BASIC IIl Including
ISAM, MIMER and
Window Handler

Programming Card

Conforms to the ANSI X3.60-78 standard with many extensions.
Long variable names and labels.
Multiline IF-THEN-ELSE control structure.

Multiline recursive functions and procedures with local variab-
les.

Open pipe statement for effective fork handling.
Request statement for access to all system calls.

IEEE standard floating point arithmetic with 32 bit trigonomet-
ric functions.

32 or 16 bit integers with automatic conversion to/from float
for maximum execution speed.

Extended precision fix and floating point decimal string
arithmetic.

Advanced file handling with path/name translation tables.
B-tree ISAM option for simple database handling.
MIMER relational database management system.

Window handler allowing up to 16 programs run simultaneo-
usly.

Luxor Datorer (c)

LUX

ATORER

Instructions

BYE
Terminates utilization of the Basic Ill interpreter. Closes al!
files.
100 BYE
GHATN 2 2 2 i
Loads the specified program from a disk to the memory
and starts program execution. Provides the same effect as
RUN. ..See also COMMON. ..
20 CHAIN "CAT.007”
60 CHAIN "PROGRAM2”
90 CHAIN Ax
CLOSE. . .
Closes the specified file (files), i.e. terminates reading from
or writing into the file. If the file has been opened for
writing, an end-of-file mark is written. If the file number is
omitted, all open files are closed.
50 CLOSE 4
60 CLOSE 1,4
70 CLOSE
COMMON .
The specmed variables are not cleared when CHAIN
........... ” is executed. Program lines containing
COMMON...... must appear first in the program.
10 COMMON X, Y, Z
20 COMMON X @ (30) = 100, Y= (20) = 200
DATA...
Stores the variable values that are to be read by a READ-
instruction. Strings which contain commas must be within
quotation marks.
40 DATA 13,2.8, EVE
50 DATA ’Signed, SAM SMITH"
DEFFN...(.)=...

Defines a single-line user function.
70 DEFFNY(R) = PI*R*R
80 DEF FNZ(B, H) = (B * H)/2
90 DEF FNXX(Sk) = LEFTo(S©, LEN(AZ)-2)

DEEEN. . () EOCALE

Defines a multi-line user function. LOCAL . . . defines local
variables. LOCAL . . . can be omitted. The value of the func-
tion is returned by means of RETURN ... The FNEND in-
struction terminates the definition.

100 DEF FNY(R) LOCAL S

200S = R/180

300 RETURN S*R

400 FNEND

DIGITS . . .

Limits the number of digits that are printed out when vari-
able values are printed out by means of PRINT ... Has no
effect on the accuracy of calculation.

10DIGITS 4

70DIGITS N

Instructions cont.

DIM. ..
Reserves spaces for field variables. Normally, the minimum
index is 0, but this can be changed to 1 by means of OP-
TION BASE 1
10 DIM P(20)
Reserves spaces for 21 floating point variables, P(O) through
P(20) inclusive.
20 DIM P©. = 1000
Reserves space for a string containing a maximum of 1000
characters.
30DIM P@(20) = 10
Reserves space for 21 string variables, each containing a
maximum of 10 characters.
40 DIM P%(10,20,5)
Reserves space for a matrix containing 10-by 21 by 6 inte-
ger variables.
50 DIM P©(10,20) = 40
Reserves space for a string matrix having 11 rows and 21
columns in which each element can contain a maximum of
40 characters.
DOUBLE
Causes a floating point number to be presented by 16 digits
rather than the normal seven. This instruction must appear
first in the program. See also SINGLE.
END
Terminates the program execution and closes all files.
EXTEND

Permits variable names containing additional significant
characters to be used. See also NO EXTEND.

10 EXTEND

20 Gross price = Net price * 1.25

FIELD...IN...AT...COUNT...

Defines a substring in a string.
10 FIELD Namex IN Posfia AT 1% COUNT 20%

FLOAT

Causes variables and constants to be handled as floating
point numbers. Integer variables and integer constants are
flagged with the % character. FLOAT must appear first in
the program. See also INTEGER.

10 FLOAT

20A = 2567:B% = 9%

FNEND

Terminates the definition of a multi-line user function.
See DEFFN...(...)

Instructions cont.

(FOR...TO...STEP...

NEXT. ..

Executes a section of a program the number of times speci-
fied by the initial and final values of the loop variable and
the step value. If the step value is omitted, the default value
is 1.

20FORK = 1TO20 STEP 2

40 NEXT K
60 FOR L% = A% * 3% TOB%

90 NEXT L%

GET...

Execution does not take place until a key is depressed. The
character that is entered is stored in the specified string
variable but is not displayed on the screen. All characters
can be accepted.

20 GET S7¢

iy GOUNT L

Transmits data from a specified direct-access file to the
specified string variable. The number of characters that are
to be transmitted must be specified after COUNT. If COUNT
. is omitted, only one character is transmitted. The file
pointer in question is updated automatically. See also
POSIT(.. .).
90 GET #1, S COUNT 6

GOSUB. ..

Causes a jump to the subroutine located at the specified
line. See also RETURN.
80 GOSUB 2000

GOTO. ..

[ERS

Causes a jump to the specified line.
60 GOTO 10

.THEN'. .. ELSE...

If the expression after IF is true (< >0), whatever is speci-
fied between THEN and ELSE is executed. Otherwise, what-
ever is specified after ELSE is executed. ELSE ... can be
omitted.
401F A = 0THEN GOTO 60 ELSE 10
(GOTO can be omitted after THEN and ELSE)

«« THEN: - EUIFRELSE. = IEEND

Multiline IF statement, with optional ELSE IF construct.
50(FA =2 THEN=C =9

60B =5

TOELIEA = ZHEN
80B =6

90 ELSERB =8

95 IFEND

Instructions cont.

INRUT L 52

Writes the specified prompting text on the display unit
screen and then awaits the entry of data via the keyboard.
The prompting text can be omitted.

30 INPUT ”Enter name here” Sx

90 INPUT P

INPUTH . . ., -

Transmits data from the specified file to the specified
variable.

50 INPUT # 2, R

60 INPUT # F, Ro

INPUT LINE. . .

Transmits a line entered via the keyboard to the specified
string variable. All characters can be accepted. The last 2
characters in the string variable are always CR (carriage re-
turn) and LF (line feed). All entered characters except for
CR and LF are written on the display unit.

90 INPUT LINE S

INPUT LINE# .. ., ...

Transmits data from the specified file to the specified
string variable. All characters including spaces and com-
mas and quotation marks are transmitted. The last two
characters in the string variable are CR (carriage return)
and LF (line feed).

60 INPUT LINE # 2, S

70 INPUT LINE# F, Sx

INTEGER

Causes variables and constants to be handled as integers.
Floating point variables and floating point constants are
flagged with a period. INTEGER must appear first in the
program. See also FLOAT.

10 INTEGER

20A. = 2567:B = 9

L] Lo N
Erases the specified file from the disk.
30 KILL "TEST.bac”
90 KILL AX + "TEST.TXT”

EET
Assigns a value to a variable. LET can be omitted.
10LETX =5"*8
20 ERS = S KATEY
LOCK# . ..
Locks the specified direct access file. The file pointer is not
updated.
30 LOCK # 1%
(Locks 1% number of bytes)
NAMERS. S CASE "
Changes the name of a file.
90 NAME "OLD.bas” AS "NEW.bas”
NEXT. ..

Terminates a loop. See also FOR...TO...STEP...

w

Instructions cont.

NO EXTEND

Cancels the EXTEND instruction. When this occurs, only
variable names consisting of a letter or a letter combined
with one of digits 0-9 can be used.

NO TRACE
Cancels the TRACE instruction. See also TRACE.

ON ERROR GOTO.. ..

Causes a jumr to the error handling routine located at the
specified program line if an error occurs during a run. See
also RESUME. If no line numter is specified, ON ERROR
GOTO. . .cancels any previous ON ERROR GOTO. . .

10 ON ERROR GOTO 1000

ON...GOSUB......

Causes a jump to one of the specified subroutines. See
also RETURN.

60 ON P GOSUB 100, 200, 300
(P = 1 causes a jump to line 100, P = 2 causes a jump to
line 200, etc.)

ON 2 GONOCE

Causes a jump to one of the specified program lines.

70 ON R GOTO 100, 200, 300
(R = 1 causes a jump to line 100, R = 2 causes a jump to
line 200, etc.)

ON.. . RESTORE..: ...

Causes one of the specified RESTORE . . . instructions to
be executed. See also RESTORE. . .

90 ON S RESTORE 100, 200, 300
(S = 1 causes RESTORE 100 to be executed, S = 2 causes
RESTORE 200 to be executed, etc.)

ON...RESUME...

Causes the specified RESUME . . . instruction to be exe-
cuted. See also RESUME.

80 ON T RESUME 100, 200, 300
(T = 1 causes RESUME 100 to be executed, T = 2 causes
RESUME 200 to be executed, etc.)

ORPEN R e PIASIFILE ...«
Opens the specified file for reading and assigns the file a
file number.

40 OPEN "ADDRESS.TXT” AS FILE 3%
60 OPEN ”/src/lie/a” AS FILE 4%

80 OPEN Ax + ".TXT” ASFILEF%

85 OPEN "PIPEIN: echo*” AS FILE 1
90 OPEN "PIPEOUT: print” AS FILE 5

OPTION BASE.. . .

Set the minimum index for field variables to 0 or 1. See DIM
...OPTION BASE. . . must appear first on the program.

OPTION EUROPE
Specifies the format when using PRINT USING.

Instructions cont.

POSIT#-
Specifies the position in a direct access file where read-
ing/writing is to take place. See also the POSIT(. . .) func-
tionand the GET# ...,...and PUT# ..., ...instructions.

PRERPARE:Y 0 "ASFILE. ...

Creates and opens a specified file for writing and assigns
the file a file number.

30 PREPARE "’dr1/address.txt”” AS FILE 3

50 PREPARE A® + ".TXT” ASFILEF

PRINT . =« (Or3. s :)
Writes on the display unit screen. Can be followed by an
arithmetic expression and special functions TAB(K) and
CUR(R,K).
20 PRINT "JANE”
30 PRINTA,B,C (Printout in columns)
40;”AREA =";Y (Continuous printout)

PRINT £ o (OrsH .- 2)

Writes in the specified file.
30 PRINT # 2, "/RANDOM NUMBER”

PRINTUSING™.

Causes the specified expression to be presented in the de-
sired format. See BASIC Ill Manual.
20PRINTUSING” + # # #.# #” A;B

Transmits the specified string variable to the specified
direct-access file. The file pointer in question is updated
automatically. See also POSITY(. . .).

50 PUT # 1,Sx
RANDOMIZE
Provides the RND function with a random initial value.
READ. ..
Assigns to variable the data obtained from DATA state-
ments.
10 READ B,Cx
REM. .. (or!..)

Used for comments in a program. The colon before the ! is
not required.

80 REM ***SUBROUTINE***

90 A = 5!initial value

(REPEAT

UNTIL. ..

A section of a program is executed repeatedly as long as
the specified condition is not true.

10 REPEAT

201l =1+ 1;1

30UNTILI = 10

Instructions cont.

RESTORE.....
Causes the next READ statement to read data starting at
and including a specified DATA statement.
50 RESTORE
(Reads data starting at and including the first DATA state-
ment)

70 RESTORE 100

(Reads data from DATA statements starting at and includ-
ing line 100.)

RESUME. ..

Causes a return jump from an error handling routine to the
specified program line. If the line number is omitted, the re-
turn jump is made to the program line on which the error

occurred.
80 RESUME 10
90 RESUME
RETURN

Causes a return jump from a subroutine to the statement
following the corresponding GOSUB statement.

RETURN.. ..
Returns a function value in a multi-line function. See also
BEEEN (R

SINGLE

Causes floating point numbers to be represented with se-
ven digits. Cancels the DOUBLE instruction.

STOP
Interrupts a program execution.

TRACE

The line numbers of executed program lines are written on
the display unit screen or in a file (TRACE# ...) during a
program execution. See also NO TRACE.

UNLOCK# . ..
Unlocks the specified direct access file. The file pointer is
not updated. (See also LOCK).
(WHlLE. i

WEND

A section of a program is executed repeatedly as long as
the specified condition remains true.

10 WHILEX < 10

20 PRINTX: X = X + 1

30 WEND
STRING FUNCTIONS
ASC(A) or ASCII(AD)
Provides the ASCII value for the first character in the speci-
fied string.

20LETP = ASC (B¥)

Instructions cont.

CHRx (. . .)
Provides a string containing the characters corresponding
to the specified ASCII values.
10 PRINT CHR® (12)
20 P = CHR®(P,R,S,T,U,V)

INSTR (S, Ao, Bg)
Searches for substring BX in string A starting at position
S. This function provides the location of the first occurr-
ance after S of B in A%. If BX is not found in Ag, a value
of 0 is obtained.
30R = INSTR (S, Ax, Bx)

LEFTX(AX, S) or LEFT (A%, S)

Provides the first S character in the specified string.
30Dga = LEFTo (Cx,S)

LEN(A®)
Provides an integer which corresponds to the length of the
specified string.
20X = LEN(A©)

MIDx (Ao, S, T) orMID (A<, S, T)
Provides T characters starting at and including character

position S in the specified string.
30Bx = MIDY(AX,S,T)

MID (ARS8, T)i= 20"
Replaces T characters starting at and including character
position S in string A by the string specified within quota-
tion marks.
30 MID©(Ax, 5,4) = "NEW”

NUM® (S)
Provides a numeric string containing the same characters
as those that would be obtained if the specified numeric
variable were written using a PRINT statement. The blank
character that is reserved for the plus sign is not included
in NUMg (S).

RIGHTC (A, S) or RIGHT (A%, S)

Provides all characters in the specified.string starting at
and including character position S.
40Bo = RIGHT® (AL, S)

SPACE®.(S)

Provides a string consisting of the specified number of
spaces.
20 B, = SPACEX(253)

STRING (S, T)

Provides a string of S characters having ASClI value T.
30 Co = STRING ©(20, 45)

Instructions cont.

VAL (Axt)

Converts a specified numeric string to a numeric variable.
10S = VAL (Ax)
20S = VAL (”.000000003")

Concatenates strings into a string expression.
30S0 = Ao + B9 + ".bas”

10

Expressions and Operators

Priority Operator Explaination Example
1 **ord raising to a power A**B
2 = multiplication A*B

2 / division Al/B

3 + addition A+B
3 — subtraction A—B
4 > greater than A>B
4 < less than A<B
4 = equal to A=B
4 >= greater than orequalto A> =B
4 = less than or equal to A<=B
4 <> not equal to A<>B

Logical Operators

The logical operators are presented below in priority sequence.
NOT has the highest priority. OR and XOR have the same priority.
All logical operators have a lower priority than other operators.

NOT
NOT is true if the operand is false.
10 IF NOT A < BTHEN GOTO 20

AND

AND is true if both operands are true.
20IFA > BANDC = DTHEN 30

OR
ORis true if at least one of the operands are true.
30IFA <BORC = 10 THEN 40
XOR
EXCLUSIVE OR is true if either of the operands is true, but
not both.
40IFA = BXORC = DTHEN 50
IMP
IMPLICATION operates in such a way that A IMP B is false
only if Alis true and B is false.
50 IF A IMP B THEN 60
EQV

EQUIVALENCE is true if both operands are true and also if
both operands are false.
60IFA = BEQVC = DTHEN 70

The logical operators can also be used on arbitrary integers. In
such case, the operators are implemented bit by bit on the two
binary numbers.

70 A% = B% AND 15%

ASCII Functions

ADDX (AX, B, T)
Adds the specified numeric strings. The result is rounded
to the specified number (T) of decimals. The numeric
strings can contain digits, the + and — characters and the
decimal point.
20C o = ADDo(AX,BX,T)

DIVR(A &, Ba,T)
Divides one numeric string (A%) by another (B9). See
ADDX(AX, BX, T)
30Co = DIVO(AX, Bx, 10)

MULG(AX,Bo,T)
Multiplies one numeric string (Ax:) by another (Bx). See
ADDX(AQ, BX,T).
40DP = MULK (Ax,Bd,T)

SUB(Ax,Bx, T)
Subtracts one numeric string (Bx) from another (Ag). See
ADDx(Ax,Bo,T).
50C o = SUB©X (AW, Bx, 2)

COMP%(A©, Bo)
Compares two numeric strings. This function provides the
following values as results:
1ifAd < BX
0if Ax = Bol
+1ifA0 >Bx
10P = COMP% (A, Bx)

Mathematical Functions

ABS(X) Absoulte value of x, x|

ATN(X) arctan x

COS(X) cos x, x in radians

EXP(X) e

FIX(X) integer part of x, [x]

INT(X) largest integer less than or equal to x

LOG(X) logarithm of x to the base e

LOG10(X) logarithm of x to the base 10

MOD(X, Y) remainder of X/Y division

SGN(X) 1ifx <0,0ifx =0, +1ifx>0

SIN(X) sine x, x in radians

SQR(X) square root of x, /X

TAN(X) tan x, x in radians

Pl m, 3.14159 (or 3.14159265358979)

RND represents a random number ranging from 0 to
0.999999

(or 0 to 0.9999999999999999)

Special Functions

ARGC%

Returns the number of parameters the basic interpreter
was started with. ARGC% is used in combination with the
function ARGV to retrieve the startup parameters. See
also ARGV g.

If the basic was started:

basic — x format fill fil2
ARGC% will return 5, since there are five space separated
strings in the start command.

ARGV o

Returns the parameters the basic interpreter was started
with. ARGV is used in combination with the function
ARGC% to retrieve the startup parameters.

If the basic was started:

basic -x format fill fil2
ARGC% will return 5, since there are five space separated
strings in the start command. ARGV © (1) will return ’basic’
(the 5 character string: basic)

ARGV ©.(2) will return ’-x’

ARGV ©(3) format’
ARGV ©(4) fill’
ARGV 1 (5) fil2!

CUR (R,K)
Moves the cursor to line R and column K on the screen. Can

be used only in PRINT statements.
20 PRINT CUR (0, 26) "TOP RIGHT”

GUTE ()

Permits character conversion in connections with file read-

ing/writing. The following variants can be used, where R%

is an integer and T is a floating point number.

CVT% a (R%) R% is converted to a string (2 or 4 bytes)

CVTo% (Sx) Sxiisconvertedtoan integer

CVT F @ (T) T is converted to a string

CVTo F(So) Sy isconverted to a floating point number
20 PUT #1, CVT F X (T)

ERRCODE

Provides the most recent error code.
30 E9 = ERRCODE

HEXx(. .)

OCTL{(. . .)

converts the specified decimal number to a hexadecimal or
octal number in the form of a numeric string.
50X = HEX© (128): Y = OCT ¥ (83)

POSIT (F)

Provides the content of the file pointer associated with the
file having number F.
50 PRINT POSIT (3).

13

Special Functions cont.

REQUEST(. -+ 3

Gives access toall ABCenix system calls.
SHORT INT
LONG INT

Specifies the integer size to use when using the string to in-
teger and integer to string functions CVT% & and CVT & %.
The default is LONG corresponding to 4 bytes, SHORT is 2
bytes.

SYS()
Provides the value of the specified system variable. The
system variables are listed below:
SYS(2) Total user memory capacity (bytes)
SYS(3) Size of program (bytes)
SYS(4) Unused memory area (bytes)
SYS(11) Starting address of program
SYS(12) Address of first variable’s name

TAB(T)
Moves the cursor to position T on the current line. Can only
be used in PRINT statements.
40 PRINT TAB (14);”**Headline**”

TIMEX
Provides the date and time of day obtained from the system

clock.
20 PRINT TIME

VAROOT(A)
Provides the address of a table that contains information

about variable Ag.
30 PRINT VAROOT(A)

VARPTR(A o)
Provides the starting address of the area where the value of

variable Ag is stored.
40 PRINT VARPTR(A)

Graphic Statements (ABC 1600 or ABC 806 with graphic PROM)
For all the statements the colnr’ and ’pattern’ parameters are op-
tional, if not specified the last used values are maintained. For
monochrome terminal (ABC 1600) ‘colnr’ = 1 and ’pattern’ = 0
are used to draw complete lines, arcs, etc. ’colnr’ = 0 and 'pat-
tern = 0 are used to clear.

FGFILL x, y [,colnr] [,pattern]

Fill rectangular area with opposite corners in previous
graphic cursor position and ’x’, ’y’.

X.:
FGFILL 100,100,1,1

FGLINE x,y [,colnr] [,pattern]
Draw line from previous graphic cursor position to 'x’,’y".
Ex.:
FGLINE 100,100,1,1

Special Functions cont.

FGPOINT x,y [,colnr] [,op]
Move graphic cursor to ’x’ , 'y’ and alter pixel according to
’op’: 0 set pixel.
1 clear pixel
2 complement pixel
E .

X2
FGPOINT 100,100,1,2

FGPAINT x, y [,colnr] [,pattern]
Start paint from ’x’, ’y’. After operation, graphic cursor is
left in ’x’, y’. If ’pattern’ is 0 a complete go around the cor-
ner” paint is done. Otherwise, it just starts at ’x, 'y’ and
goes outwards.
Ex.:
FGPAINT 100,100,1,1

FGCSEG x, y, len [,colnr] [, pattern]
Draws circle segments from graphic cursor position coun-
ter clockwise with origo in ’x’, ’y’. The ”length” of the seg-
ment is specified with ’len’ in number of vertical and hori-
zontal pixel steps. This means that a full circle is generated
with len = 8* radius.

EX3
FGCSEG 100, 100, 300, 1, 1

Memory Access and I/O Ports

CALL(A)
Call subroutines stored in the machine language at the
specified address (A).
10S = CALL(49800)

CALL(A, U)
Calls the subroutine stored in machine language at the
specified address (A). Before the subroutine call the regis-
ter of the microprocessor is loaded with the specified ex-
pression (U). After the subroutine has been executed, CALL
(A, U) is equal to the number stored in the register of the
microprocessor.
20 B% = CALL(49800%, U%)

INP(P)
Fetches a byte from the specified port (P).
30C% = INP(34)

QUT P, D1, P2, D2, ..

Transmits data D1, D2, . . . to the specified ports P1, P2, . . .
40 OUT 58, 32

PEEK(A)
Fetches a byte from the specified memory address (A).
50 PRINT PEEK(49800)

PEEK2(A)

Fetches two bytes from the specified memory address.
40 B% = PEEK2(VARPTR(Ax)

Memory Access and I/O Ports cont.

PEEP4(A)

Fetches four bytes from the specified memory address.
40 B% = PEEK4(32000)

POKEA, D1,D2,. ..

Transmits data D1, D2, ... to the specified memory cells
starting at and including the specified address (A). Data
and addresses are specified as decimal values.

60 POKE 65008, 10, 5, 2

SWAP%(D)

Provides the value of D in a 2-byte integer but with the first
and second bytes swapped.
70 B% = SWAP%(D%)

SWAP2%(D)

Provides the value of D in a 2-word or 4-byte integer but with
the first and second 16 bit’s swapped.
70 B% = SWAP 2%(D %)

-ISAM Options

ISAM DELETE#. . .,... (or ISDE#. . .,...)

Deletes arecord from an ISAM index file.
30 ISAM DELETE #1,Ax

ISAMOPEN™. . .,...,..." ASFILE...(orISOP...ASFILE..)

Opens and ISAM index file and its associated data file.
10 ISAM OPEN ’dfile” AS FILE 1

ISAM READ#. . .,...INDEX”...” KEY "”...” (or ISRE# . .)

Accesses an ISAM data file. See BASIC Il Manual. KEY
may be replaced by FIRST LAST NEXT PREVIOUS (or
PREV).

20 ISRE#1,A0 INDEX “nfile” KEY “smith” ! smith

record

30ISRE#1,An FIRST ! Reads FIRST in INDEX file

40 ISRE #1,Ax NEXT ! Reads NEXT in INDEX file

50 ISRE#1,Ax ! sequential read

ISAM UPDATE#4. . .,...TO. .. (onlISUBH. .77 - TO....)

Modifies an existing record in the data file associated with
an ISAM index file. See Basic Il Manual.

20 ISAM OPEN "ifile” AS FILE 1

30 ISAM READ #1,A% INDEX "name’ KEY jones”

40 ISAM Bo = "jones new york 727-2677"

50 ISAM UPDATE #1,A% TO Bo

ISAMWRITE#. . .,... (or ISWE#. . .,...)

Enters a new record into the data file and updates all indi-
ces in the index file. See Basic Ill Manual.
50 ISAMWRITE#1,A %

'

MIMER DATABASE Options

MIMER BEGIN (string 1), (string 2) (orMIMBE.
Start MIMER session. String 1 is the user name and string 2

is the password associated with the user name in MIMER.
10 MIMER BEGIN "USER1”, Passwd o

MIMER OPEN “(databank).(table)” AS FILE nr [ACCESS ac]
columnt, column2, . (OrMIMOP» . oo 5o s)
Opens MIMER databank and table. Connects the specified
MIMER columns with the corresponding variables in a
MIMER GETFIRST, MIMER GETNEXT, MIMER WRITE or
MIMER UPDATE statement.

The ACCESS values are:

ac databank table
RR Read Read
SR Shared Read
SS Shared Shared

XX (default) Exclusive Exclusive

10 Regnr o ="""
20 MIMER OPEN ”DBL.car” AS FILE 7 ACCESS RR
30 Regnr @, "model”, "year”, "color”

MIMER GETFIRST #nr,...,...,... (orMIMGF #nr,.........)
Reads a row of data from the MIMER table associated with
RS
30 MIMER GETFIRST #7,,Regnro,Mode o .Colx
,Year o
MIMER GETNEXT #fnr,.. ., ..., ... (or MIMGN #fnr,...)

Reads the next row in a MIMER table.
50 MIMER GETNEXT #7 ,Regnr1,Model1d ,Col1x

,Yeart o
60 MIMER GETNEXT #7 ,Regnr2x,Model2x,Col2 g

,Year2 o
MIMERWRITE #fnr,...,....... (or MIMWR #fnr,...,)

Insert a new row in the MIMER table.
Enter a new row in table CAR

10 Regnrx = "ACC123”

20 Model@ = "Volvo 760"

30 Colg ="Grey

40 Yearo ="84"

50 MIMER WRITE #7 ,Regnr u,Model v,Col o, Yearx

MIMER UPDATE #fnr,. . .,... (or MIMUP #fnr,...,....)

Change the current row in a MIMER table.
20 MIMER GETFIRST #7, "regnr’ EQ "ABC123”,
Regnr,Modelc,Col ¥, Year o
30 Colx, ="Black”
40 MIMER UPDATE #7,Regnrx ,Modelx ,Colx
,Year o

MIMER DATABASE Options cont.

MIMER DELETE #fnr (or MIMDE #fnr)
Delete arow in a MIMER table.
Find the car with registration number ABC123 and
delete the row.

10 MIMER GETFIRST #7, "regnr’” EQ "ABC123”
,Regnr o,Model ¥,Col =, Year o
20 MIMER DELETE #7

MIMER TRANSACTION #fnr (or MIMTR #fnr)
Initiates transaction handling. The transaction handling

works on databank level. See Basic |ll Manual.
30 MIMER TRANSACTION #1

MIMER COMMIT # fnr (or MIMCO #fnr)
All MIMER operations performed on the databank since
MIMER TRANSACTION are made permanent.
40 MIMER COMMIT #2

MIMER ABORT #fnr (or MIMAB #fnr)
Do not make the changes. Transactions on intention are
rolled back.

50 MIMER ABORT #2

MIMER END (or MIMEN)
Terminates a MIMER session, closing all tables and data-
banks.

10 MIMER BEGIN "USER1”, Passwdx

20 MIMER OPEN ”DBL.car” ASFILE7

30 MIMER GETFIRST #7 ,,Regnrx,Model x,Col 3,
Yearn

40 PRINT Regnrix; Modelxi;Col &;Year o

50 CLOSE7

60 MIMER END

Keyboard

[ELT BJ Erases the last entered line.

CTL @ Terminates the program execution that is in pro-
— gress.
Can be followed by continue.

The program interrupts and one line is executed
LS each time these keys are depressed.

D Program execution continues (depress any key).

The editor keys are described in the Basic il
Manual.

Commands

The remainder of the line after the ’!” is sent to the shell to
be interpreted as a command.

Cause lines to be numbered automatically as they are ent-
ered. Step: specifies the interval between line numbers.
AUTO (Line No: 10. Step: 10)
AUTO 100 (Line No:100. Step: 10)
AUTO 500, 50 (Line No : 500. Step : 50)

CLEAR
Clears all variables and closes all files.

CONTINUE (or CON)
Causes the program to continue after the STOP instruction

has been executed or after[CTL has been depressed.

ED. - (or EDIT)
Makes it possible to change a program line without rewri-
ting it.
ED70
ERASE. ..

Erases the specified section of a program. This instruction
has three variants:
ERASE 40-80 (Erases lines 40 through 80 incl.)
ERASE-80 (Erases lines upn to and incl. 80)
ERASE 40- (Erases all lines starting at and incl. 40)

LIST. ..

Causes the program stored in the memory to be written on
the display screen. There are five variants:

LIST (All lines)

LIST30 (Only line 30)

LIST 30-60 (Lines 30 through 60 incl.)

LIST-30 (Lines up toand incl.30)

LIST60- (Lines starting at and incl. 60)

LISTPR:

Provides printouts from the printer of programs stored in
the memory.

LIST PR: (All lines)

LIST PR:, 10-90 (Lines 10 through 90 incl.)

Transmits the programs stored in the memory to a file on a
disk in uncompiled form (text format). If file extension is
omitted, the default extension is .bas

LIST subprg, 20-40

LIST sort.txt

Commands cont.

Loads the program having the specified name from a disk
to the memory. Erases the program already stored in the
memory.

LOAD budget

LOAD estimate.001

Loads a program in text format (stored by means of LIST
...) from a disk to the memory without erasing the program
already stored in the memory. (Erasure of the already stored
program occurs only if the same line numbers are used in
the loaded program.)

MERGE program 2
NEW
Erases the program stored in the memory and closes all
files.
REN G s (orRENUMBER. . .,..-...)

Assigns new line numbers to the specified program lines.
There are a number of variants:

The following examples renumber all program lines:

REN (First line No.: 10. Step : 10)

REN 100 (First line No. : 100. Step : 10)

REN 100, 20 (First line No. : 100. Step : 20)
The following examples are for a specified program section
in which the first line number is 600 and the step is 10.

REN 600, 10, 500-800 (lines 500 through 800 incl.)

REN 600, 10,-800 (lines up to and incl. 800)

REN 600, 10, 500- (lines starting with and incl. 500)

RUN

Runs the program stored in the memory after having clea-
red all variables.

BRUN: - - o e
Corresponds tothe LOAD command followed by
RUN.
See also LOAD. The unit designation and file ty-
pes .bac and .bas can be omitted.
RUN CAT.007
SAVE. . ..ol

Saves the program stored in the memory in a file on a disk
in the form of semicompiled code. If the file extension is
omitted, the default extension is .bac. See also UNSAVE. . .

SAVE sort
SAVE sort.bac

STAT
Gives status of the Basic Il i.e modes (INTEGER,EXTEND
...)and program size.

UNSAVE.........

Erases the specified file from a disk. If the file type is omit-
ted, the appropriate file type (.bac or .bas) is used.
SeealsoSAVE.........

20

Window Handler

SHIFT CTRL PF15
Change cursor (|) control to pointer (4) control, and visa
versa.

Mouse Function Button A: Choose function
when pointer points to an icon.

Function Button B: Copy information
from one window to another.

O

Function Button C: Choose whick win-
dow is to be acitve (which window the
user wishes to work in). Also used to
page through all windows.

»

To control the pointer directly through the keyboard (without the
mouse):

PF13 Serves as mouse button A.

PF14 Serves as mouse button B.

PF15 Serves as mouse button C.
Border Icons
Move the pointer to the desired icon and press mouse button A
{or PF13). Note, some windows may not contain all or any border
icons.
Close the window.
Move the entire window.

Move text down one line for each button press to see
text which is above the displayed area.

Move entire text up or down instantly (vertically).

Move text up one line for each button press to see
text which is below the displayed area.

Enlargen/reduce the size of a window.

Move text left one column for each button press to
see text which is to the right of the displayed area.

Move entire text to the left/right instantly (horizon-
tally).

> l A=A =B [=]

1
|

Move text right one column for each button press to
see text which is to the left of the displayed area.

|

Zoom: enlargens marked area for easier readability.
S Place pointer on the zoom icon, hold mouse button A
(PF13) depressed and move the pointer to the area to
be enlarged. When the button is released, the desired
area is enlarged.

Restore the window to its original contents, position
and size.

<

24

Window Handler cont.

To copy an area of text (a rectangle) to another window:

Place pointer on the upper right character in the text and hold
mouse button B depressed (or press PF14).

Move pointer to the lower left character in the text and re-
lease mouse button B (or press PF14 again). The area to be
copied is marked by a surrounding frame.

Move pointer to the window that is to receive the copy and
press mouse button B (PF14).

The area marked with a surrounding frame is copied into the
other window. Note that the text also remains in the original
window.

To choose which window is to be active:

Place the pointer on the desired window and press mouse
button C (PF15). The chosen window will now be placed at the
top of the pile and become active.

If the chosen window is already on the top of the pile, it is
then moved to the bottom of the pile and becomes inactive.

To page through all of the windows:

22

Place the pointer in the field outside all windows and press
mouse button C (PF15). This causes the window on the top of
the pile to move to the bottom. Continue this procedure until
the desired window is on the top of the pile (becomes active).

Error Messages

b wh b b b wb

IS e i kel
- 000 N DU s GRS ek 00 NN s DN

SBRULRLBBLEBBUBRRBRN

b
N =

ELE588

49

51
58
64
68
100

101

103
110
111
112

113
114
115
116
117
118
120
121
122
123
124
125
126
128
130
131
132
133

Not owner

No such file or directory

No such process
Interrupted system call

1O error

No such device or address
Arg list too long

Exec format error

Bad file number

No children

No more processes

Not enough core
Permission denied

Bad address

Block device required
Device busy

File exists

Cross-device link

No such device

Not a directory

Is adirectory

Invalid argument

File table overflow

Too many open files

Not a typewriter

Text file busy

File too large

No space left on device
Illegal seek

Read-only file system

Too many links

Broken pipe

Argument too large

Result too large

Structure needs cleaning
Would deadlock

Not a semaphore

Not available

File write protected

File delete protected

Disk full

Disk not ready

Disk write protected

Logic file not opened
Wrong logic file number
Wrong unit number

Wrong trap number

Errorin library

Wrong physical file number
End of file

Too long line

lllegal character

lllegal NAME

Illegal time specification
MIMER: Relational operator
expected

MIMER: Logical operator
expected

MIMER: Access mode expected
MIMER: Too many columns
MIMER: Column name mismatch
MIMER: Wrong number of
columns

MIMER: Not a MIMER file
MIMER: Projection problem
MIMER: Too many MIMER files
MIMER: Entry exists
MIMER: MIMER begin error
MIMER: Not logged in
ISAM: Can't find key

ISAM: Multiple key not allowed
ISAM: Wrong key

ISAM: Error on check-read
ISAM: Can't find index
ISAM: Wrong data record length
ISAM: Wrong version of ISAM file
ISAM: End of memory
Floating point overflow
Array index outside legal range
Integer overflow

Error in ASCll-arithmetic
expression

134
135

136

138
139
140
141
142

143
144
145

146
147
148
149
150
151
152

153

176
180
181
182

183
184
185

186

187
188

189
190
191
192
193
194
200
201
202
203
204
205

206
207
208
209
210
211
212
220
221
222
223

224
225

226
227
228
229
230
231
232
233
234
235
236

String index neg. or too large
Negative TAB, SPACES,
STRING-¢- arg

Overflow in string assign
Attempt to expand array or string
Expression out of range in ON
RETURN without GOSUB
Wrong return type

Out of DATA statements
Wrong argument to build-in
function

Illegal SYS function

lllegal line

FNEND without previous
RETURN

PRINT USING error

lllegal data

Too few data

RESTORE not to DATA line

Too many data

RESUME without error

Attempt to read from outpipe or
write to inpipe

Open with untranslateable
expression

Graphic point outside screen
Can’t find line

lllegal GOTO into/out of function
NEXT, WEND, IFEND or UNTIL
missing

FOR or WHILE missing

Wrong variable in NEXT

lllegal FOR, WHILE, REPEAT or
mult in IF nesting

FOR-loop with local not allowed
(use WHILE)

Function not defined

Several functions with same
name

lllegal function

Wrong number of indices

Not assignable in function
REPEAT missing

IF missing (multiline type)
Multiple ELSE not allowed

Unit not connected

End of memory

Program LIST-protected

lllegal program format

Attempt to MERGE .bac file
COMMON must be first; CHAIN
error

Use RUN

Can’t continue

Not allowed as command
Wrong data to command
Wrong number

Precision can’t be changed now
Compiler buffer overflow

Don’t understand

lllegal character after statement
Must be first on a line

Wong number or types of
argument

lllegal mix of number and strings
Not simple variable, index not
allowed

lllegal statement after ON

”." missing

=" missing

)’ missing

’AS FILE” missing

"AS” missing

"TO" missing

Missing line number

lllegal variable

missing

IN, AT or COUNT missing

23

[UX OR

Datorer

od.: Tre-i-Reklam., Vingdker 1985

Art.nr. 66 78400-91 &

