
20 INPUT
30 UNTIL
basic
RUN
Value >0:-1
Value >0: 1
basic

·Value)0:·
X>O

x

5-64

Function:

Mode:

Format:

Arguments:

Note:

Example:

RETURN

Function:

Mode:

Format:

Transfers control to a specified line number from an
error routine or to the statement which caused the
error.

Program

RESUME [line no.l

Line no. specifies where program execution will
continue. If it is omitted, program execution
continues at the statement which caused the error.

Read section 2.10 before using the statement!

If an error occurs in a subroutine or a function. it
is essential that the continued execution at exit
from the error routine. must be at the same
subroutine or function level.·

LIST
10 REM THIS PROGRAM WORKS FOR ONLY POSITIVE NUMBERS.
15 REM -----FUNCTIONALITY OF RESUME-----
20 ON ERROR GOTO 80
30 REM "CON:" IS ALWAYS OPEN AS FILE 0%
40 INPUT "POSITIVE NUMBER" A
50 Z=SQR(A)
60 PRINT "SQUARE ROOT OF:" A "IS--------)- Z
70 STOP
80 ; "EINSTEIN-----ONLY POSITIVE NUMBERS ALLOWED M

85 ; CHR$(7)
90 RESUME 40
100 END
basic

Transfers control back to the calling program or
causes a return from a multiple line function.

Program

1 • RETURN
2. RETURN <expression)

DIAB BASIC III 84-06-01

Statements

Argument:

Use:

Examples:

SLEEP

Function:

Hode:

Format:

Argument:

Result:

5-65

Expression is any valid Basic III expression
containing constants and variables.

Format 1 is used to transfer control back to the
statement following the original GOSUB statement.
After having reached the subroutine through a GOSUB
or an ON ... GOSUB statement, the subroutine is
executed until the interpreter encounters a RETURN
statem~nt. Subroutines can be nested, that is one
subroutine can call another subroutLne or itself.

Format 2 is used when ~efining a multiple line OEF
function. When this RETURN statement is encountered,
the expression is evaluated and used as the value of
the DEF function. An exit is then performed from the
defintion. The DEF definition can contain more than
one RETURN statement.

Ex~ 1
LIST
50 GOSUB 1300

1300 REM ** SUBROUTINE 1***
1400 LET K=1

2000 RETURN

9999 END
basic

Ex. 2
AUTO
10 DEF FNH (X,Y)
20 IF Y<X THEN RETURN X
30 RETURN Y
40 FNEND
50
basic

Suspends the currently running program for a
specified number of seconds. At the end of this
period the program resumes execution.

Program.

SLEEP <expression>

The value of the expression determines the number of
seconds.

Must be used as a statement.

DIAB BASIC III 84-06-01

Statements

Example:

STOP'

Function:

Mode:

Format:

Use:

Example:

TRACE

Function:

Mode:

Format:

Argument:

Use:

5-66

10 FOR I = 0 TO 100
20 NEXT I
30 ; I
60 ;TIHE$
70 SLEEp (10) ! 10 SECO,ND DELAY
80 PRINT -GOOD-BYE-
90 ;TIHE$
100 END
RUN

101 (Note: 10 second delay)
1981-06-02 10.10.00
GOOD-BYE
1981-06-02 10.10.10

basic

Terminates program execution.

Program

STOP

The STOP statement terminates the execution of the
program. The variables are not reset and the open
files remain open. Program execution can be
continued by o~e of these commands: CON or GOTO.

The STOP statement differs from the END statement in
that it causes Basic III to display the statement
number where the program halted. It can occur
several times in a single program and, is recommended
for debugging purposes.

100 STOP

The message displayed is:

stop in line 100

Prints the line numbers of the executed program
lines.

Direct/Program

TRACE [#channel no.J

Channel no. is the internal file number representing
the destination where trace data is to be sent.

TRACE is used when debugging a program to track the
execution of the program.

DIAB BASIC III 84-06-01

Statements

Example: LIST
100
110
115
120
125
130
135
140
145
150
160
170
RUN

OPEN ·PR:~ AS FILE 1%
A=15.345
TRACE 111
8=153
IF A=O THEN STOP
C%-B
X=A*2
D1%=A
NO TRACE
PRINT '1%.A B ex D1% x
CLOSE 1%
END

5-67

~

UNTIL

Function:

Hode:

Format:

Use:

Example:

~
WEND

Function:

Hode:

Format:

Use:

Example:

WHILE

Function:

Hode:

Format:

(The following text will be printed on the printer
when the above program" is'execut&d:)

120 125 1J0135 140 145
15.345 153 153 15 30.69

Defines the termination condition for a REPEAT
loop.

Program

UNTIL <condition>

See REPEAT statement in this section.

See REPEAT statement in this section.

Defines the limit of the WHILE loop.

Program

WEND

When the WEND statement is executed, control is
transferred to the last non-terminated WHILE
statemento

See WHILE statement in this section.

Defines a specific condition Tor leaving a loop.

Program

WHILE <relational expression>

DIAB BASIC III 84-06-01

Statements

Argument:

Use:

Examples:

5-68

Relational expre$sion is some test condition.

WHILE should be used only in iterative loops where
the logical loop structure modifies the values that
determine the loop termination. This is a
significant departure from FOR loops in which
control is automatically iterated.

There are many situations -in which the final value
of the loop variable is unknown in advance. What is
desired is to execute the loop as many times as
necessary to satisfy some special conditions
specified by WHILE.

10 WHILE X < 10
20 X = X*X + 1
30 WEND

Before the loop is executed and at each loop
iteration the condition X < 10 is tested. The
iteration continues if the result is true.

The above example is equivalent to:

10 IF X > = 10 THEN 40
20 X =x*x + 1
30 GOTO 10

DIAB BASIC III 84-06-01

6. FUNCTIONS

Contents

6.1 Introduction •.•.•.............. e ••••••••••••• 0 Co •••••••••• 6-1

6.2 Hathematical Functions •.•......•..•.•......•••••.•••..... 6-1
6.2.1 HathematicalFunctions

6.3 String Functions•..•.•.••..... 6-10
6.3.1 String Functions

6.4 CVT Conversion Functions•.......................... 6-19
6.4.1 CVT Conversion Functions

6.5 Miscellaneous Functions•................... 6-23
6.5.1 Miscellaneous Functions

OIAB BASIC III 84-06-01

Functions

6. FUNCTIONS

6.1 Introduction

6-1

Functions in the context of Basic III are independent programs
stored in the interpreter which perform specific mathematical.
string. or miscellaneous operations. A user program can include a
call to a Basic III function program whenever it requires the
execution of any of tnese operations. These functions can save a
great deal of coding time~ They enable the user to include the
function without having to know the details behind them.

This section discusses four types of functions:

1. Mathematical functions Section 6.2
2. String functions Section 6.3
3. CVT conversion functions Section 6.4
4. Miscellaneous functions Section 6.5

6.2 Mathematical functions

When programming, the user may encounter many cases where
relatively common mathematical operations are performed. The
results of these common operations are likely to be found in
mathematical tables; i.e., sine. cosine. sq~re root, 109, etc.
Since the computer can perform this type of operation with speed
and accuracy, these operations are built into Basic III. Internal
functions can be called whenever such a value is needed. For
example:

SIN (23.*P1J180.)
LOG (144.)

The various mathematical functions available are listed in
Table 6-1.

Note that all functions are calculated with a true higher
precision if the DOUBLE precision mode has been selected.

Table 6-1. Mathematical Functions

Function Description

ABS(x) Returns absolute value of x.

ATN(x) Returns arctangent of x in radians.

COS(x) Returns cosine of x in radians.

EXP(x)

FIX(x)

HEX$(x)

Returns exponential function (i.e. ex)

Returns the truncated value of x.

Returns the hexadecimal string representation of a
decimal number.

DIAB BASIC III 84-06-01

Functions

Function

INT(x)

LOG(x)

LOG10(x)

HOO()(,y)

OCT$(x)

PI

RNO

SGN(x)

SIN(x)

SQR(x)

TAN(x)

SWAPZ(n%)

SWAP2Z(N%)

6-2

Description

Returns the greatest integer that is less than or
equal to)C.

Returns the natural logarithm of)((i.e .• log ex).

Returns the common logarithm (base 10) of)C.

Returns the remainder of the integer division X,Y.

Returns the octal string representation of a decimal
number.

Returns a constant value of 3.1415927.

Returns a random number between 0 and 0.999999.

Returns the sign of x.

Returns the sine of x.

Returns the square root of x.

Returns the tangent of)C.

Returns an integer with the first and the second
byte transposed.

Returns an integer with the first 16 bits and the
next 16 bits transposed.

Each function listed in Table 6-1 is described in detail in
subsequent paragraphs.

Order of Execution

A mathematical function is executed in the following manner:

1. The operation or operations within the argument are performed 0

2e The function itself is evaluated.
3. The remaining arithmetic operations in the statement are

performed in their normal order or precedence.

6.2.1 Ma~hematical func~ions

ASS

Function:

Hode:

Format:

Argument:

Result:

Returns the absolute value of x

Direct/Program

ABS(x)

x is numerical

Numeric

DIAB BASIC III 84-06-01

Functions

Example:

ATN

Function:

Hode:

Format:

Argument:

Result:

Example:

cos

Function:

Mode:

Format:

Argument:

Result:

Example:

EXP

6-3

; ABS(- 123)
123
basic

Returns the arctangent of x

Direct/Program

ATN(x)

)(is in radians

Numeric

; ATN(5)
1 .3734
basic

Returns the cosine of x.

Direct/Program

COS (x)

x is in radians

Numeric

10 A = .57
20 B = COS (A)

30 PRINT B
40 END

RUN
.841901
basic

Function:

Mode:

Format:

Argument:

Result:

Returns the value of
(single precision).

Direct/Program

EXP(x)

-as <)(> 88

Numeric

e
)(

where e = 2.71828

DIAB BASIC III 84-06-01

Functions

E)(ample:

FIX

Function:

Hode:

Format:

Argument:

Result:

Example:

HEX$

Function:

Hode:

Format:

Argument:

Result:

E)(ample:

tNT

Function:

Hade:

Format:

Argument:

Result:

Use:

PRINT EXP (1)
2.71828
basic

Returns the truncated value of x.

Direct/Program

FIX(x)

x is numeric

Numeric

PRINT FIX (-123.96)
-123
basic

Converts a decimal number into a hexadecimal string.

Direct/Program

HEX$(x)

x is decimal number

String

10 Y$=HEX$(255J
20 ; Y$
RUN
FF
basic

Returns the greatest integer Which is less than or
equal to X.

Direct/Program

INT(x)

x is numeric

Numeric

The integer function returns the value of the
greatest integer not greater than x.

DIAB BASIC III 84-06-01

Functions

Examples:

6-5

INT can also be used to round to any given decimal
place, by asking for:

INT(X*10.**OZ+.5)/10.**OX

Where 0% is the number of decimal places desired.

If the number is negative. INT will return the
largest integer less than the argument.

Ex. 1
10 Y=1NT(34.67)
The result is Y=34

Ex. 2
10 Y=1NT(34.67+.5)
The result is Y=JS

Ex. 3
10 Y=INT(-23.15)
The result is Y=-24

Ex. 4
1200
1210
1220
1230
1240
1250
1300
1310
1320
1330
9999

INPUT "NUMBER TO BE PROCESSED BY INT-, A
INPUT -NUMBER OF DEC. PLACES FOR ROUNDING", 0
PRINT "TRUNCATED INTEGER=- INT(A)
PRINT "ROUNDED INTEGER=- INT(A+.5)
PRINT -ROUNDED TO - D "PLACES=-
PRINT INT(A*10**O+.S)/(10**O)
PRINT
PRINT"ENTER ANOTHER NUMBER, TYPE A ZERO TO STOP·
INPUT A
IF A < > 0 THEN GO TO 1210
END

LOG

Function:

RUN
NUMBER TO BE PROCESSED BY INT? 13.56
NUMBER OF DEC. PLACES FOR ROUNDING? 1
TRUNCATED "INTEGER=13
ROUNDED INTEGER=14
ROUNDED TO 1 PLACES=13.6

ENTER ANOTHER NUMBER, TYPE A ZERO TO STOP
? 123.4567
NUMBER OF DECIMAL PLACES FOR ROUNDING? 2
TRUNCATED INT£GER=123
ROUNDED INTEGER=123
ROUNDED TO 2 PLACES=123.46

ENTER ANOTHER NUMBER, TYPE A ZERO TO STOP
? 0
basic

Returns the natural logarithm of X, log X.
e

DIAB BASIC III 84-06-01

Functions

Hode:

Format:

Argument:

Result:

Example:

LOG10

Function:

Hode:

Format:

Argument:

Result:

Example:

HOD

Function:

Hode:

Format:

Argument:

Result:

Example:

aCTS

Function:

Hode:

Format:

6-6

Direct/Program

LOG{x)

x) zero

Numeric

PRINT LOG(2)
00693147
basic

Returns the common logarithm of x, 10109 x.

Direct/Program

LOG10(x)

)() zero

Numeric

10 A = LOG10(5)
20 PRINT 2*A
30 END
RUN
1.39794
basic

Returns the remainder of an integer division of the
arguments.

Direct/Program

HOD(x.y)

)(and yare numeric

Numeric

; MODC22.4)
2
basic

Converts a decimal number into an octal string.

Direct/Program

OCT$(x)

DIA8 BASIC III 84-06-01

Functions

Argument:

Result:

Example:

PI

Function:

Mode:

Format:

Result:

Example:

RHO

Function:

Mode:

Format:

Use:

Result:

Example:

6-7

x is a decimal number

String

; OCT$(59)
73
basic
Y$=OCT$(59)
;Y$
73
basic

Returns a constant value of 3.14159 (single
precision) or 3.14159265358979 (double precision).

Direct/Program

PI

Numeric

10 INPUT R
20 C = 2*PI*R
30 PRINT C
40 END
RUN
? 11
69.115
basic

Returns a random number between 0 and 0.999999.

Direct/Program

RND

RNO is used to return a random number between 0 and
0.999999. The function will generate the same random
number seQuence every time the program is run unless
a RANDOMIZE statement is placed before RNO in the
program.

Numeric

Ex. 1
10 Y=RND

Ex. 2
10 Y=(D-A)*RND+A
Y will be assigned a random number between A and D.

DIAB BASIC III 84-06-01

Functions

SGN

Function:

Hode:

Format:

Argument:

Result:

Use:

6-8

Returns the sign function of X, I value of 1
preceded by the sign of X.

Direct/Program

SGN(x)

x is numerico

Numeric

The sign function returns I value of +1 if X is a
positive value. 0 if X is n. and -1 if X is
negative. For example: SGNt3.42) = 1,SGN(-42) = -1.
and SGN(23-23) = O.

Example: 1000
1010
1100
1,11 0
1120
1200
9999

REM - SGN FUNCTION DEMO
READ A. B
PRINT -A=-;A, -8=-;8
PRI NT • SGN(A) .; SGN(A i. - SGHC B) =• SGN(B)
PRINT ·SGNCINT(A)=-;SGH(INT(A)
DATA -5.43, 0.21
END

SIN

RUN
A=-5.43
SGN(A)=-1
SGNCINT(A))=-1
basic

8=.21
SGN(B)=1

Function

Hode:

Format:

Argument:

Result:

Example:

SQR

Function:

Returns the sine of x.

Direct/Program

SIN(x)

x is in radians.

Numeric

PRINT SIN(.57)
.539632

basic

PRINT SIN (PI/2)
1

basic

Returns the square root of x.

OIAS BASIC III 84-06-01

THE CORRESPONDING BIT CONFIGURATION OF A% IS
00000010 00000000 (binary) = 512 (decimal)
CONTAINING 16 BITS OR SAME AS 2 BYTES
SWAPZ FUNCTION SWAPS
THESE TWO BYTES SO RESULT WIll BE
00000000 00000010 (binary) = 2 (decimal)

Functions

Hode:

Form3t:

Argument:

Result:

Example:

SWAPI

Function:

Mode:

Format:

Arguments:

Result:

Example:

SWAP2%

Function:

Mode:

Format:

Arguments:

Result:

6-9

Direct/Program

SQR{)()

)(> zero

Numeric

;SQR(9)
3
basic

Returns an integer with the first and second bytes
transposed. The bits 0-7 change place with the bits
8-15 in the integer.

Direct/Program.

SWAPZ(n%)

nZ is an integer.

Integer

10 A%=512X ! ASSIGN AN INTEGER A VALUE.
20
30
35
40
45
50
55
60
70 BZ=SWAPZ(A%)
80 ; 8%
90 END
RUN

2
"basic*

Returns an integer with the first and second word
(16 bits) transposed. The bits 0-15 change place
with the bits 16-31 in the integer.

Direct/Program

.SWAP2Z(nZ)

nZ is an integer

.Integer

DIAB BASIC III 84-06-01

Functions

Example:

TAN

Function:

Hode:

Format:

Argument:

Result:

Example:

10 AX = 1%
20 BX = SWAP2Z(A%)
30 ; BX
40 END
RUN
65536
basic

Returns the tangent of x.

Direct/Program

TAN(x)

)(is in radians.

Numeric

10 INPUT A
20 PRINT -SINtA)/COS(A)=- SIN(A)/COS1A)
30 ;-TAN(A)=· TAN(A)
40 END
RUN
10.57
SIN(AJ/COS(A)= .640969
TAN(A): .640969
basic

6-10

6.] String fun,tions

Besides intrinsic mathematical functions (e.g., SIN. lOG), various
functions for use with character strings are provided. These
functions allow the program to perform arithmetic operations with
numeric strings, concatenate two strings, access a part of a
string, determine the number of characters in a string. and
perform other useful operations. These functions are particularly
useful when dealing with whole lines of alphanumeric information
input by an INPUT LINE statement. The various string functions
available are summarized in Table 6-2.

Table 6-2.

Function

ADD$

ASCII or
ASC

A$+B$

CHR$

String Functions

Description

Returns the result of adding two numeric s~rin9s.

Returns the ASCII decimal value for the first
character in a string.

Returns the concatenation of two strings.

Returns a character-string having the ASCII value of
arguments.

DIAB BASIC III 84-06-01

Functions

CLS

COMPI

OIV$

INSTR

LEFTS

LEN

HIDS

MUL$

NUM$

RIGHTS

SPACES

STRINGS

SUBS

VAL

6-11

Returns a string. which (when printed) clears the
screen of the terminal.

Returns a truth value based on result of numeric
comparison.

Returns a Quotient.

Searches for and returns the Location of a SUbstring
within a string.

Returns left SUbstring of an existing string.

Returns the length of a string.

Returns a SUbstring of a string.

Returns the result of multiplying two numeric
strings.

Returns a string of numeric characters.

Returns a right SUbstring of a string.

Indicates a string of spaces.

Creates and returns a string of ASCII characters

Returns the result of SUbtracting two numeric
strings.

Returns the numeric value of the string of numeric
characters.

Each string function is described in detail in subsequent
paragraphs.

6.3.1 String functions

ADDS

Function:

Mode:

Format:

Argument:

Result:

Note:

Adds the values of two numeric strings to a
specified number of decimal places.

Direct/Program

ADD$(A$.B$.p%)

AS and as are numeric strings.
p% when positive specifies the number of decimals in
the result and when negative specifies the number of
places of precision desired.

String

ASCII arithmetic calculations can operate on up to
126 characters including decimal point and sign.

OIAB BASIC III 84-06-01

Functions

Example:

ASCII

Function:

Hode:

Format:

Argument:

Result:

Example:

Note:

CHR$

Function:

Hode:

Format:

Argument:

Result:

Example:

CLS

Function:

6-12

S$="'2349.178"
basic

PRINT ADD$(S$."S9.454-,3)
12438.632
basic

Returns an integer equal to the ASCII value of the
first character of a string.

Program/direct

ASCIICstring) or
ASC(string)

String can be a string constant orvariableQ

Numeric

; ASCII(-T-)
84

basic

10 A$=-XAS"
20 ;ASCIICA$)
RUN

88
basic

The returned value is zero if AS is empty.

Returns a character-string corresponding to the
ASCII value of the arguments.

Direct/Program

CHR$(n1[.n2.n3, •..])

n is the ASCII decimal of the character desired.

String

A$=CHR$(65.66,67)
basic
;A$
ABC
basic

Returns a clear screen~strin9. The characters in

DIAB BASIC III 84-06-01

Functions

Hode:

Format:

Result:

Note:

COMP%

Function:

Mode:

Format:

Argument:

Result:

Use:

E)(ample:

6-13

the string and the length is dependent on the
terminal type used at the moment. The string is
the -cl- capability read from the terminal
capability database -termcap- (Refer to D-NIX
manual termcap(S)).

Direct/Program

CLS

String .

The system must know what terminal type is beeing
used. This is done by setting the shell variable
TERM to the terminal type used and exporting it
before starting the basic.

Example:
In operating system mode type:
$ TERM=ut100
$ export TERM

Example:
10 PRINT CLS
RUN
basic

(The promt will appear in upper left corner of the
screen, with the rest of the screen cleared.)

Returns a truth value based on the result of a
numeric comparison of two numeric strings.

Direct/Program

COMPl(A$.B$)

AS and as are numeric strings.

Numeric

The truth values are as follows:
-1 IF A$ < BS
o IF AS = BS
1 IF AS > BS

A$=-12345.6789-:B$=-9876.54321
basic
T%=COMPX(A$,BS)
basic
PRINT TZ

1
basic
PRINT COMPZ(BS,AS)
- 1
basic

DIAB BASIC III 84-06-01

Functions

DIV$

Function:

Hode:

Format:

Argument:

Result:

Note:

Example:

INSTR

Function:

Hode:

Format:

Argument:

Result:

Use:

Example:

6-14

Returns a qugtient, AS divided by S$e

Direct/Program

DIV$(A$,B$,pZ)

AS and BS are numeric strings.
AS is the numerator and B$ is the denominatoTe
pI when positive is the number of decimal places in
the quotient and when negative specifies the number
of digits of precision desired.

String

ASCII arithmetic calcul~tio"s can operate on up to
126 character$, inclUding the decimal point and
signo.

10 C$="3.5-
20 V9$=DIV$(C$,~1.7777-.3%)

30 PRINT V9$
40 END
RUN
1.969
basic

Searches for and returns the location of a substring
within a string.

Direct/Program

INSTR(n%,A$,B$)

AS is a string.
B$ is the SUbstring within AS, you want to locate.
nZ is the character position within A$ where the
search will begin.

Numeric

A value of 0 is returned if BS is not in AS or the
character position of BS, if BS is found to be in AS

. (character position is measured from the start of
the string with the first character counted as
character 1)0

A$="ABCDEFGHIJKLHNOPQRSTUVWXYZ
basic
PRINT INSTRC51,A$,·OP-)

15
basic

DIAB BASIC III 84-06-01

Functions

LEFT$

Function:

Hode:

Format:

Argument:

Result:
Use:

Example:

LEN

Function:

Mode:

Format:

Argument:

Result:

Example:

HIDS

Function:

Mode:

Format:

Argument:

6-15

Returns a sUbstring of an existing string.

Direct/Program

LEFT$(AS.n)

AS is a string.
n is the character position in AS where the
substring will end. N = 0 is permitted. N must be <=
the length of AS.

String
The SUbstring will begin with the first character in
AS and end with the n:th character.

10 A$="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
20 ;LEFTS(A$.6)
30 END

RUN
ABCDEF
basic

Returns the length of a string.

Direct/Program

LEN(A$)

AS is a string.

Numeric

PRINT LEN ("JOHN SMITH")
10

basic

Returns a SUbstring of a string. The function can
also be used on the left-hand side of a LET
statement to store new characters in the specified
position in the string.

Direct/Program

MID$(A$,n1,n2)

AS is a string.
n1 is the character position in AS where the
SUbstring begins.
n2 is the number of characters in the SUbstring.

DIAB BASIC III 84-06-01

Functions

Result:

Note:

Use:

Example:

HUl$

Function:

Hode:

Format:

Argument:

Result:

Example:

6-16

n2 : 0 is permitted.
n1 + n2 must not exceed one more than the string
length.

String

This function can also be used on the left-hand side
of a LET statement. The length of the string on the
right hand side must be of length n2.

The characters between and including n1 through
"1+n2-1 characters of AS comprise the sUbstring.

10 ;·NAHE.ADDRESS? •
20 INPUTLINE AS
30 PRINT
40 Z=INSTR(1.A$.·.·)
50 Y=LEN(A$).
60 :·NAHE= •• LEFTCA,Z-1)
70 ;-ADDRESS= - HID$(A$.Z+1.Y-(Z+1»)
80 B$=-OATABOARD FOR BUSINESS·
90 HIDS (B$.11,7)=~SYSrEHS~

100 ; B$
110 END
RUN
NAME.ADDRESS? DATASOARD,USA
NAME: DATABOARD
ADDRESS= USA

DATABOARD SYSTEMS FOR 8USINESS
basic

Returns the result of multiplying two numeric strings.

Direct/Program

HULCA,B$.p%)

AS and BS are numeric strings.
pI when positive specifies the number of decimal
places required and when negative, the number of
digits of precision desired.

String

10 INPUT AS,BS
20 iHUl$(A$,B$.6)
30 END
RUN

112345.6789.987.54321
12191891.370535
basic

OIAS BASIC III 84-06-01

Functions

NUMS

Function:

Hode:

Format:

Argument:

Result:

Example:

Note:

RIGHTS '

Function

Hode:

Format:

,Argument:

Result:

Use:

Example:

6-17

Returns a string of numeric characters representing
the value of n as it would be displayed by a PRINT
statement.

Direct/Program

NUH$(n)

n is a floating point or integer variable or value.

String. The length of the string depends on the
selected SINGLE or DOUBLE mode or if 'n' is an
integer. Using the DIGITS statement effects the NUMS
function in the same way as the PRINT statement.

; NUH$(123456789012)
1.234568E+11
basic

Returned string will not have any leading blanks.

Returns a particular sUbstring of a string.

Dj.rect/Program

RIGHT$(A$,n)

AS is a string.
n is the character position in AS where the
sUbstring will begin. n can equal LEN(A$) + 1 which
results in an empty string, but cannot be greater
than AS + 1.

String

RIGHTS returns the characters from the n:th
character through the last character in AS.

10 ;"NAME,ADDRESS? M

20 INPUT LINE AS
30 PRINT
40 Z=INSTR(1.A$.",")
50 ;"NAME= " LEFT$(A$,Z-1)
60 ;"ADDRESS= " RIGHT$(A$,Z+1)
70 END
RUN
NAME,ADDRESS? OATABOARO, SWEDEN
NAME= OATABOARD
ADDRESS: SWEDEN

basic

DIAB BASIC III 84-06-01

Functions

SPACES

Function:

Hode:

Format:

Argument:

Result:

Example:

STRING$

Function:

Mode:

Format:

Argument·:

Result:

Example:

SUBS

Fu'nction:

Hode:

Format:

Argument:

Result:

6-18

Inserts a string of spaces into I character string
or yields a string of a specified number of spaces.

Direct/Program

SPACE$(NX)

NZ is the number of spaces. An error is generated if
the value of NI is negative.

String

PRINT -ABC- SPACE$(10) -OEF-
ABC DEF
basic

Returns I string of ASCII characters.

Direct/Program

STRING$(n1.n2)

n1 is the length of the string in characters.
"2 is the ASCII decimal value of the character.

String

Print a string of 15 tts.

10 F$=STRING$(t5,42)
20 PRINT F$
30 END
RUN

basic

Subtracts two numeric strings and gives the result
with a specified number of decimals.-/

Direct/Program

SUB$(A$.B$.p%)

AS and BS are numeric strings.
p% specifies. when positive, the number of decimal
places in the result and when negative. the number
of digits of precision desired~

String

DIAB BASIC III 84-06-01

Functions

Note:

Example:

VAL

Function:

Hode:

Format:

Argument:

Result:

Example :.

6-19

ASCII arithmetic calculations can operate on up to
126 characters, including the decimal point and
sign.

10 8$=-9816.54321-
20 ;SUB$(B$,-98.7S-,S)
30 END
RUN
9777.78321
basic

Computes and returns the numeric value of a string
Gf numeric characters.

Direct/Program

VAL«string»

String is a numeric string. The result is a floating
point number. If the string contains non-numeric
characters other than +, - or a, an error routine
is called.

Numeric

10 A=VAL(M14.3E-SM
)

20 PRINT A
30 END
RUN

.000143
basic

6.~ CVT Conversion Functions

CVT Conversion Functions are provided to permit floating-point and
integer values to be represented in binary in files. These
functions are summarized in table 6-3.

Table 6-3.
Function

CVT Conversion Functions
Form Description

CVTZ$(IX)

CVT$Z(A$)

A$=CVT7.$(IX)

IZ=CVT$Z(A$)

Haps an integer into a two or
four character string (depending upon
whether short integer or long integer
precision is used).

Haps the first two or four
characters of a string into an

integer. The string must have the
right number of characters.

DIAB BASIC III 84-06-01

Functions

CVTF$(X)

CVT$F(A$)

A$=CVTF$(X)

X=CVT$F(A$)

6-20

Haps a floating-point number into a
four- or eight-character string
(depending upon whether Single or
Double precision is used).

Haps the first four or eight
chara~ters (depending upon whether
Single or Double precision is used)
of a string into a floating-point
number. The string must have enough
characters; otherwise, wrong results
will be returned.

Note: CVTZ$ and CVT$% words on 16 or 32 bit integers
depending upon the statements Long int (32 bits)
and Short int (16 bits).

The above functions do not affect the value of the data. but
rather its storage format. Each character in a string requires
one byte of storage (8 bits); hence, characters may asaume
(decimal) values from 0 through 255 and no others. A 16-bit
quantity can be define~ as either an integer or a two-character
string; two-word floating point numbers can equally be defined as
four-character strings.

The four CVT Conversion Functions are described in detail in
subsequent paragraphs.

6.4.1 CVT conversion functions

CVTZ$

Function:

Mode:

Format:

.Arguments:

Use:

Example:

Returns a two or four character string
representation of an integer depending on whether
Short int or Long int precision was in effect.

Program/direct

CVTX$«variable»

Variable can be an integer constant, integer
variable or a subscripted variable.

This function permits dense packing of data in
records. For example. ~ny integer value between ~

32768 and 32767 can be packed in a record in two
characters. This would on1y be true for integers ~

between -9 and 99 if the data was stored as·ASCII
characters.

LIST
5 SHORT INT CONVERT 2-BYTE INTEGERS

10 RANDOMIZE
20 DIM A$(100Z)
30 ! GENERATE 10 fIVE·DIGIT RANDOM INTEGER NUMBERS
40 !
41 M*** INTEGERS GENERATED ***M

OIAB BASIC III 84-06-01

Functions

CVT$Z

Function:

Mode:

Format:

Arguments:

Use:

6-21

42
50 FOR 1%=1% to 10l
70 Al(IZ)=INT(RNO*32767Z)
75 ; AZ(I%)
80 NEXT II
90 !
100 ! THE INTEGERS ABOVE CAN BE. STORED INTO A FILE IN
105 ! TWO WAYS
110 !
120 ! 1. USING THE PUT AND HUMS STATEMENTS
130 ! ... THE SIZE OF filea WILL BE 50 BYTES •..
131 !
140 PREPARE -filea- AS FILE 1
150 FOR 17=1% TO 10Z
157 S$=NUH$(A%(IZ)
158 S$=S$.SPACE$(SX-LEN(S$»)
160 PUT #1,S$
170 NEXT 1%
180 CLOSE 1
185 !
190 ! 2. USING THE PUT AND CVT%$ STATEMENTS
200 ! THE SIZE OF fileb WILL BE 2 x 10 = 20 BYTES
201 ! fileb WILL BE PACKED FROM 50 BYTES TO 20
202 , BYTES BY USING CVTZ$.
203 !
210 PREPARE -FILEB- AS FILE 2
220 FOR 1%=17 TO 101
230 PUT #2 CVTZ$(AZ(IZ))
240 NEXT II
250 CLOSE 2
260 !
270 END
basic

Returns the integer representation of the first two
or four characters of a binary string depending on
whether Short int or Long int precision was in
effect.

Program/direct

CVTSX«string»

String is any string variable or constant having
two characters (Short int precision) or four
characters (long int precision). An error will be
indicated if the string length is not two (Short
int) or four (Long int).

The CVT$Z function provides the means to speed the
processing of a large amount of packed data within a
file. Converting the internal binary representation

to an ASCII string is a less time-consuming process
with CVT$X than the HUMS function.

DIAB BASIC III 84-06-01

THIS PROGRAH READS THE INTEGERS FROM THE FILES
CREATED FOR PREVIOUS CVT1$ EXAMPLE

Functions

EKample:

CVTF$

Function:

Hode:

Format:

Arguments:

Use:

6-22

LIST
270
275
280
290 1. FROM filea
300 DIM BX (10%)
310 OPEN -fi1ea- AS FILE
320 FOR J%=1% TO 10%
321 GET 11,8$ COUNT 5
331 BZ(JX)=VALCB$)
350 NEXT JX
351 !

. 355 CLOSE 1
360 !
370 ! 2. FROM FILES BY USING CVT$X
380 !
390 OPEN -FILES- AS .FILE 2
400 FOR J%=1% TO 10%
430 GET 12.8$ COUNT 2
440 BZ(JX)=CVT$Z(8$)
450 NEXT JX
460 CLOSE 2
470 END
basic

Returns the four- or eight-character string
representation of a floating point number depending,
on whether Single or Double precision was in effect.

Program/direct

CVTF$«n»

n is a Single or Double precision floating-point
number.

This function permits dense packing of floating
point data in records. For .Kample. any floating
point number between2.93874E-39 through 1.10141E+38
(single precision) can be stored in a four-character
string and between 1.19769313486232E+308 through
4.4501477170144E-308 in an eight-character string
(double precision).

E)(ample: LIST
2
4

10
1000
1010
1020
1030

THIS PROGRAM STORES A FLOATING POINT ARRAY
ON A DISC FILE IN A COMPACT FASHION

DIM A(100)
PREPARE -fil- AS FILE 1%
FOR II = 1% to 1001
PUT .,X. CVTF$(ACIX))
NEXT II

1040 CLOSE 1%
basic

DIAB BASIC III 84-06-01

Functions

CVT$F

Function:

Mode:

Format:

Arguments:

Use:

Example:

6-23

Returns the floating poi~t number representation of
the four- (Single precision) or eight-character
(Double precision) string.

Program/direct

CVT$F«string»

String is any string variable or constant having
four characters (Single precision) or eight
characters (Double precision). An error will
be indicated if the string length is not four
(Single) or eight (Double).

The CVT$F function provides the means to speed the
processing of a large amount of packed data within a
file. Converting the internal binary representation
to an ASCII string is a less time-consuming process
with CVTS'X than the NUMS function.

LIST
2 THIS PROGRAM READS BACK THE ARRAY
3 CREATED BY EXAMPLE FOR CVTF$
4 LEN (CVTF$(O» IS USED TO DETERMINE IF
5 SINGLE OR DOUBLE PRECISION IS USED

10 DIM A(100):LZ=LEN(CVTF$(O»
2000 OPEN Mfil M AS FILE 1%
2010 FOR 1% = 1Z to 1001
2020 GET #1 AS COUNT LZ : A(!Z) = CVT$F(A$)
2030 NEXT IX
2040 CLOSE 1%
basic

6.5 Miscellaneous functions

The following miscellaneous functions are described in this
section:

Table 6-4 Miscellaneous Functions

Function Description

CUR Positions the cursor on specified line and column.

ERRCODE Returns the value of the most recent error code.

FN<name> Accesses a user-defined function.

TIMES Returns year-month-day. hour.minutes.seconds.

The four Miscellaneus functions are described in detail in
subsequent paragraphs.

DIAS BASIC III 84-06-01

Functions

6.5e1 Miscellaneus Functions

CUR

6-24

Function:

Hode:

Format:

Argument:

Result:

Note:

Use:

Examples:

ERRCODE

Function:

Hode:

Format:

Use:

Result:

Hoves the eurser to the specified row and column on
the screen.

Program/Direct

CUR(y%.x%)

y% is the line where the cursor is to be moved with
values of 0 to the maximum number of lines on the
terminal used.

xX is the position on the line with values of 0 to
the maximum number of columns on the terminal used.

String.

CUR must be preceded on the program line by a" -.. or
-PRINT-.

This function generat.s a string which. when
print.d, ~l~ces the cursor at the specified row and
column on the screen.

The string returned is determinated from the
terminal capability database 'termcap' as the entry
·cm M

• (Refer to UNIX manual termcap (5).)

Ex. 1
100 PRINT CUR(12,20) -BASIC 111 M

20~ ; CUR(13i22) -REFERENCE MANUAL-

Ex. 2
10 PRINT CUR (10.10t; ·COLUMN to, ROWN 10 M

20 A$ I: CUR (1,2) + • ROW 1. COLUMN 2' : PRINT AS

Returns the value of the latest generated error
code.

Direct/Program

ERRCODE

The ERRCODE function is normally used in conjunction
with the IF and ON statements. If no error has been
indicated the function value is o.

Numeric

DIAB BASIC III 84-06-01

• NO NEGATIVE NUHBERS ALLOWEO·
W NO CHARACTERS ALLOWED"

Functions

Example:

FN

Function:

Hode:

Format:

Arguments:

Result:

Use:

Note:

Examples:

6-25

LIST
10 REM THIS PROGRAM WORKS FOR POSITIVE NUMBERS ONLY.
20 REM-----
30 ON ERROR GOTO 90
40 OPEN ·CON: w AS FILE 0%
50 INPUT wPOSITIVE NUMBER • A i

60 Z=SQR(A)
70 PRINT "SQUARE-ROOT OF:· A WI5--)- Z
80 STOP
90 IF ERRCODE=142 THEN
100 IF ERRCOOE=210 THEN
110 ; ERRCODE.
120 ; CHR$(7) : REM BELL SOUNDS AFTER ERROR MESSAGE
125 REM IS PRINTED
130 RESUME 50
140 END
RUN
POSITIVE NUMBER? A NO CHARACTERS ALLOWED

210 (bell sounds)
POSITIVE NUMBER? -5 NO NEGATIVE NUMBERS ALLOWED

142 (bell sounds)
POSITIVE NUHBER 9 SQUARE-ROOT of: 9 IS--> 3

Calls a user-defined function.

Direct/Program

FN<name> [<ty~e>J [(parameter)]

Name is any valid variable name.
Type is optional and can be either % (or ".") or $.

Parameter consists of one or more variables and
constants. Variables are passed to the defined
function. They must be specified if they were
included in the DEF FN statement.

Depends on the type.

This function allows the programmer to call a user
defined function in the same way as, for example,
SIN(x) would be called.

See DEF FN statement, on definition routines.

Ex. 1
EXTEND
LIST
5 REM **DEFINE AND USE SECANT FUNCTION***
10 DEF FNSEC(X)=1/SIN(X)
20 ;INT(FNSEC{PI/4%))
RUN

1
basic

OIAB BASIC III 84-06-01

Functions 6-26

Ex. 2
LIST

5 EXTEND
10 ! THIS EXAMPLE COHPUTES THE VOLUME OF A
20 ! SPHERE WITH RADIUS(R) IN RANGE: 1<=R<=4
50 OEF FNSPVOL
60 FOR R=1 TO 4
70 X=R**3
80 Y=PI*X
90 2=4/3
100 VOL=Y*Z
110 ; FIX(VOL)
115 NEXT R
116 CLOSE
120 RETURN 0
130 FNEND
140 X=FNSPVOL
150 ; -END
160 END
RUN .

4
33
113
268

END
basic

TIMES

; TIME $
END

Function:

Hade:

Format:

Use:

Result:

Example:

Note:

Returns year-month-day and hour.minutes.seconds.

Program/direct.

TIMES

TIMES reads the current time and date.

String

10
20
RUN
1984-06-01 10.15.30 (current time)
basic

To set the time refer to DNIX (UNIX) manual date(1)

DIAB BASIC III 84-06-01

7. ADVANCED PROGRAMMING

Contents

7.1 Introduction 7-1

7.2 Advanced Statements and Functions 7-1
7.2.1 Advanced Statements and Functions

7.3 Use of Assembler Routines in BASIC•..•..••.... 7-1'

7.4 Terminator Characters 7-1'

DIAB BASIC III 84-06-01

Advanced programming

7. ADyANCED PROGRAMMING

7,1 Introdyction

7-1

This section contains information th~t should only be applied by
user's who have a complete understanding of Basic III and the
operating system. SUbjects discussed here include advanced
statements and functions as well as the use of Assembler routines
from BASIC.

WARNING WARNING WARNING WARNING

Host of the advanced statements are hardware dependent and
therefore will cause severe portability problems if the programs
are to be moved to other systems. The user is recommended to avoid
the use of these statements.

7.2 Advanced statements ao.dfuDctions

This section contains Basic III >stateme,nts lAd funct1o,·ns which are
to be used for advanced programming. The user is cautioned that if
certain of these statements are used incorrectly, program
execution maybe inadvertently destroyed. The advanced
programming statements and functiohs are summarized in Table 7-1.

Table 7-1. Advanced Programming Statements and Functions
Statementl
Function Description

CALL Calls an Assembler Program.

INP Returns value of data from in-port specified~

OUT Sends data to the out-port specified.

PEEK Returns mem6ry contents of a specified address
(1 byte).

PEEK2 Reads the contents of two bytes.

PEEK4 Reads the contents of four bytes.

POKE Changes or loads a value into specified address.

SYS(Provides essential system information.

VAROOT Returns starting address of a table containing data
about a variable.

VARPTR Returns starting address of where a variable is
stored.

The advanced statements and functions given in table 7-1 are
described in detail in subsequent paragraphs.

DIAB BASIC III 84-06-01

Advanced programming

7.2.1 Advanced statements and functions

CALL

7-2

LIST
5 !
10
15
17
20
25
27
30
40

Function:

Mode:

Format:

Arguments:

Note:

Example:

Caution:

IMP

Function:

Mode:

Format:

Use:

Example:

Note:

Calls an Assembly program and returns the contents
of a CPU register. Which register is dependent on
the processor type in your system.

Direct/Program.

CALL(A%£,DIJ)

AI is an integer holding the address of the machine
code being called.

0% is optional integer parameter which will be
pushed on the stack at the call.

The assembly routine should always return to
Basic III by executing a return instruction.
At return, the function will take the value in a
Cp~ register. Which register is dependent on the
processor type in your system.

DEFINE ADDRESS WHERE ASSEHBLY ROUTINE STARTS.
AZ=1234Z
! DEFINE THE PARAMETER WHICH WILL BE TRANSFERRED
! TO ROUTINE
DI=ASCII("A")
! CALL THE ASSEMBLY ROUTINE AND PUT THE RETURNED
! RESULT IN HZ
H7.=CALL(A%.D%)
END

This function is machine-oriented and should only be
used for advanced programming. CALL can destroy a
program execution if used erroneously.

Returns the value of data from the in-port specified.

Direct/Program

INP«channel nO.>,<port»

Access to an in-port is accomplished through a
channel, which has been opened with the OPEN
statement. The <fd> in the OPEN statement should be
the name of the ~pecial devicehandling INP. OUT
functions in the system.

10 OPEN "/dev/inpN AS FILE
20 A= INP(1. 32)

Refer to O-NIX manual.

DIAB BASIC III 84-06-01

Advanced programming

OUT

1-3

Function:

Hade:

Format:

Arguments:

US8:

Note:

PEEK

Function:

Hode:

Format:

Argument:

Use:

Sends data to the out-ports specified.

Direct/Program

OUT '<channel no.)
<port.data> [port.data ••• l

All parameters shall be specified in decimal. The
different ports (interface card .ddre~ses). are
found in the system manual.

This is a machine-oriented statement meant for
advanced programming.

The channel no.) is the channel which should have
been opened with OPEN statement to the wanted
devicee See INP statement in"this section.

The statement. used in conjun~tion with the INP
function gives the user aecess to the I/O-handling
of the system.

The user should be familiar with the I/O-handling.
Refer to system manuals for details.

Returns the memory contents (of 1 byte) of a
specified address.

Direct/Program

PEEK«address»

Address is the byte in memory to be accessed. It is
specified in decimal.

PEEK is mainly used when Basic III works together
with Assembler subroutines.

REM PEEK:----RETURNS THE CONTENTS OF THE MEMORY
REM AT THE GIVEN ADDRESS
FOR AX:: SYS(10) TO : SYS(10)+2Z

PRINT AI TAB(10) PEEK(A%J
NEXT AX
END

Example: 10
20
30
40
50
60
RUN

594
595
596

3
3
5

Note: The above example is far illustration purposes
only. The result will vary depending on the memory
contents of the locations displayed.

DIA8 BASIC III 84-06-01

Advanced programming

PEEK2

7-4

Function:

Hode:

Format:

Argument:

Use:

Example:

PEEK4

Function:

Hode:

Format:

Argument:

Use:

Example:

POKE

Function:

Reads the contents of two bytes.

Direct/Program

PEEK2«address»

Address is the starting byte in memory to be
accessed.

PEEK2 is mainly used when Basic III works together
with Assembler subroutines.

10 AX = PEEK2(SYS(10)
20 ; AI
RUN
-3763
basic

Note: The above example is for illustration
purposes only. The result will vary depending on the
memory contents of locations pointed to by SYS(10).

Note: If the specified address points to a memory
location outside the users data area, one of the
following system errors are displayed:

basic :Segmentetion error
or
bas~c :Bus error

Reads the contents of four bytes.

Direct/Program

PEEK4 «address»

Address is the starting byte in memory to be
addressed.

PEEK4 is mainly used when Basic III works together
with assembler subroutines.

10 AI = 2
20 BZ = PEEK4(VARPTR(AZ))
30 ; BZ
RUN
2
basic

Changes or loads a specific value into the

OIAB BASIC III 84-06-01

Advanced programming

designated address in RAM.

7-5

Mode:

Format:

Arguments:

Use:

. Caution:

E)(ample:

Note:

SYS()

Function:

Hode:

Format:

Direct/Program

POKE <address>,(data> [,data, •..]

Address is the starting byte in memory where the
data is to be loaded. It is specified in decimal.

Data is the decimal equiva~ent of the 8-bit binary
number to be set.

If more than one DATA-value is given. the address is
incremented one step for each new data value.

Poke is mainly used when Basic III works together
with assembler subroutines .

If POKE is used erroneously it may destroy the
contents of needed memory locations.

10 DIM AI
20 A%=1I
30 ; VARPTR(AZ1,AZ ! Addr >32K will be neg
40 POKE VARPTR(AZ)+3Z.2
50 ; PEEK4(VARPTR(A%))
60 ; At
RUN
131915 0

2
2

basic

Note that the value '131915' of the VARPTR() is only
an eKample.

The above eKample is the result on a CPU which does
not do byte swapping (i.e. M68000). On other CPU's
the result will be different.

If the specified address points to a memory location
outside the users data area, one of the following
system errors are displayed:

Basic III :Segmentation error

Basic III :Bus error

Provides essential system information.

DIRECT/PROGRAM

SYS(iZ)

DIAB BASIC III 84-06-01

Advanced programming 7-6

Argument:

VAROOT/VARPTR

Function:

Mode:

iZ can have the values shown below:

SYS(O) - Reserved for future use, and will
presently cause an error 143 (illegal sys
function) if used.

SYS(1) - Is reserved for future use, and will
presently cause error 143 if used.

SYS(2) - Returns total space available for program
and data in the user partition. Is the
d.efault space, plus the extra memory
allocated at the start-up of BASIC with
the basic -mXX option.

SYS(3) - Gives current program code size.

SYS(4) - Gives space left. This is a dynamic value,
changing, depending on the allocated data
variables.

SYS(S-l)- Is reserved for future use, and will
presently cause error 143 if used.

SYS(S) - Is reserved for future use, and will
presently cause an error 143 if used.

SYS(9) - Reserved for future use, and will
presently cause an error 143 if used.

SYS (10) - Points 'to an information block about the
internal variables for the BASIC
interpreter.

SYS(11) - Gives a pointer to lower memory limit for
the stored program.·

SYS(12) - Gives a pointer to the variable root for
the variable names in the user program.

NOTE! The SYS(12) should not be used. The
two functions VARPTR() and VAROOT() are
available for controlled access to the
user variable pointers. The SYS(12) CAN
NOT be used with programs which have been
squeezed.

VAROOT returns the base address of a table (or root)
which contains information about a variable.

VARPTR returns the starting address where a variable
is stored.

Program/Direct.

DIAB BASIC III 84-06-01

Advanced programming 7-7

Format:

Arguments:

Use:

VAROOT(variable»
VARPTR«variable»

Variable can be a ~tring variable or arrays of any
kind (integer, string, or floating point).

VARPTR can be use to locate the address of a
variable. The vari·able can then be seen with PEEK
and chariged. ifde~ir.d. via POKE.

VAROOT is use to change the actual length- of a
string variable. For string arrays, it can be used
to f'indthe address of a root table containing the
addresses of where·individual array elements are
stored.

VARPTR can be used to access a machine code routine.
stored in a character string. Note that the code
must be address independant or use addresses.
relative to a pointer, set up by BASIC before
calling the routine.

Example: 1 • Use of VARPTR and VAROOT for string variables.

DIM X$=10
X$=-AS"
,i VARPTR (X$)

;VAROOT (X$)
END

10
20
30
40
50
RUN

2345
1234

basic

The above example shows the use of VARPTR and VAROOT
for string variables. Here VARPTR points to location
2345 where the string AS is stored.

DIAB BASIC III 84-06-01

Advanced programming 7-8

....__ -._-_ _-- ---------- .. --_... -
address 1234 I 10 I 2345 I A I

I I I I
1236 I 2345 I 2346 1 B I

I I I I
1240 I 2 I 2347 I I

I I I I
- -- ---..--_..------. I I

NOTE: This example is for illustration purposes
only. Program lines 30 and 40 can give
various results depending on where the
variable resides.

,.."",

Example: 2 . Use of VAROOT and VARPTR for arrays (integer,
single, double float)

VARPTR (A%(OZ» ... --._------
VARPTR (AI (1%)) -----_ .. - 1
VARPTR (A7.(2Z» ------_ .. 1 1

1 , 1
Table 1 1 1 Variable

VAROOT(A%(XZ» ---_~_----~~-~_-- 1 1 1 --.. ~ ..-.... - ... _---_....------) addr n I Allocated space I 1 1
.->1 I

I for whole array.l 1 1 I ARRAY I
n+·2 I Address to firstI 1 1 I ELEMENTS I

I element. I 1 1 I I
n+6 I No. of I 1 1 I I

I SUbscripts. I 1 1 I I
n+7 I Type: I 1 1 I The size of an I

I 4=Integer 1 1
.
--) I element depends I

I 4=Single Float I 1 ·1 on whether it I
I 6=String I 1 I is an integer, I
I 8=Double Float I 1 I single float I
I I 1 I or double. I, n+8 I Lower bound I 1 I I, I I 1 I I

One Block 1 n+12 I Size of I
.
---) I I

For Each -1 I Subscripts I I integer=4 bytes I
Subscript 1 I I I single=4 bytes,I

1 n+16 I Reserved I I float I
I I I double=8 bytes,I

n+20 I I I float I

NOTE: VAROOT always points to the variable table
independent of the index of the variable.

10 DIM AZ(3%) ! ALLOCATED INTEGER ARRAY.
20 A%(1%)=10Z
25 ! POINTER TO VARIABLE AZ(OZ)
30 VARPTR (AI(OZ»
35 POINTER TO VARIABLE AZ(1%)
40 VARPTR (AZ(1Z»
45 POINTER TO VARIABLE ROOT FOR WHOLE ARRAY.
50 VAROOT(A%(OZ»

OIAB BASIC III 84-06-01

Advanced programming 7-9

POINT AT SAME AS ABOVE.
VAROOT(A%(1Zl)
PRINT CONTENTS OF VARIABLE A%(1Z)
PEEK4(VARPTR(A%(1Z»))
PRINT TYPE AND NUMBER OF INDEX IN ARRAY.
PE£K2(VAROOT(A%(1%»+6X)

END

55
60
65
70
75
80
90
RUN
-178994
-178998
-178974
-178974

10
260

basic

NOTE: This example is for illustration purposes
only. Program lines 30. 40, 50, and 6D can
give various results depending on where
the variable resides.

Example: 3. Use of VAROOT and VARPTR for stringarraYSt

VARPTR (A$COX») --- I (= Str.Elem.Addr 0)
VARPTR (A$(1%»--, 1 (= Str.Elem.Addr 1)

1 1
Base table 1 1 Root table

1 1
VAROOT(A$(XX) __-,-., .. .- .. --~- 1 1

.. _.- __ ~ _____ -e

.----> nIAllocated space I 1 1 mIDimension I
Ifor wholearray.I 1 1 ILength I One

n+2lRoot" table I 1 1 m+2IString Element! Block
Iaddress. I 1 1 Iaddress (0) I For

n+6INo. of I 1 1 m+6IString Length I Each
ISubscripts I 1 1 I I Element

n+7IType: I 1 1 m+8IDimension I
I4=Integer I 1 1 ILength I
14=Sin9le Float I 1 1m+10IString Element I
I6=String I 1 1 Iaddress (1) I
I8=Double Float I 1 1m+14IString Length I
I T 1 1- I II.

n+8ILower Bound I 1 1m+16I I
I I 1 1 I I

n+12ISize of this I 1 1 I 1
One Block ISubscript I 1 1 I I
For Each I I 1 1
Subscript n+16IReserved I 1

.___ >, ___e __________ •

I I 1 I Array I
n+20I I 1 I Element 0 I

I I t _....-.. --~-_
I I

.----->.--------------.
I I I Array I
I I I Element 1 I

--_..-.. --........ "..... .. ~

DIAS BASIC III 84-06-01

Advanced programming 7-10

! ALLOCATE A STRING ARRAY
DIM A$(3Z)=10X
A$(1Z)=-A-
! POINTER TO VARIABLE A$(OZ)

VARPTR (A$lO%»
POINTER TO VARIABLE A$(1Z)
VARPTR (AS(1Z»
POINTER TO VARIABLE ROOT FOR WHOLE ARRAY
VA ROOT (A$(OZ»
POINT AT SAME AS ABOVE
VAROOT(A$(1%»)
PRINT ASCII VALUE OF FIRST CHAR. IN A$(1Z)
PEEK(VARPTR(A$(1Z»)
PRINT ACTUAL LENGTH OF A$(1%)
PEEK2(PEEK4(VAROOT(A$(1%»+2Z)+10Z)

END

5
10
20
25
30
35
40
45
50
55
60
65
70
75
80
90
RUN
o
178984
178932
178932
65
1
basic

NOTE: This program is for illustration purposes
only. Program lines 30, 40, 50, and 60 can
give various results depending on where
the variable reside.

VAROOT always points to the variable table
independent of the index of the variable.

FIELD

Function: FIELD allows access to a string storage area
through more than one string name.

Hode: Program/Direct

Format: FIELD <string'var1> IN <string'var2>
AT <integer1> COUNT <integer2>

Use: The string 'element address of <string'var'> is set
to point into the string of <string'var2>. It points
to character <integer1> in the string. Both the
dimension length and actual length of <string'var1>
is set to <integer2>.

If (string'var2> is not allocated or <string'var1>
is allocated for separate use, error 134 is
generated.

Error 134 is also caused by an attempt to point
outside the space allocated tor <string'var2>.

DIAB BASIC III 84-06-01

Advanced programming 7-11

E)(ample: Create a data record consisting of two fields:

A name 15 characters
A phone number 4 characters

10 EXTEND
20 DIM Oatrec$= 19%
30 FIELD Name$ IN Datrec$ AT 1% COUNT 15%
40 FIELD PhoneS IN Datrec$ AT 16%
45 Datrec$=SPACE$(19) (COUNT 4%)
50 LET NameS: ~JAN-OLOF PERSSON-
60 Phone$= CUT%$(13145)
70 Name$
80 LEFT$(Datrec$. 15)
90 CUT$X(PHONE$)

100 CUT$%(RIGHT$(Oatrec$,·»
RUN 16%
JAN-OLOF PERSSON
JAN-OLOF PERSSON
131415
131415
basic

7.3 Use of ,sstrobler roy tines
in BASIC

Due to the fact that the memory addressing is done with hardware
(HHU. Hemory Management Unit). the actual mem~ry address where the
program will be loaded in the main memory is not know·n.

The assembler code loaded must be PIC (Position Independent Code)
which means that no absolute addresses are allowed to data or
code.

When more than one parameter shall be passed to the Assembler
program. the best way is to store the parameters in a vector. and
pass the address of this vector to the routine.

7,4 Term~nator characters

A data terminator character is RETURN (13 dec). LINEFEED (10 dec).

These values will act as data terminators in all operating modes.
unless keyboard input is being analyzed by the user'$ program on a
single byte basis (e.g .• by use of the GET <string variable>
statement in Basic III)~

The use of one of these alternate terminating characters will have
no effect on treatment of the data entry.

DIAB BASIC III 84-06-01

8. ISAM PATABASE OPTION UNDER UNIX

Contents

8.1 Introduction to the Index Sequential Access Method .•••... 8-1

8.2 ISAM Key Formats••.•.••.••••.•.•••.... 8-2

B.3 ISAM Index File Format•.....•...•••••••.•••... 8-3

8.4 ISAM Syntax and Statements••.•.........•...... 8-3
B.4.1 ISAM Create Procedure
8.4.2 SORTORDERTAB/B. Sorting Order Table

8.5 ISAM Statements 8-4
8.5.1 ISAM Statements

8.6 Notes on ISAM Performance 8-'1
B.6.1 Disc Space Requirements
8.6.2 ISAM Random Access Time

DIAB BASIC III 84-06-01

Advanced programming

8. ISAM UATA8A$~ OPTIgN

8-1

8.1 Introduction to tbeIndexSequential Access Method

ISAH. Indexed SeQuentil~ Access Method. is a technique. used for
indexed access to large data file. It can be used for random
access using a key string as search argument, or for sequential
access using the index.

The data is divided into RECORDS. The record have a fixed, user
definable length, and they are stored in a fixed record length
file. the DATA file. Each data file has an ISAH index file
associated to it and a STR structure information file.

The ISAH file may contain up to 10 indices into the data fileo
Each index has & symbolic name. It cont~ins one KEY for each data
record. The key consists of a key string, which also is a part of
the data "record, and a pointer" to that record. The keys are
ordered within the index file to form a B-tree structure. The
sorting may be set to use a non-default method. with the
sortorder.tab file.

All record pointers are logical and file referencies are sy~bolic.

This means that the d~ta and ISAH files may be copied and utilized
on any random access device supported by the operating system.

The ISAH file is initialized by a utility program (isamin). After
initiation, the ISAH. STR and DATA fi1es are built by the user.
using the BASIC ISAH statements. Since the index file trees are
built in a well structured way. there is no need for time
consuming reorganizations once the indices are established. The
access times will always be at an optimum.

All s.torage is done in the form of strings. The record length is
fixed and the key fields, used as index, must start at fixed
positions within the record.

The CVT-functions are used to read or store binary data bytes
from/to the record. string.

The key index strings, which are stored in the ISAH file in
addition to the data in the DATA file, can be sorted in six
different ways. Either as pure character values or numerically.
where the string is decoded as a BASIC variable in bin~ry format.

Using default sorting of ASCII character (See app.Al. The sort
order is according to the ASCII values, with two exceptions:

1. A lower case character has the same value as the
corresponding upper case character.

2. The Swedish characters 'A with a ring'. A with two dots'
and '0 with two dots' are sorted according to the Swedish
standard. Compare section F.12. The sorting is thus:

Upper case: A A 0 lower case: a i 0
ASCII values are: 93 91 92 125 123 124

DIAB BASIC III 84-06-01

ISAH Database Option 8-2

The ASCII sort order may be re-defined in the sortorder.tab/B file.

8.2 ISAM key formats

Five different formats are defined for the key string. They are:

o Binary
This is a string of bytes of selectable length. The
string is interpreted as an unsigned binary integer,
with the most significant byte first. Sorting is
according to the un-signed binary values of the string.

ASCII
This is a string of bytes Of selectable length. The
bytes are interpreted as 7-bit ASCII characters. The
upper and lower case characters have the same value when
sorting. The characters A, .~ and ~ are sorted according
to the Swedish standard. These characters has the ASCII
values 93,91,92. For lower case the values are 125,123
and 124 decimal.

The sort order of the ASCII format may be set to a non
default value if the file sortorder.tab is changed.

2 Short integer
This is a two-byte string, holding a signed integer
binary value, with the most significant byte first.
Sortin~ is in numerical order. This format is
compatible with the string generated by the Basic III
function CVTZ$(IZ) if the integer precision is set to
short int.

3' Long integer
This is a four-byte string, holding a signed integer
binary value, with the most significant byte first.
Sorting is in numerical order.

This format is compatible with the string generated by
the Basic III function CVTZ$(IZ) if the integer
precision is set to Long int (default).

4 Floating point (SINGLE»)
This is a four-byte string, holding a single preC1S10n
floating point binary value, with a format. compatible
with BASIC and Pascal variables. Sorting is in numerical
order. The program must be in the SINGLE precision mode.
The function CVTF$(F) creates the four-byte string from
a variable.

5 Floating point (DOUBLE)
This is an eight-byte string, holding a double preC1S10n
floating point binary value, with a format compatible
with the BASIC double precision variable. Sorting is in
numerical order. The program must be in DOUBLE precision
mode. The function CVTF$(F) creates the eight-byte
string.

DIAB BASIC III 84-06-01

ISAH Database Option

JL~ lSAM index file format

8-3

The ISAH file format is built on a B-tree concept. This concept
makes it possible to maintain the search path through the tree at
an optimum, in spite of insertions and deletions of key items.

The first record of an STR file is a header record. It contains
information about the ISAH file and its associated DATA file~

An STR file may contain up to 10 separate indices with symbolic
names. All information about the indices e.g. symbolic name. key
type. key length and the B-tree root pointer is stored in the STR
file header. The ISAH file contains one a-tree for each index.

ISAH file header: -FH XHO XH1 XH2 XH3 0

Index root: 0 KO K1 K2 KJ 0

SP KP KS

Intermediate level: FP KO K1 K2 K3 0

Lowest level: FP KO 1<1 K2 K3 0

KP KS

FH = File header
XH = Index header
K = Key
SP = Son pointer
FP = Father pointer
KP = Key pointer (points to the data record)
KS = Key string

8.4 ISAM syntax and Itatements

The following special BASIC statements and task files are
available for creation and direct access to a database. using the
Index Sequential Access method. The ISAM option is linked into the
BASIC task file.

Task files:

isamin task file to create the ISAH and STR files and
specify the associated data file. If the data file
does not exist. it is created.

sortorder. tab is a 128 by·tes table, which defines the default
ASCII sort order, when the Basic III task is loaded
and started.

DIAB BASIC III 84-06-01

ISAM Database Option

ISAH index and data file types:

8-4

Default file types are always used. When the task 'isamin' is
executed, you are promted for a file name <fname>. The three files
<fname).ISM. <fname>.STR and <fname>.DAT will then be created.

8.~.1 sortorder.tab.
sorting order table

The sort order for ASCII keys, may b~ re-defined by a 12S-byte
table, stored on the system volume under the name
lusr/etc/sortorder.tab.

NOTE! IT IS ABSOLUTELY ESSENTIAL THAT THE SAME SORT ORDER
DEFINITION IS USED WITH THE SAME DATA BASE AT ALL TIMES.
OTHERWISE, THE IND£X FILE MAY BECOME UNUSABLE.

Each byte in the table corresponds to one position in the ASCII
table (0 - 127). In this position a number (0 - 255) shall be
stored. This number indicates the values for using when sorting
the characters.

Example: The letter 'A' has the ASCII value 65 and is character
number 65 in the sort order. The letter 'a' (lower case) has the
ASCII value 97, but in the position 97 in the default table the
number 65 is stored, which gives 'a' the same position in the sort
order as 'A'.

8.5 ISAM statements

BASIC statements:

Statement

ISAM DELETE

ISAM OPEN

ISAM READ

ISAM UPDATE

ISAH WRITE

CLOSE

Description

Deletes a record from an ISAM index file.

Opens an ISAM index file and its associated data
file.

Accesses an ISAM data file.

Modifies an existing record in the data file
associated with an ISAM index file.

Enters a new record into the data file and updates
all indices in the index file.

Close an ISAH file and the associated data file.

8.5.1 ISAM Statements

ISAH DELETE

Function: Removes a particular record from an ISAH index file.

DIAB BASIC III 84-06-01

ISAH Database Option 8-5

Hode:

Format:

Arguments:

Use:

Example:

ISAH OPEN

Function:

Hade:

Format:

Arguments:

Program/Direct.

ISAH DELETE '<channel no.>.<stringvar>

The abbreviated form 'ISDL' may be used for 'ISAH
DELETE' .

Channel no. corresponds to the internal number on
which the file is opened. Valid channel numbers are
to 250.

Stringvar is a string variable which must be
identical to the record last read on that <channel
no.). If the record is not equal to the string. no
operation is performed and an error message is
given.

This statement removes the appropriate keys from a
designated record in the ISAM file. The data record
is enabled for re-use by a subsequent ISAH WRITE
statement.

Before an ISAH DELETE can be done the record must be
ISAM READ.

10 ISAH OPEN ·vol/ifile- AS FILE 1
20 ISAM'READ Il.AS INDEX ·NAME- KEY -SHITH
30 ISAH DEL£TE 'l,AS

The first record with the key 'SMITH' in the index
'NAME' is read and deleted.

Opens both the indeK and data files for ISAH access
on a file-structured device (disk or diskette).

Direct/Program.

ISAH OPEN <string expression> AS FILE <ch~nnel no.)
The abbreviated form 'ISOP' may be used for 'ISAH OPEN'.

The syntax is as in the OPEN statement.

The string expression corresponds to the external
filed specification for the ISAH and Data files to
be opened as follows:

- String Constant - -<fd>- where fd is the file
descriptor as previously defined in Section 1.3,
but without the file type.

or

- String Variable - AS

DIAB BASIC III 84-06-01

·ISAM Database Option 8-6

Use:

Note:

Examples:

ISAH READ

Function:

Hode:

Format:

Arguments:

The channel no. after AS FILE must have an integer
value corresponding to the internal channel number
on which the field is opened. Valid channel numbers
are 1 to 250.

The filename is a string literal specifying the name
of the index file you want to open. The data file
associated with this index file is automatically
opened after the index file is specified.

The pathname is not required in the filename if you
are opening a file in current directory.

ISAM OPEN is the only method used to open an indexed
file for ISAM access. Once this files is opened the
data contained in the corresponding data file can be
read. written. deleted and updated using the
appropriate ISAM statement.

Note that one ISAH OPEN statement opens both the
index and data files.

Ex. 1

10 REM vol/ifile IS THE ISAH INDEX FILE IN DIRECTORY
VOL

20 ISAM OPEN "vol/index· AS FILE 1

Ex. 2
10 REM PROGRAM PROMPTS FOR ISAM FILE NAME
20 INPUT "ISAM FILE NAME? "AS
30 ISAM OPEN AS AS FILE 1

Accesses by key or sequentially to records contained
in the data file associated with an ISAM index file.
Sequential access is according to the sort order.

Direct/Program.

ISAH READ .<channel no.>.<stringvar> [INDEX (stringa>]
[[KEY (stringb>l [FIRST] [LAST) [NEXT] [PREVIOUS]]

The abbreviated forms 'ISRO' and 'PREY' may be used
for 'ISAH READ' and ·PREYIOUS'.

The channel no. corresponds to the internal channel
number on which the file is opened. Valid channel
numbers are lto 250.

stringvar is any legal string variable. into which
the record is read.

stringa is either a string expression or string
variable which defines the name of the index that is
to be used.

DIAB BASIC III 84-06-01

ISAM Database Option 8-7

Hote:

Use:

Examples:

stringb is either a string expression or string
variable which defines the search key within the
index.

The FIRST. LAST, NEXT, or PREVIOUS keyword can be
used in place of [KEY stringbl to position the
pointer to the first. last. next. or previous record
in a particular index. That record is read without
naming a particular key.

The following rules are in .~fect for ISAH READ:

1. If the INDEX option (stringa) is missing or
empty. the index last used is selected. If no
index has been defined after the ISAH OPEN
statement e the first index in the ISAH file is
used.

2. If the KEY option (stringbJ is mis~ing or empty.
the next key for the given index in the ISAH file
is used. If no key has been $peeified~n this
index. the first key for the given index in the ISAH
file is used. (Note that t~e optional keywords. if
given. directs the keyword when the KEY option is
missing). Only one position of one index is
remembered for each channel.

3. If neither INOEX nor KEY options have been
defined after the last ISAH OPEN statement. a
sequential read is performed.

4. If it is the first read operation after ISAH
OPEN. the first index is selected and the first
record by that index is read. unles~ otherwise
specified.

.
5. The KEY string may be a sUbstring of the record
key. In this case. the first record (by ind~x). that
contains the given key at the correct position. is
read.

6. If duplicate keys are present in the index, the
first record that contains the key given is read.

1. After a successful operation. the record pointer
points to the defined data record and the record is
read into the user string variable. The ISAH DELETE
and ISAH UPDATE statements requires a previous ISAH
READ to set the record pointer. After write/update.
the position will be set on the affected key.

8. If a key sought for. is not found, the position
will be set to the next sequential key of the index
referenced. See the ISAH filepointer examples~

The followinf examples illustrate the various ways
ISAM READ can be used.

DIAB BASIC III 84-06-01

ISAH Database Option 8-8

Ex ~ 1
10 ISAM OPEN ·vol/masts- AS FILE 1
20 ISAH READ '1. AS

(Reads first index since INDEX option is missing)

Ex. 2
10 ISAH OPEN -vol/masts- AS FILE
20 ISAH READ '1. AS INDEX -NAME
or
10 I$=-NAHE-
20 ISAM READ '1.AS INDEX IS

(Reads first record by selected INDEX)

Ex. 3
10 ISAH OPEN ·volmasts· AS FILE 1
20 ISAM READ '1.A$
30 WHILE-1
40 ISAM READ 11,A$
50 ; A$! PRINT THE RECORDS TO THE CONSOLE
60 WEND

Ex. 4
5 ISAH OPEN -vol/ifile- AS FILE 1
10 OPEN -PR:- AS FILE 2
20 WHIlE-1
30 ISAM READ 11,A$
40 ; #2. AS , PRINT THE RECORDS ON THE PRINTER
50 WEND

(Performs seQuential read since both INDEX and
KEY options are missing.)

Ex. 5
10 ISAM OPEN ·vol/ifile- AS FILE
20 ISAM READ 'l.AS INDEX -NAME· KEY -SMITH

(Reads selected record by selected index
random access of a particular record.)

Ex. 6
10 ISAM OPEN -first- AS FILE 2
20 ISAM READ #2. AS INDEX ·SSNUM- LAST

(Reads last r~cord by key using the
-SSNUM- index.)

50 ISAM READ #2. BS PREVIOUS
(Reads the 2nd from the last record using
the -SSNUH- key.)

ISAM index file positioning examples:

File layout at start:

A B c D E F (EOF)

After an ISAM READ, key=·Q· (NOT FOUND!)

PREY NEXT

A B c D E F (EOF)

DIAB BASIC III 84-06-01

ISAH Database Option 8-9

ISAH UPD'ATE

Function:

Hade:

Format:

Arguments:

After an ISAH WRITE 'C' (DUPLICATE ERROR)

PREY NEXT

A B C 0 E F (EOF)

After ISAH UPDATE 'C' to · E' (DUPLICATE ERROR)

PREY NEXT

A B C D E F (EOF)

After ISAH DELETE • E'

PREY NEXT

A B C 0 F (EOF)

After ISAH UPDATE I C. to IE' :

PREY NEXT

A B D of F (EOF)

After ISAH WRITE • C'

PREY NEXT

A B C 0 E F lEaF)

Alters an existing record in the data file and
produces key changes to the index file when
applicable.

Program/Direct.

ISAH UPDATE '<channel no.>,<string1> to <string2>

The abbreviated form 'ISUP' may be used instead of
'ISAH UPDATE'.

Channel no. corresponds to the internal channel
number on which the file is opened. Valid channel
numbers are 1 to 250.

String1 is a string variable and must be identical
to the record last read on that <channel no.>. If
the record is not equal to string1, no operation
will be performed and an error will be generated.

String2 is a string variable and will replace
string1 in the data file. All changed indices will
be updated when this replacement occurs.

DIAB BASIC III 84-06-01

ISAH Database Option 8-10

Use:

Example:

ISAH WRITE

Function:

Mode:

Format:

Arguments:

Use:

Before using ISAH UPDATE, the appropriate file and
records must be ISAM opened and ISAM read. If a
duplicate key occurs inan index where it is not
allowed, that index will not be updated, and an
error will result. For example, if the name SMITH
was used as a key for record 50 and you wanted to
change record 20's key to SMITH,an error would
result.

When a key positioned to. is deleted by ISAM UPDATE
the position is moved to the new key inserted into
the index referenced.

LIST
10 ISAM OPEN ·vol/ifile- AS FILE 1
20 ISAM READ '1.AS INDEX -NAME N KEY NSMITH N

30 B$:NSMITH NEW YORK 726-2677 N

40 ISAM UPDATE Il.AS to as
basic

Enters a new record into the data file associated
with an ISAM index file and adds the new keys in the
index file.

Program/Direct .•

ISAM WRITE #<channel nO.>,<stringvar>

The abbreviated form 'ISWR' may be used for the
'ISAH WRITE'.

The channel no. corresponds to the internal channel
number on which the file is opened. Valid channel
numbers are 1 to 250.

Stringvar is any legal string variable, containing
the entire new record.

The record is appended to the data file and all
indices are updated. The record must contain
information in all key fields. If a duplicate key
occurs in an index where it is not allowed, no
operation will be performed and an error will be
reported.

Examples: Ex. 1
10 ISAM OPEN "vol/ifile N AS FILE 1
20 ISAH WRITE Il,"SMITH NEW YORK

Ex. 2
10 ISAM OPEN ·vol/ifile- AS FILE 1
20 AS="SMITH NEW YORK 632-3256"
30 ISAH WRITE '1,A$

Position will be at the inserted key.

632-3256 N

OIAB BASIC III 84-06-01

ISAH Oat_base Option

CLOSE

8-11

Function:

Hode:

Format:

Arguments:

Use:

Example:

Closes both the ISAH index file and the associated
data files.

Program/Direct

CLOSE <n1[."2 ••..]>

Channel no~ is the internal channel number. on which
the ISAH files has been opened.

An ISAH file should be closed before removing the
disc/diskette from the disc/diskette station.

Also the BASIC commands CLEAR and CLOSE close the
ISAH files correctly.

10 ISAH OPEN ·vol/ifile· AS FILE 1

90 CLOSE 1

8.6 Notes on ISAM performance

8.6.1 Disc space requirements

The size of the data files is determined by the number of records
in the file and the data record length:

Size(D)= Number(Dl * length(D)

The size of the ISAHfile isedetermined by the number of records
in the data file. the number of indices used and the length of
each index key string. Each key consists of a key string and a
pointer. The space needed to accommodate all keys is:

NI
Size.calculated = Number(D) * ~ (KLCi) + KP + 1)

i

where Number(D)
KLCi)
KP
HI

Is the number of data records
Is the length of the index key string 'i'
Is the size of a key pointer
Is the number of indices. defined as keys~

However, due to the principle ~f a-trees. only an average of 75%
(50% worst case) of the ISAH file will contain key information. So
the actual size of the ISAH file may be approximated to:

Size. average = 4/3 * Size. calculated
or

Size.worst case = 2 * Size. calculated

DIAB BASIC III 84-06-01

ISAM Database Option

8.6.2 ISAM Random access time

8-12

The time required to access a randomly selected data record, using
ISAM depends on:

a) The height of the index tree
b) The size of the files used
c) The physical access time of the device

Principally, there is one random access required for each level of
the index tree, plus one access to fetch the actual data. The
number of levels in the index tree is determined by a number,
called the 'order' of the tree, e.9. the number of keys stored in
each record, and the total number of keys in the tree. The 'order'
N of the tree is given by:

RI - FP - SP - 2
N = (INT) ---------------------

KL(i) + KP + SP + 1

The root record of the tree contains between 1 and N keys. All
other records contains between N/2 and N keys. There is one extra
Son pointer in all records. In worst case, the root contains one
key, and all other records contain N/2 keys. In this case. the
tree can be viewed as two sub-trees, which contains (Number(O)
1)/2 keys each. Hence the height of the tree will be:

Number(O) - 1
1n (-------.--------)

2

H <= 1 + ---------------------
~ In (N/2 + 1)

(worst case)

In the best case, the corresponding will be:

1n (Number(O))

H >= --------------------
1n (N + 1)

(best case)

Thus, (H+1) random accesses are needed to read a data record by
key selection.

The size of the file will affect the physical seek time on the
device, and the amount of overhead to find the actual disc record
within the logical file.

The seek time will be directly proportional to the average access
time on the physical device.

The parameter values in the formulas are:

KP = 4 (Key pointer)
RI = 1024 (Record length of ISAM file, suggested

value)
FP = 4 (Father pointer)
SP = 4 (Son pointer)
KL(i) : The length of the index key string (i)

Note: RI is specified when 'ismin' is executed.

OIAB BASIC III 84-06-01

ISAH Database Option

DIAB BASIC III 84-06-01

8-13

Quick reference summary

11. QUICK REFERENCE SUMMARY

11-1

Reference & Format Use Page

ABS(x) Returns absolute value of x. 6-2

ADDfA,B$.p%) Returns the addition of two strings. 6-11

ASCII(A$) Returns the ASCII value of first 6-12
character of AS.

ATN(x) Returns the arctangent (in radians) 6-3
of x.

AUTO [lineno.J[incrJ Automatic line numbering. 4-2

BYE Transfers control to OS. 5-42

CALL(A$r,DZ]) Calls an assembler program. CALL can 7-2
destroy program execution if used
erroneously.

CHAIN <-fd"> or CHAIN AS Loads and executes a program. 5-43

CHR$(m1[,m2.m3 •...]) Returns a character string 6-12
corresponding to the ASCII values of
the arguments.

CLEAR Clears all variables and closes a~l 4-3
open files.

CLOSE [channel no ... J Closes the filets). 5-15

CLS Returns a string to clear the screen. 6-12

COMMON <list> 5-44
COMMON <varS=ln> [list] (,string var, ...)

Declares the variables, whose values
are to be transferred to another
program.

COMPI(A$.B$)

CON (or CONT)

COS(x)

CURC<y.x»)

Returns a truth value based on a 6-13
comparison two numeric strin9s~

Continues program execution. 4-4

Returns the cosine of the x (x is in 6-3
radians).

Hoves the cursor to line y%. position 6-24
xX.

CVTF$(n) Returns a four- or eight-character
string representation of a floating
point number.

6-22

DIAB BASIC III 8~-06-01

Quick reference summary 11-2

Reference & Format

CVT$F(string)

Use

Returns the floating point number
representation of the first four or
eight characters of a string.

Page

6-23

CVT$%(string) Returns the integer representation of 6-21
the first two characters of a binary
string.

CVT%$(integer var.)

DATA <list>

Returns a two-character string
representation of an integer.

Assigns values to variables (used
with READ).

6-20

5-2

DEF FN<name>[~argument)]=<fun~tion> 5-45
Defines a single line function.

DEF FN<name> (type)[arguments][LOCAL variable.variable ... l 5-45
Defines a multiple line function.

DIGITS <number>

DIM <var list> or
DIM <argument=eKpr>

DIV$(A$,BS.p%)

DOUBLE

Specifies the number of digits to be 5-16
printed.

Allocates space for strings and 5-3
vectors.

Returns the Quotient AS/8S rounded 6-14
off to (+) pI decimals or to (-) p
places of precision.

Sets floating point numbers to double 5-5
precision (16 digits) mode.

ED [line no.] Starts program editing. 4-5

ELIF

ELSE

END

ERASE <argument>

ERRCODE

EXP()(}

EXTEND

Multiline IF statement else if clause.5-S3

Multiline IF statement else clause. 5-53

Terminates the program. 5-48

Erases one or more program lines. 4-6

Returns the value of the latest 6-24
generated error code.

Returns the value eK. 6-3

Allows extended variable names to be 5-5
used.

FIELD <str var> IN <str var> AT <int var> COUNT <int var> 7-10
Allows multiway access to string
storage areas.

DIAS BASIC III 84-06-01

Quick reference summary 11-3

Reference ~ Format

FIX(x)

FLOAT

Use

Returns the truncated value of K.

Specifies that all numbers will be
interpreted as floating point.

Page

6-4

5-6

FN<name> [type)[(parameter)]
Calls a user defined function.

6-25

FNENO Terminates a multiple line function. 5-49

FOR <var>=<expr> to <expr> [STEP expr]
Starts a program loop.

5-49

GET <string variable> Reads one or more characters from the 5-17
keyboard.

GET #<channel no.>,<string var> [COUNT number]
Reads from a file.

5-17

GOSUB <line no.>

GOTO <line no.>

HEX$(x)

Unconditional jump to a subroutine. 5-51

Unconditional jump to the given line 5-53
number.

Returns the hexadecimal string 6-4
representation of a decimal number.

IF <condition~ THEN <argument1> [ELSE <argument2>J 5-55
Conditional control of the order of execution
of the program lines.

IF-IFEND

INP(ch. il)

Multiline IF statement.

Returns the data value from the
in-port i%.

5-53

7-2

INPUT[argument]<list> Fetches data for the current program. 5-18

INPUT LINE [Ichannel no.>.]<string variable>
Accepts a line of characters.

5-20

INSTR(n%.A$,B$)

INT(x)

INTEGER

Returns string BS in AS starting at
position nX ..

Returns the value of the greatest
integer less than or equal to x.

Specifies that all variables are
supposed to be integer variables.
unless otherwise declared.

Erases the file in question from
external storage.

6-14

6-4

5-7

5-21

OIAS BASIC III 84-06-01

Quick reference summary 11-4

Reference & Format Use Page

LEFT$(A$,i%) Returns the first i1 characters of 6-15
the string AS.

lEN(A$) Returns the string length (including 6-15
spaces) of AS.

[LET] <var> = <expr> Assigns a value to a variable. 5-8

LIST [argument] Lists, saves or prints • program. 4-7

LOAD <fd> Loads a program into working storage 4-8
of the computer.

LOG (x) Returns the natural logarithm of x. 6-5

LOG10(x) Returns the common logarithm of x. 6-6

LONG INT Sets the integer precision to long 5-9
(4 bytes) integer~{de~ault). This
only effects the CVT%$ AND CVT$%
functions.

MERGE <fd> Merges program files. 4-9

MID$(A$.p%,kI) Returns the substring of AS. which 6-15
starts in position p% and has a length
of kZ characters.

HOO«argumentl>.<argument2») 6-6
Returns the remainder of an
integer division of the arguments.

MUL$(A$.BS.p%) Returns the product A$*B$ with pI (+) 6-16
decimals or with p (-) places of
precision.

NAME ('fd1 M> AS <Mfd2> Changes the name of a file. 5-22

NEW Clears storage. 4-10

NEXT <variable> NEXT terminates a program loop. which 5-57
be~ins with a FOR statement.

NO EXTEND

NO TRACE

NUH$(argument)

OCT$(argument)

Terminates work in EXTEND mode.

Terminates the printout of line
numbers. which was started by the
instruction TRACE.

Returns the numeric string
corresponding to the argument.

Returns an octal string representa
tion of a decimal number.

5-9

5-58

6-17

6-6

DIAB BASIC III 84-06-01

Quick reference summary '1-5

Reference & Format Use Page

ON ERROR GOTO <line number> Branches to the indicated line 5-58
number of an error.

ON <expression> GOSUB <line no.) [.line no .•...) 5-60
Conditional jump to one of several
subroutines or to one of several entry
points in a subroutine.

ON <expr> GOTO <line no.>[.1ine no .•...] 5-61
Jump to one of several line numbers,
depending on the value of the
expression.

ON <expr> RESTORE <line no.> r.line no .•...] 5-61
Sets the DATA pointer by the same
selection routine as ON - GOTO.

ON <expr> RESUME <line no.> r.line no l 5-62
Jump to one of several line numbers.
depending on the value of the
expression. The error handling is
resumed. Used with ON ERROR GOTD.

OPEN <"fd"> AS FILE <number> Opens a file. 5-22

OPTION BASE <n>

OPTION EUROPE <n>

Denotes the lowest vector index value 5-10

Specifies European or American PRINT 5-25
USING M~M and M.M field parameters.

OUT # <channel no.) <port.data> [port.data •...) 7-3
Addresses the out ports at data
output.

PEEK«i7.»

PEEK2«bl»

PEEK4«bZ»

Returns the contents of one byte at 7-3
storage address iZ.

Returns the contents of two bytes at 7-4
storage address bZ. This function is
meant for advanced programming.

Returns the contents of four bytes at 7-4
storage address b%. This function is
meant for advanced programming.

PI Returns a constant value 3.14159
(single precision).

6-7

POKE <addrdata>[,data, ..] 7-4
loads a value into a storage cell.

POSIT #<channel no.>[.number] 5-26
Positions the file pointer.

DIAB BASIC III 84-06-01

Quick reference summary 11-6

Reference & Format Use Page

POSIT «channel no.») Returns position of file pointer. 5-26

PREPARE <-fd-) AS FILE <number> 5-28
Creates and opens a new file.

PRINT [Ichannel no.,]<argument>[.~rgument,•. ~] 5-29
Prints data in ASCII format.

PRINT [IChno,] USING <-format string->(argument>[.argument,-] 5-32
Prints numbers and strings with the
specified format.

PUT I<channel no.>.<string variable> 5-39
Writes a string variable in binary
format .

.~

RANDOMIZE Sets a random starting value for the 5-10
RNO function (the random number
generator).

READ <variable>(.variable •..) 5-12
Used together with DATA statements
as a way of assigning values to
variables.

REH text Inserts comments in a program. 5-62

REN [<line no.1)[,incr[line no.2-line no.3]]] 4-11
Changes the line numbering of the
current program.

REPEAT Begins a loop terminated by UNTIL. 5-63

RESTORE <line number> Makes possible renewed use of the 5-12
contents of DATA statements.

RESUME <line number> Returns from error handler. 5-64

RETURN <variable> Returns from sUbroutine or multiple 5-64
line function.

RIGHT$(AS,n%) Returns the last characters of AS 6-17
starting at position nI.

RND Returns a random number between 0 6-7
and 0.999999.

RUN <fd> Loads and executes a BASIC III 4-12
program or executes the current
program.

SAVE <fd) Creates a disk file and stores the 4-13
current program into that file.

DIA8 BASIC III 84-06-01

Quick reference summary 11-7

---~--~---~---~-~-~-~~~---~~~-~~----~-~~~--~---~~-----~---~--~~-~-

Reference ~ Format Use Page

SCR

SGN(x)

SHORT INT

SIN(x)

SINGLE

SLEEP <expr>

SPACE$(n1.)

SQR(x)

STAT

STOP

STRING$(IZ,KZ)

Clears storage. 4-13

Returns the value +1 if x positive, 6-8
o if x and -1 if x negative.

Sets the integer precision to short 5-13
(2-byte) integers. This only effects
the CVTZ$ and CVT$Z functions.

Returns the Sine of x (x is in 6-8
radians).

Changes variables and expressions, 5-14
which are floating point numbers, to
single precision (6 digits).

Suspends currently running program 5-65
for a specified number of seconds.

Returns a string consisting ·of nZ 6-18
spaces.

Returns the square root of x. 6-8

Gives mode and program size 4-14
information.

Stops the program execution. 5-66

Returns a string of ASCII characters. 6-18

SUB$(A$.B$.p%)

SWAP7.(n1.)

SWAP2X(n1.)

SYS(iZ)

Returns the arithmetic difference
AS-BS of the numeric strings A$ and

.as with (+) p% decimals or with
(-) p places of precision.

Returns integer with first and the
second bytes of n7. transposed.

Returns integer with bits 0-15 and
bits 16-31 transposed.

Returns system status as follows:

6-18

6-9

6-9

7-5

SYS(2) Returns total space available
for program and data.

SYS(3) Program code size.

SYS(4) Remaining storage space.

SYS(10) Points to information block
about the program.

DIAB BASIC III 84-06-01

Quick reference summary 11-8

Reference & Format Use Page

SYS(11) Starting address of the
program.

SYS(12) Gives a pointer to the
variable root for all user
variables in DataBoard BASIC.
Note. Not available in a squeezed
program.

TA8(iX) Tabulates to the i%-th position on 5-31
the line.

TAN(x) Returns the tangent of x (x in 6-10
radians).

TIMES Returns year-month-day hours.min.sec 6-26

TRACE [Ichannel no.] Prints the line number of the 5-66
executed program linese

UNSAVE <fd> Erases a file from a disk. 4-14

UNTIL <expression> Terminates a loop that begins with 5-67
REPEAT.

VAL(A$) Returns the numeric value.of the 6-19
numeric string AS.

VAROOT (variable) Returns the address of a table. 7-6
which contains information about
2 variable.

VARPTR (variable) Returns the address of the value of 7-6
a variable.

WEND WEND terminates a loop that begins 5-67
with WHILE.

WHILE <expression> Specifies the condition for 5-57
branching out of a program loop.

DIAB BASIC III 84-06-01

APPENPICES

Contents

A: BASIC III ASCII Character Set (Table)••....... A-1

B: BASIC III Error Hess8ges•••.•.••..•.... B-1

0: BASIC III - BASIC Verse 3 Difference••.•••.•••.... 0-1

F: Available BASIC Versions and Options•........ F-1

DIAB BASIC III 84-06-01

", .,

Basic III ASCII character set '\-1

APPENDIX A

A. BASIC III ASCII
CHARACTER SET

, ~ ,.
___ IB ••••••••• .•.....•.•
Oct. Hlx. DICe Char. Oct. Hex. Die. Char, Oct, Hex. Dec. Chit'. Oct. H.I. Dec. Char.--------- _ ••G._••• I •••••••_______~~________ • . ---
000 00 0 NUL (CTRL 1) 040 20 32 SPACE 100 40 M t (I) 140 60 96 .(')

001 01 1 SOH (CTRl I) 0-41 21 33 101 41 65 A 141 61 97 I

002 02 . 2 srx (CTRL bJ 042 22 3.f 102 42 66 8 142 ·62 98 b
003 03' 3 ETI (CTRL c) 043 23 35 I 103 43 67 C 143 63 99 c
004 04 4 EDT (CTRL dJ 044· 24 36 II ($) 104 44 68 D 144 64 100 d
005 05 5 ENg (CTRL I) 045 25 37 % 105 45 69 E 145 65 101 I

~. 006 06 6 ACK (em f) 046 26 38 1& 106 46 70 . F 146 66 102 f
007 07 7 BEL (CTRL g) 047 27 39 107 47 71 & 147 67 103 g

010 08 8 is (CTRl h) 050 28 40 (110 48 72 H 150 68 104 h
011 09 9 TAB 051 29 41 J 111 49 73 I 151 69 105 i
012 OA 10 LF 052 2A 42 I 112 4A 74 ~ 152 6A 106 j
013 OB 11 VT (CTRL k) OS3 2B 43 + 113 48 7S K 153 68 107 k
014 OC 12 fF (CTRL II 054 2C 44 114 4C 76 L 154 6C 108 1
015 01 13 CR 055 2D 45 115 40 n " 155 6D 109 •
016 OE 14 so (CTRL n) 056 2£ 46 116 4E 78 N 156 6E 110 ft

..

017 OF 15 SI (CTRL 0) 057 2F 47 I 117 4F 79 0 157 6F 111 D

020 10 16 DLE (em pI 060 30 48 0 120 50 80 P 160 70 112 P
021 11 17 DCI (CTRL g) 061 31 49 1 121 51 81 a 161 71 113 q
022 12 18 DC2 (CTRL r) 062 32 50 2 122 52 82 R 162 n 114 r
·023 13 19 DC3 (CTRL s) 063 33 51 3 123 53 83 S 163 73 us 5

024 14 20 DC4 (CTRL t) 064 34 52 4 124 ~4 84 T 164 74 116 t
025 15 21 NAK (CTRL u) 065 35 53 S 125 55 85 U 165 75 117 u
026 16 22 SYN (CTRL y) 066 36 54 6 126 56 86 V 166 76 118 y

027 17 23 FYB (CTRL .) 067 37 55 7 127 57 87 " 167 77 119 · If

030 18 24 CAN (CTRl I) 070 38 56 8 130 58 88 I 170 78 120 I

031 19 25 E" CeRTl y) 071 39 57 9 ·131 59 89 y 171 79 121 Y
032 lA 26 SUB (eTRL zl 072 3A 58 132 5A 90 Z 172 7A 122 z
033 11 27 ESC 073 3B 59 133 58 91 I ([) 173 78 123 i (()
034 Ie 28 FS (CTRl /) 074 3C 60 134 5C 92 a (\) 174 7C 124 o (:)
035 ID 29 65 (CTRL () 075 3D 61 = 135 SD 93 A (J) 175 7D 125 I o :
036 IE 30 RS (CTRL ij) 076 3E 62 > 136 SE 94 . ii (A) 176 7E 126 U C"}
037 IF 31 US (CTRL ') 077 3F 63 ? lJ1 SF 9S 177 7F 127 DEL____________________________..______________________•••c. &. ___..________-___

OIA~ BASIC III 84-0G-01

Basic III error messages

B. BASIC III ERROR MESSAGES

B-1

APPENDIX B

Table B-1 lists the error messages that can be returned when using
Basic III. If an error is found during execution of a program the
line number where the error occurred will be appended to the
message.

Note that error messages from the operating system is reported
with the error numbers according to the operating system.

The text messages are taken from the file lusr/etc/basicerr.txt.
If this file is not available at the start of the BASIC task,
only the error numbers are reported.

The lusr/etc/basicerr.txt file is delivered together with the
BASIC interpreter task file and the BASIC program BASERRGEN/B,
which may be used to generate a new BASICERR/A file on any volume
specified by the'user.
Table B-1. Error Messages
~--~--~--~-~~---~-~--~~---~-~~~--~----~~-~~---~--~~---~~-~------

Number Message Meaning
~---~~-------~-~-~~-~---------~--~~-~-~~~-~-~----~~--~----~-----

1 Not owner
2 Not such file or directory
3 No such process
4 Interrupted sysytem call
5 I/O error
6 No such device or address
7 Arg list too long
8 Exec format error
9 Bad file number

10 No children
l' No more processes
12 Not enough core
13 Permission denied
14 Bad address
15 Block device required
16 Device bUSy
17 File exists
18 Cross-device link
19 No such device
20 Not a directory
21 Is a directory
22 Invalid argument
23 File table overflow
24 Too many open files
25 Not a typewriter
26 Text file busy
27 File too large
28 No space left on device
29 Illegal seek
30 Read-only file system
31 Too many links
32 Broken pipe
33 Argument too large
34 Result too large
35 Structure needs cleaning

DIAB BASIC III 84-06-01

Basic III error messages

Number Hessage

B-2

Heaning

142 Wrong arg. to built-in function
143 Illegal SYS function
144 Illegal line
145 FNENO without previous RETURN,

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
58
64
68

120
121
122
123
124
125
126
127
128
129
130
131

132
133

134

135
136

131

138
139

140
141

Would deadlock
Not a semaphore
Not available
file write protected
File delete protected
Disk full
Disk not ready
Disk write protected
Logic file not opened
Wrong logic file number
Wrong unit number
Wrong trap number
Error in library
Wrong fysical file number
End of file
Too long line
Illegal character
Illegal NAME
Illegal time specification
ISAH: Can't find key
I SAM: .Hul tiple key not allowed
ISAM: Wrong key
ISAH: Error on cheek-read
ISAM: Can't find index
ISAM: Wrong data 'record length
ISAM: Wrong version of ISAH file
ISAH:
LSAH: End of memory
ISAH:
Floating point overflow.
Array Index outside legal
range
Integer overflow
Error in ASCII-arithmetic
expression
String index neg. or too large
Negative TAS.SPACES.STRINGS arg.
Overflow in string assign

Attempt to expand array or
string
Expression'out of range in ON
RETURN without GOSUB

Wrong return type
Out of DATA statements

Certain va~ue out of range.

The dimensions of the
receiving string are too
small.
A vector cannot be extended
beyond its original length.

A return statement is
encountered when no GOSUB
has been executed.

The data list is exhausted
and a READ statement wants
more data.

DIAB BASIC III 84-06-01

Basic III error messages

Number Message

B-3

Meaning

146

147
148
149
150
151
152

153

176
180

181

182

183
184
185

186

187
1eB
189

190

PRINT USING error

Illegal data
Too few data
RESTORE not to DATA line.
Too many data.
RESUME without error.
Attempt to read from outpipe or
write to inpipe
Open with untranslateable ':'
expression
Graphic point outside screen
Can't find line

Illegal GOTO int%ut of
function
NEXT, WEND, IFEND or UNTIL
missing
FOR or WHILE missing
Wrong variable in NEXT
Illegal FOR. WHILE, REPEAT or
mult in IF nesting
FOR loop with local not allowed
(use WHILE)

Fun~tion not defined
Several functions with same name
Illegal function

Wrong number of indices

Wrong format in PRINT USING
statement.

Reference to a nonexistent
line number

Use of the FOR loop with a
local variable is not
permitted. This applies to
multiple line function
Call for undefined function

Mixing of several DEF
instructions is not allowed
The number of indexes is not
in accordance with the DIM
statement

191
19-2
193
194
200
201
202
203
204
205
206
207

Not assignable in function
REPEAT missing
IF missing (multiline type)
Multiple ELSE not allowed
Unit not connected
End of memory
Program LIST-protected
Illegal program format
Attempt to MERGE .bac file
COMMON must be first; CHAIN
Use RUN
Can't continue

error

Applies to GOTO line number
and CON.

212 Compiler buffer overflow
220 Don't understand

208
209

210

211

Not allowed as command
Wrong data to command

Illegal number

Precision can't be changed now

Wrong argument to the
command e.g. LIST II
The number contains other
characters than digits
Change of precision after
assignment not allowed

DIAB BASIC III 84-06-01

Basic III error messages

Number Hessage

8-4

Meaning

Hissing in OPEN and PREPARE
instructions
Error in NAME •.. AS
In FOR loops

221
222
223

224
225

226
227
228
229
230

231
232
233
234
235
236

Illegal character after statement
Must be first on a line
Wrong number or types of
argument
Illegal mix of number and strings
Not simple variable, index not
allowed
Illegal statement after ON.

missing
':' missing
')' missing
"AS FILE" missing

-AS- missing
"TO" missing
Hissing line number
Illegal variable
missing
IN, AT or COUNT missing

Formal Basic III error

DIAB BASIC III 84-06-01

BASIC III --- BASIC vers.S Difference

D. BASIC III --- BASIC yers.5 DIFFERENCE

0-1

APPENDIX 0

Basic III differs to a large extent from the earlier BASIC
versions. Below is a list of the MAIN differencies, describing the
BASIC III characteristics compared to BASIC vers.S:

The format of BASIC III programs in compressed form
(SAVE) are not compatible with earlier Basic versions.
Use files in uncompressed (LIST) form for compatibility.

2 There is only one file type. byte oriented files.
Extensive file handling is available from Basic III.

3 Single step is obtained with character CTRL-Z (NOT
CTRL-S). This is due to the fact that CTRL-S in most
·applications stops the output to the terminal.

4 Integer size is 4 bytes, allowing a larger range of
values.

5 The integer arithmetic uses the microprocessor
instructions (if available) for functions like \.
*, + -. This may cause unexpected results. Example:
The division (-3%)/2% migt give the result -2% or -1%
depending on the inplementation of the instruction
DIV.

6 . The floating point format is IEEE giving 6 digits in
SINGLE and 15 in DOUBLE precision.

7 The command STAT has been added to give information
about the interpreter mode and the program and data
sizes.

8 New functions are:
PEEK4%(x) Reads four bytes from address x.
SWAP2Z(X) Returns the first and second word in

integer x transposed.
CLS Returns a string to clear the screen.

9 New statements are
Multiline IF
REPEAT UNTIL

FIELD

IF-THEN-ELIF-THEN-ELSE-IFEND
Loop construct with condition at
the end.
For database applications.

10: The statements
SHORT INT
LONG INT
To control the integer to string convert functions
CVTZ$ and CVT$%.

11: The editor control keys are read from the file bascap or
/usr/etc/bascap.

12: SYS(S), SYS(S), SYS(7) are not used.

DIAB BASIC III 84-06-01

Available Basic versions and options

Fe AyAILABlE BASIC VERSIONS
AND OPTIONS

F-1

APPENDIX F

The different versions of Basic III available are:

1. BASIC III ISAH D~NIX operating system.

This is the main version.described in this manual. For
several users the interpreter code is shared and every user
gets a separate data area.

2. BASIC III ISAH for D-NIX operating system.

The above version but with the single user ISAH included.
(ISAM is described in Appendix F.)

3. Run-only BASIC versions are available on request, Which does
not include the interactive command interpretere

DIAB BASIC III 84-06-01·

basic(l)

NAME
basic - basic programming language interpreter

SYNOPSIS
basic [-d -x -i -c -m] [file]

DESCRIPTION Basic III Ver. 1.07

basic(l)

Basic is an interpreter for the basic dialect from Dataindustrier
DIAB AB, Sweden.

The input editor determines the terminal capabilities from the
terminal capability database termcap(5). The shell variable TERM
should be set to the terminal type used.

The control characters or sequences the user wants to use for cursor
motion, enter insert mode •.• I can be redefined in the file
I/usr/etc/bascap' using the same syntax as in termcap.

The entries read from termcap and bascap are:

Abrev. termcap bascap default meaning

"kr" x x AL right arrow key
IIkl ll x x A

H left arrow key
"ku" x x AK up arrow key
"kd ll x x AN down arrow key

"em" x cursor positioning
"el" x clear display

lIic ll x AI enter insert mode
lI e i " x AU exit insert mode
"de" x A

E delete character ...",

"cd" x AD delete to EOL
IIdl" x AX delete line

lind" x non destructive space
"up" x move cursor up
"co" x 80 # of columns

The character lA, stands for the CTRL-key i. e.
A K is the same as pressing the CTRL-key and (while
keeping it depressed) press K.

The arrow key entries in bascap overrules the ones in termcap if
specified in both.

The options alters the mode of the basic interpreter when started

-d
-x
-i
-c
-rnXx

double floating point precision
extend mode (long variable names)
integer mode
disables CTRL-C and CTRL-Z function
XX number of KBytes extra memory (default 32K)

If 'file' is specified the file 'file' is loaded and executed by the
basic.

From the basic shell commands can be executed by starting the line
with an exclamation mark (1). The rest of the line is then passed to
a new shell which executes it.

NEW FEATURES

Additions in Basic compared to BasicII are:

ARGC%

Function:

Returns the number of parameters the basic interpreter
was started with.

Mode: Direct/Program

Format: ARGC%

Result: Numeric

Use: ARGC% is used in combination with the function ARGV$ to
retrieve the startup parameters.

Example:

Ex. 1
If the basic was started:

basic -x format fill fi12

ARGC% will return 5, since there are five space separated
strings in the start command.

ARGV${l) will return 'basic' (the 5 character string: basic)
ARGV$(2) '-x'
ARGV$(3) 'format'
ARGV$(4) 'fill'
ARGV$(S) 'fi12'

ARGV$

Function:

Returns the parameters the basic interpreter
was started with.

Mode: Direct/Program

Format: ARGV${x)

Argument:

x is a integer number between 1 and the value
returned by the function ARGC%.

Result: String

Use: ARGV$ is used in combination with the function ARGC% to
retrieve the startup parameters.

Example:

Ex. I
If the basic was started:

basic -x format fill £i12

ARGC% will return 5, since there are five space separated
strings in the start command.

ARGV$(I) will return 'basic' (the 5 character string: basic)
ARGV$(2) '-x'
ARGV$(3) 'format'
ARGV$(4) 'fill'
ARGV$(5) 'fi12'

FIELD

format:
FIELD strvarl IN strvar2 AT pos COUNT len

A statement for advanced programming, making it
possible to access a string storage area via
different string variable names.
The string variable 'strvar2' must have been allo
cated (done with assignment or DIM) and 'strvarl'
should NOT have been allocated or allready be a
field in 'strvar2 1 otherwise there is an error.
The statement changes the 'strvarl' pointer to
point into the storage area for 'strvar2' at char
acter 'post and sets the allocated length and
actual length to 'len'.
Usefull for data base applications (ISAM) to create
data records.

LOCK

Function: Test and lock a region of a file for
exclusive use.

Mode: Direct/Program

Format: LOCK #<channel nO.>,<count>

Arguments: Channel no. corresponds to the internal channel
number on which the file is opened.

Count is the number of bytes from the current
file position that is to be locked. A positive
value means 'count' bytes forward from current
file position, a negative backwards from current
position (not including current).
Count ..a.. is used when the region from current

position to theend-of-file (present or future)
should be locked.

Use: LOCK can be used when several processes access
common files and want to ensure exclusive use
of the file.

LOCK tests the specified region of the file, if
it is already locked by another process an error
is generated, otherwise the region is locked.

The lock is released when the statement UNLOCK
is executed or the file is closed with CLOSE.

Note: If one process has opened a file and locked it
with LOCK another process can still access the file
unless it also tries to LOCK the same region or
the file has the enforcement flag enabled.

For information on how to set the enforcement flag
for a file, refer to the operating system manual
lockf(2) and chmod(I).

Example: Ex. 1

10 OPEN "1file" AS FILE 1
20 LOCK #1,20

The first 20 bytes of file Ilfile' is locked for
exclusive use.

Ex. 2

10 OPEN nlfile" AS FILE 1
20 POSIT #1,20
30 LOCK #1,-5

Bytes number 15 to 19 are locked for exclusive
use.

Ex. 3

10 OPEN "lfile" AS FILE 1
20 LOCK #1,0
30 PUT #'1, "This Ls my file"
40 UNLOCK #1

The entire file is locked for exclusive use.
A message is written to the file and the file
lock is released.

UNLOCK

Function: Releases all region locks on a file which has
been locked for exclusive use by a previous
LOCK statement.

Mode: Direct/program

Format: UNLOCK #<channel no.>

Arguments: Channel no. corresponds to the internal channel
number on which the file is opened.

Use: UNLOCK is used to release the file lock(s) on
a file. The locks are established with the statement
LOCK to ensure exclusive use of the file.

The lock is also released when the statement UNLOCK
is executed or the file is closed with CLOSE.

Example: Ex. 1

10 OPEN "lfile" AS FILE 1
20 LOCK #1,0
30 PUT #1, "This is my file"
40 UNLOCK #1

The entire file is locked for exclusive use.
A message is written to the file and the file
lock is released.

REPEAT - UNTIL

format:
REPEAT

statement(s)
UNTIL condition

Loops until condition is true.

IF - THEN - ELSE - IFEND, ELIF THEN:

format:
IF condition [THEN [:JJ

statement(s)
[ELIF condition [THEN]

statement(s)]
[ELSE

statement(s)]
IFEND

A multiline IF construct is distinguished from an
ordinary IF by leaving the line empty after the
condition, after THEN or by placing a colon after
THEN.

In one multiline IF construct only one block of
statements, at the most will be executed.
The construct must be terminated by an IFEND.
The ELIF construct can be repeated as many times
as wanted.

SYSTEM

format: SYSTEM strvar

The contents of the string variable is passed to
a subshell and executed as a command.

Example:

SYSTEM "date"

result:
Mon Feb 18 09:21:44 GMT+l:OO 1985

PREPARE

format:
PREPARE strvar AS FILEfnr MODE mode

The px;-otection of a prepared file is determined
by the bit mask 'mode'. The same mask as for
the system call creat(2) is used.
The default mode is 0644 (octal.) giving read and
write permission to owner and read to group and
others. .
The prepared file is opened for READ and WRITE
see also OPEN (mode).

OPEN

OPEN (mode)

format:
OPEN strvar AS FILE fnr MODE mode

Opening a file can be done in three modes
mode meaning

o READ
1 WRITE
2 READ and WRITE

Default is mode 2, READ and WRITE.

OPEN (pipes)

format:
OPEN "PIPEIN:cmd" AS FILE file number
or
OPEN IIPIPEOUT:cmd " AS FII..E file number

The shell command cmd is executed by a subshell
with it's standard input (PIPEOUT) or standard
·output (PIPEIN) connected to the basic via the
file referenced by file number.

OPEN (string replacement)

format:
OPE1~ II s t r l : s t r 2 " AS FILE file number

In order to make it possible to use old (BasicII)
device names i. e. "PR: II a string replacement
function has been implemented.
In the file translate. txt in current directory or,
if it does not exist, in /usr/etc/translate.txt two
lines specifying strl and the wanted replacement
string should be entered separated with line feed.

Example:

In translate. txt
PR:
PIPEOUT:print

The statement OPEN "PR: II AS FILE 1 will be
translated to OPEN "PIPEOUT:print ll AS FILE 1

SHORT INT/LONG INT

format:
SHORT INT
LONG INT

Specifies the integer size to use when using the
string to integer and integer to string functions
CVT%$ and CVT$%.
The"default is LONG corresponding to 4 bytes,
SHORT is 2 bytes.

OPTION EUROPE

format:
OPTION EUROPE n

Specifies the use of periods, commas
and space in "PRINT USING" output.
OPTION EUROPE 0 gives period as decimal character
and commas as separator characters.
OPTION EUROPE 1 gives comma as decimal character
and periods as separator characters.
Added :
OPTION EUROPE 2 gives period as decimal character
and spaces as separator characters.
This is default and conforms to "PRINT USING" in
ABC800.

CLS

format:
PRINT CLS

String function returning a string to clear the
the display of current terminal.

The string is the IIcl" entry in termcap.

DNIX (integer function)

format:
R=DNIX(parl,par2, •••)

Operating system call.
The given parameters are pushed on the system stack
to a total of 10 parameters and entry into the ope
rating system is done with assembler instruction
TRAP 4.
If less than 10 parameters are supplied the remaining
ones are set to zero by Basic III.
The function returns the return value from the opera
ting system.

REQUEST

Function:

Mode:

Call to operating system.

Direct/program

Format: R=REQUEST(req.code,parl,par2, •••)

Arguments:

Req.code determines the system routine called and
parI, par2 and so on are sent as parameters to this
routine. If less than 9 parameters are supplied the
the remaining ones are set to zero.

Use:
Makes all operating system calls available.
The given parameters are pushed on the system stack
to a total of 10 parameters and the specified operating
system routine is called.

The function returns the return value from the opera
ting system.

Req. code Routine Req. code Routine
----~-_._-

,....,-.m __ --------- -----~-.

1 exit 30 utime
2 fork 31 stty
3 read 32 gtty
4 write 33 access
5 open 34 nice
6 close 35 ftime
7 wa i t; 36 sync
8 creat 37 kill
9 link
10 unlink 41 dup
11 execv 42 pipe

12 chdir 43 times
13 time 44 profil
14 mknod
15 chmod 46 setgid
16 chown 47 getgid
17 brk 48 signal
18 stat
19 lseek 54 ioctl
20 getpid
21 mount 59 execve
22 umount 60 umask
23 setuid 61 chroot
24 getuid
25 stime
26 ptrace
27 alarm
28 fstat
29 pause

Example:

Write a line to the terminal using REQUEST.

LIST
10 A$="Printed with REQUEST"+CHR$(lO)
20 REM Request code for Write is = 4
30 REM ParI is file descriptor for standard output = 1
40 REM Par2 is pointer to string to write
50 REM Par3 is length of string to write
60 R=REQUEST(4,l,VARPTR(A$),LEN(A$»
basic
RUN
Printed with REQUEST
basic

STATUS (Command)

format:
STAT[US]

This command gives status information about the
basic interpreter:
Modes: FLOAT/INTEGER, SINGLE/DOUBLE, NO EXTEND/EXTEND,
LONG INTjSHORT INT.
Program size, data size.

I:t~P (changed)

format:
INP(fnr,addr)

The INP function has been changed to work through a
special driver accessed as a file. The driver should
be opened with an ordinary OPEN statement.
The address should be put together as the card
select * 256 plus the port number.
The INP function is executed as "ls e ek" on specified
file and then "read" of one byte.

Example:

10 OPEN "/dev/DBinoutb ll AS FILE 1
20 I=INP(I,Card*256+Port)

OUT (changed)

format:
OUT #fnr address,val[address,val •••]

The OUT statement corresponds to the INP function and
also works through a channel.
The address should be put together as the card
select * 256 plus the port number.
The OUT statement is executed as a "Iseak" on specified
file to 'port'. All consecutive 'vall with same 'address'
are then written with "write" in one request. If a new
'address' is found a new "Iseek" is executed.

GRAPHIC STATEMENTS (ABC1600 or ABC806 with graphic prom)

For all the statements the 'colnr' and 'pattern'
parameters are optioria1, if not specified the last
used values are maintained.
For monochrome terminal (ABC1600) 'colnr'=l and
'pattern'=O are used to draw comlete lines, arcs
'colnr'=O and 'pattern'=O are used to clear.

FGFILL x,y[,colnr][,pattern]

Fill rectangular area from previous graphic
cursor position to 'x','y'.

Ex.
FGFILL 100,100,1,1

FGLINE x,y[,colnr][,pattern]

Draw line from previous graphic cursor position
to I x I , 'y' .

Ex.
FGLINE 100,100,1,1

FGPOINT x,y[,colnr][,op]

Move graphic cursor to 'x','y' and alter pixel
according to lOp': 0 set pixel

1 clear pixel
2 complement pixel

Ex.
FGPOINT 100,100,1,2

FGPAINT x,y [,colnr] [,pattern]

Start paint from 'XI,l y ' . After operation
graphic cursor is left in 'Xl/ly'.
If Ipattern' is 0 a complete " g o around the

corner" paint is done otherwise it just starts
at 'x','y' and goes outwards.

Ex.
FGPAINT 100,100,1,1

FGCSEG x,y,len [,colnr] [,pattern]

Draws circle segment from graphic cursor position
counter clockwise with origo in 'x','y'.
The IIlength" of the segment is specified with 'len'
in number of vertical and horizontal pixel steps,
This means that a full circle is generated with
len= 8 * radius.

Ex.
FGCSEG 100,100,300,1,1

MIMER DATABASE OPTION

The MIMER database handler is a relational database management
system for creating and maintaining the data base.

The data handled by a relational database system is organized in
tables. Every table contains a number of rows, each row
consisting of a number of' columns.

The rows within a table are maintained in a sorted order. The
sorting is done after the primary key (or primary index) defined
for each table.

A primary key is one column or several consecutive columns. The
primary key column(s) must be defined in the beginning of the
row. Two rows in the same table may not have identical primary
keys.

All row values in a specific column are of the same type
(character, integer or float) and the same length.

Example:

Table CAR is used in the examples below, it consists of four
columns all of character type.

Column name

REGNR
MODEL
COLOR
YEAR

Size in bytes

6
15
8
2

Primary key

REGNR

ABC123
BAR762
HIK093

MODEL

GOLF
VOLVO
SAAB

Table CAR

COLOR

BLACK
WHITE
GRAY

YEAR

82
83
79

MIMER statements

The MIMER option contains a number of statements for advanced
handling of Mimer tables.

Statement

MIMER BEGIli
MIMER OPEN
MIMER GETFIRST
MIMER GETNEXT
MIMER WRITE
MIMER UPDATE

'MIMER DELETE
MIMER TRANSACTION
MIMER COMMIT
MIMER ABORT
MIMER END

MIMER BEGIN

Abbreviation

MIMBE
MIMOP
MIMGF
MIMGN
MIMWR
MIMUP
MIMDE
MIMTR
MIMCO
MlMAB
MIMEN

Description

Start Mimer session
Open databank and table
Read first row in table
Read next row in table
Insert a new row in table
Update current row in table
Delete current row in table
Start transaction handling
Make changes permanent
Do not make the changes
Terminate the Mimer session

Function:

Mode:

Format:

Arguments:

Use:

Starts the mimer session by establishing contact
with the Mimer database handler.

Direct/program

MIMER BEGIN <stringl>,<string2>

The abbreviated form 'MIMBE ' may be used for
'MIMER BEGIN' •

Stringl is the user name.

String2 is the password associated with user name
in Mimer.

User name and password should be given as strings
or string variables. The user name can be given
in lower or upper case characters. If it is in
lower case it will be transformed internally to
upper case before calling the Mimer handler.

This statement is used as a login procedure to the
Mimer database handler. The user name and password
is checked by the handler and the access rights
for the user determined. The Mimer database

Examples:

MIMER OPEN

Function:

Mode:

Format:

handler must be running. Until a MIMER END is
executed databanks and tables, accessable for the
user, can be handled.

Ex. Start session as user "USERl" with password in
string variable Passwd$

I~IMER BEGIN "USERl", Passwd$

Opens Mimer databank and table. Connects the
specified Mimer columns with the corresponding
variables in a MIMER GETFIRST, MIMER GETNEXT,
MIMER WRITE or MIMER UPDATE statement.

Direct/Program

r~IMER OPEN "<databank>.<table>" AS FILE nr [ACCESS
ac] columnl, column2, •..

The abbreviated form 'MIMOP' may be used for
•MIMER OPEN I •

Arguments: Databank is Mimer databank name, max
characters lOng.

8

Table is Mimer table name, max 8 characters long.

The ACCESS specification is optional and
determines the protection for the databank and the ,
table.

The ACCESS values are:

ac databank table

RR Read Read
SR Shared Read
5S Shared Shared
XX (default) Exclusive Exclusive

Columnl, .•. are the Mimer column names, from
which data is to be retrieved in a subsequent
MIMER GETFIRST or MIMER GETNEXT statement. The
first column name given specifies the column from
which data will be read into the first basic
variable given in MIMER GETFIRST or MIMER GETNEXT.
The second column name refers to the second basic
variable, and so on.

The same correspondance is valid for MIMER WRITE
and MIMER UPDATE but the data transfer is in the
opposite direction, from the basic variable to the
Mimer column.

If a column name is specified as an empty string
(or empty string variable) no connection to a

Use:

Note:

Examples:

mimer column will be made, the corresponding basic
variable in MIMER GETFIRST or MIMER GETNEXT will
not receive any data.

The specified table within databank is opened. If
the databank is not already open (from opening
another table within the same databank), it is
also opened.

The databank and table names are transformed to
upper case if needed.

The given column names are searched for in the
system table "*TABDEF .. and the needed information
to handle the table is retrieved. Before the
search the column names are transformed to upper
case.

If a given column name is not found in the
n*TABDEF" table mimer error III is generated. This
is not a fatal error, the table 18 opened for
subsequent handling but no data transfers will be
done for the nonexisting column(s).

If several tables are opened within the same
databank the access mode used for the databank
when opening the first table will be maintained
when opening the next one. This means that the
same access mode for databank should be used when
opening several tables within the same databank.

Ex. 1

Open databank "OBI II and table "CAR II with
default ACCESS (both databank and table Shared).
Check that the column names for table CAR are
REGNR, MODEL, COLOR and YEAR.

Regnr$=lIregnr"
MIMER OPEN uDB1.car" AS FILE 7 Regnr$,"modelll,"color",
"year"

As shown the column names can be given as string
variables.

Ex. 2

Regnr$=""
MIMER OPEN uDBI.car" AS FILE 7 Regnr$,Umodelll,lIyear",
IIcolor"

In this case the column 'regnr l is not connected
and the columns 'year' and 'color' are read in a
different order.

Ex. 3

Regnr$="11
MIl1ER OPEN "DBl. car" AS FILE 7 ACCESS RR
Regnr$,"model","yearU,"colorll

Is equivalent to the previous example except that
databank and table is opened for Read only.

CLOSE

Function:

r~ode :

Format:

Arguments:

Use:

Note:

Example:

Close an open Mimer table.

Direct/Program

CLOSE [channel no., ..•]

Channel no. has the same value as in the MIMER
OPEN statement.

Close the table associated with channel 'channel
no. ' .

If no channel number is given all files are closed
and an automatic MIMER END is performed.

If channel number is specified the databank is
left open until a MIMER END statement is executed.
The reason is that more than one· table might be
open within the same databank.

Ex. Close table CAR from previous example.

CLOSE 7

MIMER GETFIRST

Function:

Mode:

Format:

Arguments:

Reads the first row in a Mimer table.

Direct/Program

MIMER GETFIRST #nr, columnl REL restrl LO
column2 REL •.. , varl [, var2, var3 •.•]

The abbreviated form 'MIMGF' may be used for
rMIMER GETFIRST'.

Reads a row of data from the Mimer table
associated with 'nrl. The value of the first
Mimer column specified in the MIMER OPEN statement
is placed in 'varl' and so on. If select
conditions are specified they should consist of
pairs of a column name and a restriction value
with a relational operator REL inbetween.

REL can be one of the following

B~v

NB
CO
NC
EQ
GE
GT
LT
LE
NE

Begin With
Not Begin with
COntains
Not Contains
EQual to
Greater Equal
Greater Than
Less Than
Less Equal
Not Equal

(string)
(string)
(string)
(string)

If several pairs are given they
connected with a logical operator LO.
operator LO can be

MAND (Mimer AND) or
MOR (Mimer OR).

should be
The logical

Use:

Note:

Example:

Reads the first row of data that satisfies the
select conditions, from the Mimer table.

The logical operator MOR has higher precedence
than MAND (reversed precEi!dence compared to the
normal AND and OR) and parentheses can NOT be used

. to change this precedence.

Ex. 1

Search for a car in table CAR with the letters AB
in the registration number and with gray color.

MlMER OPEN "DBI.car" AS FILE 7 Regnr$,"modelll,lIcolor",
"year"
MlMER GETFIRST #7, Uregnr" CO "AB II MAND "color ll EQ "gray",
Regnr$,Mod$,Col$,Year$

Ex. 2

If the first entry in table CAR is to be read,
without any select condition, the select field is
left empty. The select field is positioned between
the first to commas in the MIMER GETFIRST
statement.

MIMER GETFIRST #7 "Regnr$,Mod$,Col$,Year$

Ex. 3

When all columns in the table are of string type
(in Mimer this corresponds to IC' type) all
columns can be read into one Basic variablee

MIMER GETFIRST #7 "datarec$

Ex. 4

It is not necessary to read all
table just skip the Basic
corresponding to that column.

columns in the
variable name

MIMER GETFIRST #7 "Regnr$"Col$,Year$

Ex. 5

If the Basic variable and the corresponding Mimer
column are of different types, type conversion' is
attempted.

The YEAR column in table CAR is of string type but
contains an integer value. Read the year to an
integer variable in Basic.

MIMER GETFIRST #7 "Regnr$,Model$,Col$,Year%

MIMER GETNEXT

Function:

Mode:

Format:

Arguments:

Use:

Example:

Reads the next row in the Mimer table.

Direct/Program

MIMER GETNEXT #fnr , varl [, var2 ...]

The abbreviated form o'MIMGN' may be used for
'MIMER GETNEXT '•

Varl, var2 ... are the Basic variables were the
data from the Mimer table col~mns should be put.

After a MIMER GETFIRST this statement reads
subsequent rows in the table.

The different ways of specifying Basic variables
mentioned in the description of MIMER GETFIRST are
possible in MIMER GETNEXT as well. The main
difference is that there are no select condition
field.

The different MIMER GETNEXT statements can use
different Basic variables for data retrieval.

Ex. 1

MIMER GETNEXT #7 ,Regnrl$,Modell$,Coll$,Yearl$
MIMER GETNEXT #7 ,Regnr2$,ModeI2$,Co12$,Year2$

I~IMER WRITE

Function: Insert a new row in the Mimer table.

or
the

with

Mode:

Format:

Arguments:

Use:

Note:

Example:

Direct/program

MIMER WRITE #fnr I varl, var2 ..•

The abbreviated form 'MIMWR' may be used for
'MIMER WRITE' •

Varl, var2 •.• are the Basic variables containing
the data to enter in the columns in the Mimer
table.

Inserts a new row in the Mimer table. If one
more of the columns are not specified
corresponding mimer columns will be filled
spaces.

If the primary index is the same for the new entry
and an entry already in the table, the insertion
is not performed.

Varl, var2 and so on must be variables, string
constants or numer~cal constants are not allowed.

Ex. 1

Enter a new row in table' CAR

Regnr$="ACC123 11

Model$="VOLVO 760"
Col$=IIGRAY"
Year$="S4"
MIMER WRITE #7 ,Regnr$,Model$,Co!$,Year$

MIMER UPDATE

Function:

Mode:

Format:

Arguments:

Use:

Note:

Example:

Change the current row in a Mimer table.

Direct/Program

MIMER UPDATE #£nr , varl, var2 •.•

The abbreviated form 'MIMUP' may be used for
'MIMER UPDATE' .

Varl, var2 are the Basic variables containing the
new values to be entered in the Mimer table.

After a successful MIMER GETFIRST or MIMER GETNEXT·
to find the row that should be updated, change the
columns that should be updated and do a MIMER
UPDATE.

A successful MIMER GETFIRST or MIMER GETNEXT must
have been executed before using MIMER UPDATE.

Ex. 1

Find the car with registration number ABC123 and
change the color to BLACK.

Iv1II'1ER GETFIRST #7 ,lIregnr" EQ "ABC123",Regnr$,Model$,
COl$,Year$

Col$="BLACK"
MIMER UPDATE #7 ,Regnr$,Model$,Col$,Year$

I~1IMER DELETE

Function:

Mode:

Format:

Argument:

Use:

Note:

Example:

Delete a row in a Mimer table.

Direct/Program

MIMER DELETE #fnr

The abbreviated form 'MIMDE' may be used for
'Iv1IMER DELETE'.

Fnr is the channel number associated with a file
opened with MIMER OPEN.

Find the row' that is to be deleted with a MIMER
GETFIRST or MIMER GETNEXT. Delete the current row
by executing a MIMER DELETE statement.

A successful MIMER GETFIRST or MIMER GETNEXT must
have been executed before using MIMER DELETE.

Ex. 1

Find the car with registration number ABC123 and
delete the row.

~1IMER GETFIRST #7 , "regnr" EO "ABC123", Regnr$,
Model$,Col$,Year$
MII-1ER DELETE #7

MIMER TRANSACTION

Function:

~1ode :

Format:

Argument:

Initiates transaction handling.

Direct/Program

MIMER TRANSACTION #fnr

The abbreviated form 'MIMTR' may be used for
I ~1IMER TRANSACTION I.

Fnr is the channel number associated with a file
opened with MIMER OPEN.

Use:

Note:

Example:

MIMER COMMIT

Function:

Mode:

Format:

Argument:

Use:

Note:

Example:

MIMER ABORT

Function:

Mode:

Format:

Argument:

Use:

All subsequent MIMER WRITE, MIMER UPDATE and MIMER
DELETE operations are put on an intention list and
the changes are only entered into the tables when
MIMER COMMIT is executed. If MIMER ABORT is
executed, none of the changes done since last
MIMER TRANSACTION are moved into database.

The transaction handling works on databank level.

See MIMER ABORT example below.

All Mimer operations performed on the databank
since MIMER TRANSACTION are made permanent.

Direct/Program

MIMER COMMIT #£nr

The abbreviated form 'MIMCO' may be used for
•MIl;4ER ~OMMIT' •

Fnr is the channel number associated with a file
opened with MIMER OPEN.

All MIMER WRITE, MIMER UPDATE and MIMER DELETE
operations on the intention list are entered into
the tables when MIMER COMMIT is executed.

The transaction handling works on databank level.

See MIMER ABORT example below.

Transactions on intention list are rolled back.

Direct/Program

MIMER ABORT #fnr

The abbreviated form 'MIMAB' may be used for
I MIMER ABORT' .

Fnr is the channel number associated with a file
opened with MIMER OPEN.

All MIMER WRITE, MIMER UPDATE and MIMER DELETE
operations on the intention list are rolled back.
No changes since the previous MIMER TRANSACTION
are done in the tables when MIMER ABORT is
executed.

l~ote :

Example:

Ex. 1

MIMER END

Function:

Mode:

Format:

Use:

The transaction handling works on databank level.

Transaction handling is used when one or several
tables in the same databank need updating and it
is essential that either all updates or none are
made.

Assume table vvAGE contains one column MONTH and
one column SALARY and table EMPLOYEE contains
columns EMPNO (employee number) and RECSAL
(received salary). In June employee with EMPNO 123
should receive 1000 dollars, this amount should be
subtracted from the SALARY value for June in table
WAGE and at the same time added to RECSAL value in
table EMPLOYEE for the employee concerned.

10 MIMER OPEN "db1.wage ll AS FILE 1 "month","salary"
20 MIMER OPEN "dbl.employee" AS FILE 2 "empno","recsalll
30 MIMER GETFIRST #l,lI mo nth" EQ "June",Month$,Salary%
40 MIMER GETFIRST #2,"empno" EQ 123,Empno%,Recsal%
50 Salary%=Salary%-lOOO ! Salary paid is negative
60 Recsal%=Recsal%+lOOO 1 Received salary is positive
65 REM Use transaction handling, NOTE file nr 'lor 2
66 REM can be used.
70 MIMER TRANSACTION #1 1 Use transaction handling
80 ON .ERROR GOTO 130
90 MIMER UPDATE #1,Month$,Salary%

100 MIMER UPDATE #2,Empno%,Recsal%
110 MIMER COMMIT #1 1 Make the changes permanent
120 END
130 MIMER ABORT #1 1 Something went wrong
140 PRINT "Could not update"
150 ON ERROR GOTO
160 STOP

Terminates a mimer session, closing all tables and
databanks.

Direct/program

MIMER END

The abbreviated form 'MIMEN ' may be used for
I MIMER END'.

Terminates the mimer session. Closes all open
tables and databanks.

Example: 10 MIMER BEGIN IIUSERl",Passwd$
20 MIMER OPEN "DBI.car ll AS FILE 7
30 MIMER GETFIRST #7 "Regnr$,Model$,Color$,Year$
40 PRINT Regnr$:Model$:Color$:Year$
50 CLOSE 7
60 MIMER END

9.3 Mimer error handling

Mimer errors detected by basic are:

100 Relational operator expected
BW, NB •.• is missing

101 Logical operator expected
MAND or MOR missing

103 Access mode expected
RR, SR, 58 or XX missing

110 To many columns
At present a maximum of 10 columns
in the mimer table can be handled by basic

111 Column name mismatch
The column names given at MIMER OPEN are
not the same as the column names read in
mimer system table *TABDEF

112 Wrong number of columns
The number of variables given for storage
are to few or to many compared to the
number of columns in the mimer table

113 Not a mimer file
The file number specified does not refer
to a file opened with MlMER OPEN

114 projection problem
Attempt to write or update mimer table
from a variable that does not contain enough
data

or
mimer column of integer or float type can
not be stored in string variable (alignment
restrictions)

115 To many mimer files
At present a maximum of 4 mimer tables
can be opened simultaneously

116 Entry exists
Attempt to insert a new row with a primary index
identical to already existing row.

117 Mimer begin error
Wrong user name or password.

118 Not logged in
No successful MIMER BEGIN statement has
been executed.

All errors returned from the Mimer handler are
detected and displayed as Basic errors.

The codes consists of four digits the first two
specifying the routine in which error occured,
and .the last two the error type.

First two digits:

11xx BEGIN2
l2xx OPEND2
13xx BEGTR2
l4xx ENDTR2
I5xx CLOSD2
16xx END2

21xx OPENT2
22xx PROJE2
23xx SELEC2
24xx SET2
25xx PUSH2
26xx POP2
27xx CLOST2
28xx DEQUE2

3Ixx GET2
32xx INSER2
33xx UPDAT2
34xx DELET2
35xx LOAD2
36xx DROP2

Last two digits:

xxll
xxl2
xx13
xxI4
xxl5
xxI6
xxI7
xx18

xx21
xx22
xx23
xx24
xx25
xx26
xx27
xx28
xx29

xx3I

First argument value incorrect
Second argument value incorrect
Third argument value incorrect
Fourth argument value incorrect
Fifth argument value incorrect
Sixth argument value incorrect
Seventh argument value incorrect
Eight argument value incorrect

Requested operation not allowed
Tried to add OR-condition after SET2
Tried to grant privilege on TRANSDB or LOGDB
Databank has already been opened
Table has already been opened (X access involved)
Tried to remove last primary key incorrectly
Tried to exceed maximum number of columns
Tried to change a non empty table
Tried to exceed maximum row-length

System control block area exhausted

xx32
xx33
xx34
xx35

xx4l
xx49

No access rights for requested operation
Tried to use transaction handling without TRANSDS
Transaction management required
Operat~on not allowed, SYSDB opened for read only

Databank open error (installation dependent)

xx51
xx52
xx53
xx54

System databank identifier area exhausted
Tried to open a non-MIMER databank
Tried to open a non-restarted databank
Tried to open a write-protected databank

Application example: Car register

This is a listing of a simple car register application.

**

Car register

Car register"

1. Search"
2. Delete"
3. List"
4. New registration"

CAR REGISTER"

It S

II

..

..

..

INPUT "Select:
IF 5=1

R=FNSearch
ELIF S=2

R=FNDe1
ELIF 5=3

1
1 **
EXTEND
DEF FNStart

CLS;
II

; IIPassword:"
GET A$
IF A$<>CHR$(lO) THEN

Pword$=Pword$+A$
GOTO 120

IFEND
ON ERROR GOTO 250
; IIStarting, wait ll

;

MIMER BEGI~l "USER", Pword$
Pword$=11 II 1 Erase the password
: CHR$(13)+"STARTED II

MIMER OPEN "DBl.car" AS FILE 1 nregnr",lmodel","co1or","year"
ON ERROR GOTO
RETURN 0
; : ; 1I~'lrong password, try again"
GOTO 110

FNEND
DEF FNMeny

CLS;
II

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430

440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

1000
1010
1020
1030

R=FNList
ELIF 8=4

R=FNlns
ELSE

l1IMER END
RETURN 0

1FEND
j CUR(23 , 0) "Mor e (y / n) ? II j

GET A$
IF A$='y' GOTO 290
MIMER END
RETURN 0

FNEND
DEF FNOut(X,Y)

j CUR(X,Y) Regnr$,Model$,Color$,Year$
RETURN 0

FNEND
DEF FNSearch

INPUT IIReg nr:",Regnr$
ON ERROR GOTO 690
MIMER GETFIR8T #1,"regnr" EQ Regnr$,Regnr$,Model$,Color$,Year$
j CLSjIlFound:"
Entry=l
R=FNOut(2,5)
RETURN 0
i CLSi"NOT FOUND"
ON ERROR GOTO
RETURN 0

FNEND
DEF FNList

j CLSi" Car register"
MIMER GETFIRST #1"Regnr$,Model$,Color$,Year$
1=1
ON ERROR GOTO 820
R=FNOut(I,O)
1=1+1
M1MER GETNEXT i1,Regnr$,Model$,Color$,Year$
GOTO 780
ON ERROR GOTO
i "Number of registered"jI-l
Entry=O
RETURN 0

FNEND .
DEF FNDel

IF Entry=O THEN j "No current row, search first!" RETURN 0
ON ERROR GOTO 930
MII~ER DELETE #1
i IIDeleting:"jRegnr$,Model$,Color$,Year$
RETURN 0
j "Can't delete"
ON ERROR GOTO
RETURN 0

Fl~END

DEF Fl~Ins

j CLSjllNew registration"
I:t~PUT II Reg number: II I Regnr $
INPUT "Model:",Model$
Il'lPUT "Color:" ,Color$
1l~PUT "1"lodel year:", Year$
ON ERROR GOTO 1070

1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150

FILES

MlMER WRITE i1,Regnr$,Model$,Color$,Year$
ON ERROR GOTO
RETURN 0
: "Can't make insertion"
RETURN 0

FNEND
1 ***********************************
1
1 main program
1 ***********************************
R=FNStart
R=FNMeny

/bin/basic standard basic
/bin/mdbasic mimer basic
/usr/etc/bascap editor input description
/usr/etc/basicerr.txt error messages
/usr/etc/sortorder.tab ISAM ascii sort order dese.
/usr/etc/translate.txt OPEN statement translation
/etcjtermcap terminal capabilities

