

Preface

This manual describes the BASIC II programming language of ABC 800. The reader
should have programming experience, since the manual is not meant to be a BASIC
textbook.

Chapter 1 introduces the BASIC programming language. Chapter 2 deals with the
structure of BASIC II computer programs.

Chapters 3, 4, and 5 describe the data that can be processed by a program.

Chapter 6 describes how to operate BASIC II. This chapter contains plenty of advice
and tips on how to type and edit a program

Chapter 7 deals with the direct usage of instructions and commands, without any
program. This method is particularely useful when a program is being debugged.

Chapters 8, 9, and 1a contain detailed descriptions of all commands, functions, and
instructions that are part of BASIC II. Most of the descriptions are completed by
examples which show the structure of each program part.

Chapters 11 and 12 deal with the ABC 800 graphics. Both the TELETEXTgraphics and
the high resolution graphics with animation mode are described.

Chapter 13 describes the use of the function keys.

Chapter 14 describes the differences between ABC 800 and ABC 80.

Chapter 15 contains a list of error messages with comments.

Chapter 16, marked with grey edges, contains short descriptions of all instructions,
functions, and commands arranged in alphabetical order.The list in chapter 16 is meant
for use as an index register, where the syntax can be found together with references to
the detailed descriptions earlier in the manual (chapters 8, 9, and 10).

Chapter 17 is a list of literature references and chapter 18 contains a number of
appendices. The last chapter of the manual is an alphabetical index.

N.B.
Differencies in the BASIC programming language used for ABC 802 and ABC
806 are indicated in the margin as ABC 802 and ABC 806, respectively. The
applicable text explanations are found in appendix 5 (for ABC 802) and
appendix 6 (for ABC 806).

© Copyright 1984, Luxor AS, Motala, Sweden

Contents

1 BASIC - the Programming Language .

2 The Program... 2
2.1 Line Numbers. .. 2
2.2 Comments. .. 3
2.3 BASIC Statements. .. 3
2.4 Expressions. .. 4
2.5 Logical Units. .. 5
2.6 Error Handling. .. 5

3 Data 7
3.1 Range of Values. .. 7
3.2 Constants ,. . .. 7
3.3 Variables. .. 7
3.4 Subscripted Variables and the DIM Statement. 9
3.5 File Storage 10

3.5.1 Opening a File
3.5.2 Data Transfer To/From a File
3.5.3 Closing a File

4 Integers and Floating Point Numbers 12
4.1 Mathematical Operations 12
4.2 Integer Arithmetic 13
4.3 Input/Output of Integer and Floating Point 13
4.4 User Defined Functions. .. 13
4.5 Integers as Logical Variables 14
4.6 Logical Operations on Integer Data. .. 14

5 Character Strings 15
5.1 String Constants 15
5.2 String Variables " 15
5.3 Subscripted String Variables 15
5.4 String Size '.' 15
5.5 String Functions 16
5.6 'String Arithmetic 16
5.7 String Input e . 16
5.8 String Output 17
5.9 Relational Operators 17

6 Working w-ith BASIC 11 18
6.1 How to Write Program Lines ' 18

6.1.1 Free Format in Statements
6.1.2 Procedure
6.1.3 Corrections
6.1.4 Deleting a Line
6.1.5 How to Change a Program Line

6.2 How to Edit a Program ~ 19
6.3 Executing a Program 20

III

6.4 Guide to the Statements 20
6.5 Declarations 22

7 Direct Mode 23

8 Commands _ 24

9 Instructions 33

10 Functions 62

10.1 Mathematical Functions 62
10.2 String Functions 67
10.3 Other Functions 72

11 Graphics and Colours 78
11.1 General Information 78
11 .2 Instructions 81

12 High Resolution Graphics 83
12.1 General Information 83
12.2 Instructions 84
12.3 Animation Mode 85
12.4 Colour Selection Table .. ~ 86
12.5 Examples 89

13 Function Keys 90

14 Differences in BASIC between ABC 800
and ABC 80 91

15 Error Messages 92

16 Summary of Commands and Instructions95

17 Literature References 107

18 Appendices 108
Appendix 1: BASIC II Errata 108
Appendix 2: The I/O Ports of the ABC 800 108
Appendix 3: Storage Disposition 109
Appendix 4: Keyboard Layout, ASCII Codes 111
Appendix 5: Differences between ABC 800 and ABC 802 113
Appendix 6: Differences between ABC 800 and ABC 806 129

19 Index 150

IV

1 BASIC - the Programming
Language

A formal language - a programming language - is used to give instructions to the
computer. The formal language consists of certain key words in English.

BASIC is a very simple programming language. Each instruction, command and
function is easy to understand and to use. Nevertheless, the language is comprehensive
enough to allow versatile and efficient solutions to most problems.

The name BASIC stands for Beginners' All-purpose Symbolic.lnstruction Code. BASIC
was originally designed for elementary programming education. However, the lan­
guage turned out to be so efficient that now it is used in a wide variety of
applications.

The concept behind many programming languages is that the whole program is fed to
the computer which translates it into the appropriate machine language; the program is
compiled. The compiler program looks for formal errors in the user program. The
computer then prints a list of the errors. The programmer corrects the program and
feeds it once more to the computer. The program is compiled and the errors - if any - will
be printed.

On the other hand, when you program in BASIC, a BASIC interpreter program is
resident in the computer. The interpreter checks every program line as soon as you have
written it. A formal error will result in an immediate error message on the screen. You
may run the program at any time to test the parts of it that you have written. This is
called interactive programming and is in many cases the most efficient way of
programming a computer.

Naturally, interactive programming does not solve all problems. When the formal errors
have been eliminated from the program, logical errors may still remain which can only
be detected when the program is executed with the proper data.

Like any other language, BASIC has grammatical rules. The grammar of a programming
language is much simpler than the corresponding rules of a natural language. The
example below shows a program which computes the mean value of five numbers,
given by the user. Here you can see the structure of the language.

Example

BASIC II contains all the elementary instructions needed for simple programs as well as
the instructions and functions which make possible the writing of more advanced
programs with greater efficiency. The key word in this kind of programming is efficiency.
As the programmer gains more experience, his efficiency increases and he will want to
use more advanced data processing. BASIC II is comprehensive enough to solve
virtually any problem.

BASI C II offers an AUTOSTART function, which is described in detail in the disk drive
manual.

2 The Program
A program consists of program lines containing statements. The statements contain
instructions for the BASIC interpreter. Every program line begins with a unique line
number. The line number is followed by one or more BASIC statements. Two
statements in the same line should be separatedbya colon (:).The line numbers indicate
the order of execution. Each statement begins with a key word, which indicates the
operation to be performed.

The statement gives an instruction to the computer (in this example PRINT):

Some instructions need operands to specify on which variable or which part of a
program the instruction should operate. The operand in the example above is "5".

The last statement in a program is the END statement.

The END statement, which tells the computer that the program is finished, is not
mandatory. The ENDstatement should be the last instruction that is executed. When an
END statement is executed, all files are closed but the variables still have their current
values.

2.1 Line Numbers

Every program line starts with a line number. Some of the effects of the line number are
given here:

1. Denotes the order of execution. The statements may be written in any order.

2. Makes possible changes in the normal order of execution by means of the
instructions GOTO, GOSUB etc. The line number serves as a label and a jump
address.

3. Makes it possible to alter (edit) any line without affecting the rest of the
program.

You, the programmer, chose the line numbers. Any integer from 1 up to and including
65 535 may be used.

Each line must have a unique line number. The computer uses the line numbers to
identify and keep track of the instructions. If a new line is written with an existing line
number, this new line will replace the existing one.

2

The statements may be entered in any order. The computer will arrange them by their
line numbers. If you write e.g. the lines 30, 10, 20 in that order, the computer will
rearrange them: 10, 20, 30.

The lines should be numbered by fives or tens so that new statements can be easily
inserted. There are commands for automatic line numbers (AUTO) and for renumbering
(REN).

2.2 Comments

A comment or remark can be denoted in two ways in BASIC II; by means of the
standard REM statements or with the text preceded by an exclamation point.

1. REM statement (according to the BASIC standards)

2. Exclamation point. Does not require a colon.

Remarks are part of a BASIC program. They are printed when the program is listed on
the screen or printer. These comments are not executed. Any character (except
RETURN) can be used in a remark. The remarks are usually marked with some clearly
visible character, so that you will notice them in the program.

NOTE:

A comment cannot be terminated by a colon. The colon is treated as part of the
remark.

The last statement will not be executed. The entire line is considered to be a
non-executable comment.

2.3 BASIC Statements

The line begins with a line number, then follows a BASIC statement. The key word of the
statement identifies the statement type. The BASIC interpreter is thereby informed as
to which operation to perform and how to treat the data - if any - that follow the key
word.

3

The user is allowed to write more than one BASIC statement on a single line. These
statements must be separated by a colon. A line consisting of several statements is
executed a little fasterthan the same statements if they are each written on one line. A
shorter execution time can be important in some applications.

is an ordinary, single program line

is a "",111+1_11"10

IF-THEN

As a rule, any statement can be used anywhere in a multiple statement line. The
exceptions to the rule have been explicitly specified in the descriptions of the
instructions.

NOTE: It is good programming practice to write only one statement on each line.

2.4 Expressions

An expression is a group of symbols that represent constants, variables, functions or a
combination of these separated by arithmetic, relational or logical operators.
Examples:

Arithmetic expressions

4.123
3%+A%

B6*(C**3+1.0)

Relational expressions

x > V
V8 >=0
A=B

Logical expressions

(A< 1.0) AND (B=5)
((B<A) OR (D=C)) AND B/A< > D/C

Arithmetic expressions yield either floating point or integer values.

Relational expressions yield a truth orfalse value that reflects the result of a comparison
of two values.

Logical expressions yield a truth or false value that reflects the existance or
nonexistance of conditions.

String expressions are explained in chapter 5.

4

2.5 Logical Units

BASIC II ensures independence from physical input/output devices through the use of
file numbers.The file number can be treated as a logical unit and is handled with the
instructions OPEN, PREPARE and CLOSE. Thefile number may for instance represent
a printer or a file on a tape cassette/flexible disk.

Example:

NOTE: CON: is the standard device. CON: stands for console (keyboard and
screen).

2.6 Error handling

Certain errors can be detected by BASIC when it executes a program. These errors can
for instance be computational errors (such as division by 0) or input/output errors
(reading an end-of-file code to an INPUT statement). Normally, the occurrence of any
of these errors will cause termination of program execution and the printing of a
diagnostic message.

Some applications mavrequire that program execution continues after an error has
occurred. To accomplish this, the user can include an ON ERROR GOTO < line
number> statement in the program. The program will then jump to the user's error
handler which begins at the specified line number. The error handler will analyze the
error.

The ON ERROR GOTO statement should be placed before all the executable
statements, with which the error handling routine deals.

When an error occurs in a program, BASIC checks to see if the program has run through
an ON ERROR GOTO statement. If no such statement has been encountered, a
message is printed at the screen and the program execution is terminated. If an ON
ERROR GOTO statement was run through, program execution will continue at the line
number specified by that statement. The error handler at that line number can e.g. test
the function ERRCODE to find out precisely what error has occurred and decide what
action is to be taken.

If there are portions of the program in which any errors detected are to be processed by
the system and not by the error handler of the program, the error handler can be disabled
by executing the following statement:

line number ON ERROR GOTO

The computer will then attend to all errors as it would do if no ON ERROR GOTO < line
number> had ever been executed.

5

The error handling routine is terminated by a RESUME statement. The function of
RESUME resembles the one of the RETURN statement at the end of an ordinary
subroutine. The program jumps to the entry point - if any - in the staternentthat caused
the error. If the program execution should continue at another line number, the line
number in question should be given in the RESUME statement.

Example of error handling:

6

3 Data

3.1 Range of Values

Floating Point

The range of values for floating point is the largest range of values in BASIC.
± 1E-38 ± 1E+38

There are seven significance digits in single (SINGLE) and sixteen digits in double
precision (DOUBLE). All numbers are rounded internally to fit this precision.
Numbers may be entered and displayed in three formats:

Example:

Integers

153, 34.52, 136E-2

The range of integer values is:
-32768 through 32767 inclusive.

Character strings

A character string can contain any number of characters.

NOTE
Strings used in string arithmetic have a maximum size of 125 characters including the
sign and the decimal point.

3.2 Constants

Numeric constants retain a constant value throughout a program. They can be positive
or negative. Numeric constants can be written as follows:

Example: +3%
-4.765
12345.6
-.0001

The three last constants of this example would be stored as floating point, since they
have no % suffix. The use of an explicit decimal point or percent sign is recommended in
all numeric constants to avoid unnecessary data conversion and to improve documen­
tation.

3.3 Variables

A variable is a data item the value of which can be changed during program execution. A
variable is denoted by a specific variable name.

7

Variable names consist of a single letter or a single letter followed by a single digit. It is
possible, by means of EXTEND, to use long variable names (letters and digits, starting
with a letter).
These characters are allowed:

A,B,C, ,Z
0,1,2, ,9

(letters)
(digits)

A name can also have an FN prefix (denoting a function name), a . suffix (denoting
floating point), a % suffix (denoting integer), a $ suffix (denoting string), or a subscript
suffix that consists of a set of subscripts enclosed by parentheses.

A string expression has a value that consists of a sequence of characters, each
character occupying one byte. A string expression can be expressed either as a
sequence of characters enclosed by quotation marks or as a variable using a variable
name with a $ suffix.

Mixing of data types in a statement should be avoided. Use integers whenever possible.
Integers need less storage space and are processed faster by the computer.

The same name can appear in combination with various prefixes and suffixes in the
same program and generate mutually independent variables. For example, the floating
point variable A is entirely different from the integer variable A%. The name A can be
used as follows:

A
A%
A$
A(d)
A%(d)
A$(d)
FNA
FNA%
FNA$

floating point variable A
integer variable A%
string variable A$
floating point array A with dimension specification d
integer array A% with dimension specification d
string array A$ with dimension specification d
floating point function A
integer function A%
string function A$

In the EXTEND mode a name can be used as follows:

Signal
Signal%
Signal$
Signal(d)
Signal%(d)
Signal$(d)
FNSignal
FNSignal%
FNSignal$

floating point variable Signal
integer variable Signal%
string variable Signal$
floating point array Signal with dimension specification d
integer array Signal% with dimension specification d
string array Signal$ with dimension specification d
floating point function Signal
integer function Signal%
string function Signal$

Variables are assigned values by LET, INPUT, and READ among other statements. The
variables are set to zero before program execution, unless they have been protected by a
COMMO N statement. It is necessary to assign a value to a variable only when an initial
value other than zero is required.

8

3.4 Subscripted Variables and the DIM Statement

In addition to the simple variable, the use of subscripted variables (arrays) is allowed.
SUbscripted variables provide the programmer with additional computing capability for
dealing with lists, tables, matrices, or any set of related variables. Variables are allowed
with two numbers of subscripts.

The name of a subscripted variable is any acceptable variable name followed by a
number of integers enclosed by parentheses. For example, a list may be described as
A(I) where I goes from 0 to 5:
A(O), A(1), A(2), A(3), A(4), A(5)
This allows the programmer to refer to each one of the six elements in the list, which can
be considered a one-dimensional algebraic vector as follows:

A(O)
A(1)
A(2)
A(3)
A(4)
A(5)

A two-dimensional matrix 8(1,J) can be defined in a similar manner and displayed
graphically:

8(0,0) 8(0,1) 8(0,2) ... 8(0,J)

8(1,0) 8(1,1) 8(1,2) ... 8(1,J)

8(2,0) 8(2,1) 8(2,2) ... 8(2,J)

8(3,0) 8(3,1) 8(3,2) ... 8(3,J)
...

80,0) 8(1,1) 8(1,2) ... 80,J)

Matrix structure

Subscripts used with subscripted variables may have integer values only. If a subscript
is a floating point value, it will be rounded off to an integer.
A dimension (DIM) statement is used to define the maximum subscripts of an array. If a
subscripted variable is used without a DIM statement, the maximum value of each
subscript is assumed to be 10. It is possible to change the minimum value for array
subscripts by means of the statement OPTION BASE. Normally, the minimum value is
Obut it can be changed to 1, so that a standard array would have 10 elements in each
dimension instead of 11. All DIM statements should be placed at the beginning of the
program.

9

3.5 File Storage

BASIC II provides facilities for the definition and manipulation of data on cassette or
disk.

A data file consists of a sequence of data items transmitted between a BASIC program
and an external input/output device. The external device can be a printer, a cassette, or
a disk. The OPEN statement specifies the devices available and their references. The
device has a name by which it is identified within the system (ORO: for disk drive
0).

Each data file is identified by a unique name; the file name. For example, ABC123.BAC
is the name of a disk file. The file is accessed internally in the user program by means of
its file number. The file number is given in the program by means of one of the
instructions PREPARE or OPEN. These statements will open the file, i.e. set up a
channel for the data transfer. To close such a data transfer channel the instruction
CLOSE is used. The instructions INPUT and PRINT or GET and PUT are used for the
data transfer.

A buffer area is created by the system when a file is opened. All data transfer to and from
a file is buffered.

3.5.1 Opening a File

To open an existing file the OPEN statement is used. If the file is new, it should be
opened with a PREPARE statement.

Example

opens the existing file named FILE1.AAA for input/output with file
numb-er 1.

3.5.2 Data Transfer To/From a File

The transfer of data takes place directly between the internal channel (the file number)
and the string variable or the value of the expression in question. All data transfer refers
to either one byte or one character string (the characters followed by a carriage
return).

The following instructions can be used:

INPUT £

INPUT LINE £

PRINT £

GET £ COUNT

PUT£

POSIT £

10

reads a value to a variable or a string from the position of the file
pointer to a carriage return

reads a value to a string variable including the carriage (CR) return
and line feed (LF)

writes the contents of a variable into the file

reads one byte or the given number of bytes from the position of the
file pointer
writes one record into the file

moves the file pointer to the desired position

If no file number is given in the GET statement, it will attempt to read from the keyboard.
If the COUNT option is not used, GET will read one byte, i.e. one character.

Example

will read six characters from the file with file number 1 from the
position of the file pointer. The characters are put in the string
D2$.

The instruction POSIT is used to position the file pointer at the given position in the file.
The number of characters always refers to the beginning of the file (position 0). POSIT
can be used together with anyone of the other file handling instructions.

Example file 1 contains ABCDEFGHIJK

The function POSIT(file number) reads the position of the file pointer. In the example
above, POSIT(1) has the value 8, when the example has been executed. POSIT returns
a floating point value, and can thus operate on long files.

WARNING POSIT should not be used in conjunction with sequential files, i.e.
files which are handled by PRINT and INPUT/INPUT LINE. If you
want to use POSIT with a sequential file, every PRINT statement
should be followed by a GET statement, else an end-of-file (EOF)
mark will be written at the position of the file pointer, the next time
that POSIT or CLOSE are used. A dummy GET looks like this:

40 GET £2,0$ COUNT 0

When POSIT is used with sequential files, you should look upon PRINT and GET as a
sequence of instructions that belong together.

3.5.3 Closing a File

The data transfer to or from a file will not be correctly terminated until the file is closed.
The contents of the buffer area are then transferred, and the file is given an end-of-file
(EOF) mark.

There are two ways of closing a file:

CLOSE 2

CLOSE

closes the file with file number 2

closes all files

11

4 Integers and Floating Point
Numbers

Normally, all numeric values (variables and constants) specified in a BASIC program are
stored internally as floating point numbers. For integer numbers significant economies
in storage space can be achieved by the use of the integer data type. Also, integer
arithmetic is faster than floating point arithmetic. A constant, variable orfunction can be
specified as an integer by ending its name with the % character.
Example: A%, FNX%{Y), -8%, Z3%

The user always has to specify with the % character that an integer is to be generated,
otherwise a floating point value will be produced.

When raising to an integer power, the power value should be explicitly indicated as an
integer.

The computer will act as described above when BASIC II operates in its normal mode,
Le. FLOAT. The default value can be changed to integer by the INTEGER instruc­
tion.

4.1 Mathematical Operations

When more than one operation is to be performed in a single formula, certain rules are
observed as to the precedence of the operators. The arithmetic operations are
performed in the following sequence, where the operation described in item 1 has
precedence:

1. Any formula within parentheses is evaluated first. The parenthesized quantity is then
used in further computations. Where the parentheses are nested as follows:

{A+{B* (C* * 3)))
the innermost parenthesized quantity is calculated first.

2. In the absence of parentheses the following precedence is performed:
a. Intrinsic or user defined functions
b. Exponentiation (* *)
c. Multiplication and division (*, /)
d. Addition and subtraction (+, -) and unary minus
e. Relational operators (=, <>, >=, <, <=, »
f. NOT
g.AND
h. OR and XOR
i.IMP
j. EQV

Thus, for example, -A* * B with a unary minus is a legal expression

and is the same as -(A* * B). This implies that -2* * 2 evaluates as

-4. A**-B is not allowed, but A**{-B) is allowed.

3. In the absence of parentheses, operations on the same level are performed left to
right, in the order that the formula was written.

12

4.2 Integer Arithmetic

All arithmetic with integer values is performed in modulo 2* * 16. A BASIC integer can
be between -32 768 and +32 767 inclusive. The integer representation can be
regarded as a continuous circle with -32 768 following +32 767.

Integer division forces truncation of any remainder. However, the function MOD makes
the remainder available.

Examples: 3%/40/0=0% and 283%/1000/0=2%

When an operation is performed on both integer and floating point data, the result is
stored in the format indicated by the resulting variable.

Example:

The result is rounded to give B% an integer value.

4.3 Input/Output of Integer and Floating Point

Input and output of integer variables is performed in exactly the same manner as the
corresponding operations on floating point variables.

Any number, which can be represented by up to seven significant digits in SINGLE
mode or sixteen digits in DOUBLE mode, is printed" without use of the exponential
form.

Any floating point variable that has an integer value, is automatically printed as an
integer but is internally still a floating point number.

If more than seven/sixteen digits are generated during any computation, the result will
automatically be printed in the format:

[-].nE[-]m
where n is a number with seven digits, at the most, and m is an exponent with one or two
digits.

Input allows all the formats used for output. When a floating point value is assigned to
an integer variable, the value is rounded off to an integer.

4.4 User Defined Functions

An integer function is defined as being of integer type by the % suffix following the
function name.

Example

A floating point function can be written like this:

Example

13

4.5 Integers as Logical Variables

Integer variables or integer valued expressions can be used within IF statements in any
place where a logical expression can appear. Any non-zero value is defined as being true
and an integer value of 0% corresponds to the logical false value. The logical operators
(AND, OR, NOT, XOR, IMP, EQV) operate on logical (or integer) data in a bitwise
manner.

NOTE:
The integer -1 % is normally used by the system for a true value. Logical values
generated by BASIC II always have the values -1 % (true) and 0% (false).

4.6 Logical Operations on Integer Data

BASIC II allows a user program to combine integer variables or integer valued
expressions using a logical operator to give a bitwise result.

The truth table below is valid for the logical operations. A is the condition of one bit in
one integer value and B is the condition of the corresponding bit of another integer
value.

A
1
1
o
o

B
1
o
1
o

A AND B A OR B A XOR B A EQV B
1 1 0 1
o 1 1 0
o 1 1 0
o 0 0 1

A IMP B NOT A
1 0
o 0
1 1
1 1

The result of a logical operation is an integer value generated by the combination of the
corresponding bits of two integer values according to the rules shown above.

The result of any logical operation can be assigned to an integer or a floating point
variable.

Example:

AND, OR, XOR, EQV, IMP, and NOT can operate on variables and valued expressions
to give a bitwise integer result. If logical operations are done on float variables or float
valued expressions, conversion to integer format is done before the execution of the
logical operation.

14

5 Character Strings

BASIC II not only processes numerical information but also information in the form of
character strings. A character string is a sequence of characters.

5.1 String Constants

Character string constants are allowed, just like numerical constants. The character
string constants are delimited by either single (') or double (") quotes. If the delimiting
character occurs twice.in a string sequence it is considered to be part of the text.

The value Let's can be expressed in two ways: "Let's" or 'Lers'.

5.2 String Variables

Any legal variable name followed by a dollar sign ($) character is a legal name for a
string variable.

Example A$, B1$ are simple string variables.
A$(8), G5$(M,N), J$(I) are subscripted string variables.

NOTE
The same name, without the $, denotes a numeric variable, which can be used in the
same program.

Example F, F$, and F% are allowed in the same program.

5.3 Subscripted String Variables

The DIM statement is used to define string arrays and string matrices. The following
alternative DIM statements are available:

Example
DIM W$(2,4)=8 IString length 8; maximum subscript values 2 and 4
DIM R5$(9,9) IString length up to 80; maximum subscript values 9 and
9
DIM NAME${7,6,3,2)=10 !String length 10; four-dimensional matrix with
maximum subscript values7,6,3, and 2

5.4 String Size

The length of a non-dimensioned string variable is automatically set to the current
length the first time that the string is assigned a non-null value « >"").

If less than 80 characters are used, the string length will be the default value of 80
characters.

15

Each string, scalar or vector element, has two lengths:
1. The maximum length is the number of bytes allocated to the strinq..
2. The current length is the number of bytes currently in use. The current length may

vary between zero and the maximum length. The current length is the only visible
length; this length may be examined by the function LEN.

If a string is assigned a null value (=""), the current length will be set to zero. No further
action is taken.

If a string is assigned a non-null value and has a non-zero max length, the string length is
checked. If the string length is sufficient, a number of bytes will be allocated to store the
data and the current length will be set to the number of allocated bytes. If the string
length is not sufficient, an error message will be written.

5.5 String Functions

Various functions are used with character strings. These functions allow a program to
perform arithmetic operations on numeric strings, concatenate two strings, access part
'of a string, determine the number of characters in a string, generate a character string
corresponding to a given number or vice versa, search for a substring within a larger
string and so on. See chapter 10.2.

5.6 String Arithmetic'

String arithmetic functions process numeric strings as arithmetic operands. This isa
way to perform calculations with greater precision. Numeric string variable names must
be suffixed with a dollar sign ($) character. Numeric string constants must be bounded
by quotation marks (") or apostrophes (').

The maximum size of a string arithmetic operand is 125 characters.

5'.7 String Input

Just like other variables, the string variables can be assigned data by the instructions
READ, DATA and INPUT.

Example

is the same as

INPUT LINE is very useful for string input. It accepts one line from the keyboard.

Example

16

Example

This gives the following assignments:

A=17
8=14
C$="61 "

The INPUT statement is used to input character strings exactly as though accepting
numeric values.

5.8 String Output

Only the characters within quotes are printed when character string constants are
included in PRINT statements. The delimiters are not printed.

Example

Strings can also be stored in files on an output device.

5.9 Relational Operators

The relational operators, when applied to string operands, indicate alphabetic
sequence.

Example

When line 15 is executed, the following will occur: A$(I%) and A$(I%+1%) are
compared; if A$(I%) occurs earlier in alphabetical order than A$(I%+1%), execution will
continue at line 11 5.

When two strings of unequal length are compared, the shorter string (length n) will be
compared to the first n characters of the longer string. If they are not equal, that
inequality serves as the result of the original comparison. If the first n characters of the
string are the same, the longer string is greater than the shorter one.

Relational Operators Used with String Variables

Operator Example Meaning

= A$=8$ The strings A$ and 8$ are equivalent.
< A<8 The string A$ occurs before 8$ in collating

sequence.
<= A$<=8$ The string A$ is equivalent to or occurs

before 8$ in collating sequence.
> A>8 The string A$ occurs after 8$ in collating

sequence.
>= A$>=8$ The string A$ is equivalent to or occurs

after 8$ in collating sequence.
<> A$< >8$ The strings A$ and 8$ are not equivalent.

17

6 Working with BASIC II

6.1 How to Write Program Lines

6.1.1 Free Format in Statements

BASIC is a "free format" language. The computer ignores extra blank spaces in a
statement. For example, these four statements are equivalent:

The computer will always list the programs in its usual way independent of how the
statements were written.

NOTE
The spaces are significant in the following cases:

• EXTEND mode
• DATA statements

6.1.2 Procedure

A line can either be executed immediately (direct mode) or stored in the user program
area for later execution and eventually saved on an external device (disk or
cassette).

The RETURN key must be pressed after each statement.

Example (press RETURN)
(press RETURN)
(press RETURN)
(press RETURN)

The RETURN key indicates that the statement is complete. If the statement contains an
error, an error message is written on the screen.

6.1.3 Corrections

The~ key acts as a backspace key, deleting the immediately preceding character.

Typing this:
is equivalent to:

This line:
is equivalent to:

When a terminated line gives an error message, it can be edited using the arrow keys
(.... and~).

18

Example
This will result in::::::a:n::::::::e:r:~o::r::(::::th:e:§sag:e~::::::::::P:r~§s:::::::=:::::::::to display the characters and make

the necessary changes to the program line.
The ED command provides an ability to change characters after the line is
completed.

6.1.4 Deleting a Line

To delete the statement being typed, press the CTRL!X keys or the CE key. The entire
line being typed will then be deleted.

NOTE
To delete a previously typed statement, type the statement number and press the
RETURN key. The line with that number will then be deleted.

Example

To delete line 5 you should type:

(press RETURN)

Use the LIST command to check.

6.1.5 How to Change a Program Line

One way of changing a program line is to retype it as it should be. The new line will
replace the old one when you press the RETURN key.

To change line 5 in the above example you can type:

(press RETURN)

The old line 5 is replaced by the new one.

If only a few characters are to be changed use the ED command.

6.2 How to Edit a Program

Lines may be deleted, inserted or changed according to the procedures described in
chapter 6.1. The MERGE command lets you combine the program with a set of
statements loaded from a file. The ERASE command deletes a block of lines. The ED
command facilitates corrections of an existing line on a character basis.

When editing a program you may want to tidy up the line numbering. This is done by
means of the RENUMBER command.

19

6.3 Executing a Program

The RUN command will start the execution of a program. When the command is
entered and terminated by the RETURN key, BASIC starts to execute the program in the
user program area at the lowest numbered line. Execution will continue until either one
of these conditions is encountered:

STOP
END
Error

When the program executes a STOP or END statement, it halts and all the variables still
keep their values. The user can examine the variables by simply addressing them by
their variable names.
Example: You want to know the values of the variables A, S, and K%. Enter

the following command:

(press RETURN)

The computer will then write the current values of the variables
when program execution was stopped.

Errors cause an error message to be written on the screen.

A running program can be halted by:

CTRL/C (both keys simultaneously)

After that it is possible to single step the program bv means of:

CTRL/S (both keys simultaneously)

To continue execution, press any key.

To stop the program you have to press:

CTRL/C again.

6.4 Guide to the Statements

To insert notes and messages into your program:
Use the instruction REM or L

To assign a numeric value to a variable:
Use the instruction LET.

To assign values to a list of variables:
Use the instructions READ, DATA, ON-RESTORE, and
RESTORE.

20

To transfer data to and from the system:
Use the instructions INPUT, INPUT LINE, PRINT, GET, PUT,
PREPARE, OPEN, and CLOSE. Use OUT and INP to control
input/output via the inports/outports of the ABC 800.

To control the program flow:

1. Unconditional jump to another part of the program
Use the instruction GOTO.

2. Conditional branch
Use the instructions IF-THEN, ON ...-, and WHILE-WEND.

3. Program loops
Use the instructions FOR-NEXT.

4. Modularized programming with the use of subroutines
Use the instructions GOSUB-RETURN and DEFFN-FNEND.

To do your own error handling:
Use the instructions ON ERROR GOTO-RESUME and the
ERRCODE function.

To combine your BASIC program with programs written in assembler language:
Use the instructions CALL and POKE and the functions PEEK and
VARPTR.

To define and manipulate blocks of data: ABC 802, 80E

Use the instructions PREPARE, OPEN, CLOSE, PRINT, GET,
PUT, INPUT, and INPUT LINE.

Miscellaneous statements: ABC 802, 80E

COMMON and DIM sets the size of variables.
STOP, TRACE, and NO TRACE facilitate the debugging of a
program.

Chapter 10 contains the many mathematical, logical and other functions available,
which extend user programming and provide it with advanced features.

21

6.5 Declarations

There are the following declarations:

• FLOAT/INTEGER

• SINGLE/DOUBLE

• NO EXTEND/EXTEND

• OPTION BASE (0/1)

If any declaration statements are used, they should be placed at the very beginning of
the program. COMMON and DIM statements, if any, should follow directly after the
declarations.

22

7 Direct Mode

BASIC II facilitates computer utilization for the immediate solution of such problems,
generally mathematical ones, which do not require iterative program procedures.

To clarify: BASIC II allows the use of the computer as a sophisticated electronic
calculator by means of its ability to provide direct statement execution.

When BASIC II is in the command mode, a BASIC statement may be entered without a
line number. Such a statement, when terminated by RETURN, will be executed
immediately. This is called the direct mode of execution.
Most BASIC statements can be used in direct mode.

Example:

Statements which are entered with line numbers are considered to be program lines
which will be executed later.

Direct execution is very useful as an aid in program development and debugging.
Through the use of direct statements, program variables can be altered or read, and the
program flow may be monitored and controlled.

Direct statements operating on program variables can be used in the following
cases:

- when CTRLIC has been pressed twice

- when an error has occurred

- after a STOP or END statement

23

8 Commands

When a command is written and terminated by RETURN it causes BASIC to take
immediate action. A BASIC program, by contrast, is first entered into the memory and
then executed later, when the RUN command is given.

When the BASIC interpretor is ready to receive a command, the text ABC 800 is
displayed on the screen. Commands should be typed without any line numbers.

Different commands control the editing and execution of programs and allow file
manipulation. Each command is identified by a key word at the beginning of the
line.

The following definitions are used in this manual:

.key words - in thick print e.g. LOAD, SAVE, and RUN

.optional items - within square brackets e.g. [device:]

.alternative items - separated by a slash e.g. "data"/string variable

.additional items - represented by dots e.g. ["data"/string variable, ..., ...]

Generally:

'BC 802,806 .the devices are addressed as ORO:, DR1:, CAS:, PR:, and CON:.

• the primary default device is disk drive 0 (ORO:) and the secondary one is disk drive 1
(DR1.), If both a disk drive and a cassette recorder are connected, the device CAS:
must be given if a command is to act on the cassette recorder.

• a file name should consist of up to eight alphanumeric characters, the first of which is a
letter. In addition, an extension (3 characters) may be used to clarify the file
name.

• the extension of a file name need not be given explicitly. However, there are some
exceptions. All such exceptions are mentioned in the syntax rules. If no extension is
given, the command will act first on files with the extension.BAC and then on files with
the extension .BAS.

• the RETURN key should be pressed to terminate the entered command.

The following list shows the commands with a short description of each one:

AUTO

BYE

$BAS

24

Generates line numbers automatically.

Transfers control to the DOS.

Transfers control back to BASIC.

CLEAR

CON

ED

ERASE

LIST

LOAD

MERGE

NEW

REN
RENUMBER

RUN

SAVE

SCR

UNSAVE

Clears all variables and closes all files.

Continues the execution of a stopped program.

Gives edit facility.

Erases blocks of lines.

Lists the current program.

Loads a BASIC program into the computer.

IVerges program files.

Clears the program storage.

Changes the line numbering.

(Loads and) Executes a program.

Stores the current program on a file.

Clears the program storage.

Deletes a file.

AUTO

Below follows a detailed description of all thecommands,

Format

Function

Use

AUTO [argument 1[, argument 2]]
where < argument 1> specifies the first line number to be written
and < argument 2 > specifies the line interval. Both arguments are
optional. If no arguments are given, the line numbering starts with
the first whole 10th number following the already existing lines.
The step interval is then set to 1O.

The new line number is automatically entered after each carriage
return. You do not have to enter the line numbers manually.

This command is continuously available during programming work.
Automatic line numbering can be stopped by pressing the RETURN
key as the first character of a new line. If a line entered causes an
error message, automatic line numbering is stopped and the line
can be edited. The line numbering can be started by a new AUTO
command.

25

Example

BYE

Format

Function

Action

$BAS

Format

Function

Action

CLEAR

Format

Function

Action

CONTINUE

Format

Function

Use

Note

26

AUTO 10,5

The first line number will be 10 and the line number will be
incremented by 5 for each line.

etc

BYE

Transfers control to the disk operating system (DOS).

Closes any files remaining open and loads the command interpre­
ter CMDINT.SYS.

$BAS

Transfers control to BASIC.

Terminates the DOS work and transfers control to the BASIC
interpreter.

CLEAR

Clears all variables and closes all open files.

Does not affect the current program in the storage.

CON (or CONTINUE)

Will continue program execution from where it was stopped.

Variables may be changed or displayed by means of direct entry
commands before CON is used.

CON cannot be used if the program has been edited or an error has
occurred.

ED

Format

Function

Action

Example

Note

ED [line number]

Where < line number> is the number of the line to be edited.

Allows editing of a program line.

When the command has been terminated by the RETURNkey, the
....·isused to display the contents of the line. Eachtime the -.. key
is pressed, one character is displayed. If you want to alter the
contents write the new characters where they should be. Use the
..-key to back space.

Line 100 has the following contents:

Assume that C is to be replaced by D and that you do not want to
rewrite the line. Proceed as follows:

Type ED 100. Press RETURN. Line 100 is then displayed:

Press to display the following text:

The second line will thus show your new text. EraseC by pressing
·"-once. Type D. The bottom line now looks like this:

Press..... until the rest of the line is displayed.

Read the line to check if it is correct. Press RETURNto replace the
old line with the new one.

When an error occurs during programming, the erroneus line
remains in the computer and can be edited by the ~and-keys
as shown above without any ED command.
If ED is typed without a line number, the first line of the program will
be displayed.

27

ERASE

Format

Function

Action

ERASE line number I [- line number II]
ERASE line number -
ERASE - line number

Erases one or more program lines.

All lines between line number I and line number II inclusive are
removed.

Examples

LIST

Erases lines 20 to 200 inclusive

Erases all lines up to and including line
200

Erases line 20 and all subsequent lines
up to and including the last line

Format

Function

Action

ABCB02 Note

28

LIST [device:]file name[.extension][,line number[-line number]]
LIST [device:][,line number[-line number]]
LIST line number -
LIST - line number

Where <file name.extension> is the name of a program file.
<Device:> can be, for instance, CAS:, PR:, ORO:, or DR1:.

Lists the whole program or part of it.

1. LIST [device:] file name [.extension]
Saves the program in the working storage in text format on an
external storage. The program is stored under the specified <file
name> . Compare with SAVE. The default extension is BAS.

2. LIST
The entire program is listed on the screen.

3. LIST line number
Just the line specified is listed

4. LIST line number I - line number II
The lines between line number I and line number II, inclusive, are
listed on the screen.

5. LIST PR:
The entire program is listed on the printer.

6. LIST -line number
All lines up to an including the line specified are listed.

7. LIST line number-
All lines from the specified line number to the end of the program
are listed.

A long program is listed on the screen until it is filled. The next line
will be displayed when you press the space bar. A listing can be
stopped by CTRL/C, RETURN or any BASIC command.

Examples

LOAD

Stores the file ABC800 on external storage
Lists the entire program on the screen
Lists line 100
Lists the lines 100-500
Lists the entire program on the printer
Lists the lines 100-200 on the printer

Format

Function

Examples

Note

MERGE

Format

Function

Action

Example

LOAD [device:]file name[.extension]
Where <file name.extension» is the name of the program to be
loaded. < Device> can be CAS:, DRO: or DR1:.

Loads a BASIC program into the working storage of the computer
from an external storage.

If no extension is given, the computer will first search for .BAC and ABCB02

then .BAS. The entire file is read, until EOF(end of file) and not only
to the END.

MERGE [device:]file name[.extension]
Where <file name> is the name of a file on an external storage.
The file should be stored in text format (by LIST).

Merges program files so that the program lines will be in line
number sequence. The program from the external storage overlays
the current program.

The numbered BASIC lines from thefile specified are inserted in
line number sequence in the current program. Each new line is
checked for errors. If a new line has the same number as an old one,
the old line is replaced by the new one.

The external file is read until EOF (end of file).

Existing program:

29

NEW

Format

Function

Action

Note

RENUMBER
REN

Format

Function

30

The following program file is stored on an external storage (disk or
cassette) under the name TABLE:

The following command will link the two files together:

The command MERGE adds the lines 200, 300 and 999 to the
existing program.

NEW

Clears the working storage.

Clears the working storage and all variables and resets the pointers.
The command erases all traces of the existing program from the
storage and starts over again.

All open files are closed.

Use this command before typing a new program.

The command SCR (scratch) can be used, as well.lt works just like
NEW.

REN[UMBER] [line number[,interval[,from line -to line]]]
Where < line number> is the number to be given to the first line.
The default is 1O.

< Interval> is the increment number. The default is 10.

< From line> - <to line> specify which lines are to be renumbered.
The default is that all the lines are renumbered.

If you want to specify < interval>, < line number> must be speci ­
fied.

If you want to specify <from line> - <to line>, you have to
specify both < line number> and < interval>.

Changes the line numbering of the current program.

RUN

Action

Examples

Format

Function

Action

Examples

All the line numbers of the program are changed as specified in the
RENUMBER command.

Any references to line numbers in GOSUB, GOTO, IF, ON, and
RESUME statements are changed to the new line numbers, so that
the entry points still represent the same statements as before.

If a statement in the program refers to a line number, which does
not exist, an error message is printed and no renumbering is
done.

RUN [device:][file name[.extension]]
Where <file name> is the name of the program file to be loaded
and executed. If no extension is given, the computer will search for
an extension of first .BAC and then .BAS.

Loads and executes a BASIC program or executes the current
program.

1. RUN
All variables and arrays in the program area are erased and all
buffers are cleared. The execution of the current program is started
at the lowest numbered line.

2. RUN file name[.extension]
The program <file name[.extension] > is loaded through the
action of a LOAD command. The program is then executed,
starting at the lowest numbered line.

Example 1

Example 2
If the same program had been stored on an external storage under
the name AADDB, the screen would look like this:

31

ABC802

SAVE

Format

Function

Action

Example

ABCB02 Note

SCR

Format

Function

Action

Note

UNSAVE

Format

Function

Example

ABCB02 Note

32

SAVE [device:]file name[.extension]
Where the <file name> is a string literal specifying the name of a
new file. The default file extension will be .BAC.

Creates a program file on an external storage and stores the current
program on that file.

The command causes the program, which is currently in the
working storage, to be saved under the given file name with the
extension .BAC, if no other extension is specified.
The program is saved in internal code to ensure fast loading.

If the file exists already on the disk, the old file will be destroyed and
replaced by the new program, unless the file or the disk is write
protected.

SCR

Clears the storage.

Clears the working storage and all variables and resets the pointers.
The command erases all traces of the existing program from the
storage and starts over again.

All open files are closed.

The command NEW can be used, as well.lt works just like
SCR.

lI\ISAVE [device:]file name[.extension]

Erases a file from a disk.

When you have completed all work with the file XYZ, the file can be
erased by the following command:

When the extension is omitted, the computer will look for .BAC first
and then .BAS.
The command UNSAVE cannot be used on an erase protected
file.

9 Instructions

This chapter describes the program statements of BASIC II. A program statement is an
instruction, which tells the BASIC interpreter to perform a certain operation. Most
instructions can also be used as commands.

Below is a list of the instructions with a short description of each one:

CHAIN

CLOSE

COMMON

DATA

DEF FN

DIGITS

DIM

DOUBLE

END

EXTEND

FLOAT

FNEND

FOR

GET

GET COUNT

GOSUB

GOTO

IF-THEN-ELSE

INPUT

INPUT LINE

INTEGER

KILL

LET

NAME

Loads a program file and executes it

Closes files

Transfers variables to the next CHAINed program

Data statement; READ fetches the value

Defines a user function

Denotes the maximum number of digits to be printed

Denotes the size of a vector/matrix or string

Double precision (16 digits)

The logically last instruction of a BASIC program

Allows the use of long variable names

All variables are represented as floating point ones

Terminates multiple line user functions

Program loop (with NEXT)

Reads a character

Reads the specified number of characters

Calls a subroutine

Jump to a specified line number

Controls conditional execution

Reads data

Reads data

All variables are represented as integers

Erases a file

Assigns a value to a variable

Renames a file

33

NEXT

NO EXTEND

NO TRACE

Increments the variable in a FOR loop

Disables EXTEND mode

Disables TRACE mode

ON ERROR GOTO Error handling

ON-GOSUB

ON-GOTO

ON-RESTORE

ON-RESUME

OPEN-AS FILE

OPTION BASE

POSIT

PREPARE-AS
FILE

PRINT
PRINT USING

PUT

RANDOMIZE

READ

REM (I)

RESTORE

RESUME

RETURN

SINGLE

STOP

TRACE

WEND

WHILE

ABC 802, B06

Conditional jump to subroutines

Conditional jump to one of several lines

Conditional RESTORE statement for data pointer

Conditional jump from error handler

Opens a file and assigns a file number

Sets the minimum value for vector subscripts

Positions the fit~' pointer

Creates and opens a new file and assigns a file number

Prints data with the specified format

Writes a record

Provides a new initial value for the random number generator

Assigns a value from a DATA statement to a variable

Inserts a comment (remark)

Sets the data pointer

Returns from error handler

Returns from subroutine to calling program

Changes the precision to seven digits

Stops the program execution

Allows tracing

Terminates a WHILE function

Defines the branching condition of a WHILE-WEND function

Here follows a comprehensive description of the instructions.

34

CHAIN

Format

Function

Use

Note

Example

CLOSE

Format

Function

Use

Note

COMMON

Format

Function

Use

CHAIN "file name.extension"/string variable
Where <file narne.extension » is the name of the program to be
loaded. If the file name refers to a disk file and no extension is given,
the computer will search for .BAC and secondly .BAS.

Loads and executes a program.

If the program is too large to be loaded into the computer storage
and run in one operation the program can be segmented into
several programs. The CHAIN instruction is used as a logical
termination of one program to call the next one. Each program is
called by its name. The program in the computer is erased and the
new one is loaded. The lowest numbered program line is executed
first as though a RUN command had been used. The CHAIN
instruction is the last instruction to be executed. The last program
in a chain does not need any CHAIN statement, but control is often
transferred by CHAIN back to a program that allows the user to
select the program to be run.

Variables can be passed on to a CHAINed program by means of ABCB02

the COMMON instruction.

CLOSE [file number, ...]
< File number> specifies the file to be closed.

Terminates I/O instructions and closes the filets).

The instruction CLOSE is used to close one or more files. If no file
number is given, all files will be closed.

The instruction END closes all open files.
Ordinary output with the PRINT instruction will cause the last
buffer to be output when the file is closed.

COMMON variable[(n,...)] [,variable, ...]
COMMON string variable[(n, ...)]=length [,stringvariable=length, ...]

<n>=the vector index and <Iength>=the maximum string
length

A declaration of the variables whose values are to be transferred to
another program when the programs are CHAINed.

,The declarations must look alike in all programs. The programs
must be alike regarding precision and integers or floating point
values.

35

Note

Example

DATA

Format

Function

Use

Example

DEF FN

Format

Function

Use

36

The length of common string variables must be declared. The
COMMON statements must follow immediately after the decla­
ration statements.

DATAvalue [value, ...]
Where all the DATA statements, placed anywhere in the
program, form a list of data. The DATAstatement should be the
only statement on the line, i. e. the line must not contain, for
instance, REM since this instruction is interpreted 10las data.

Assigns values to variables (used with READ).

DATA is used only in conjunction with READ and vice versa. See
READ.

yields the following display

Single line function:
DEF FN identifier[(argument)]=function

Multiple line function:
DEF FNidentifier[%/$] [Iarqurnentl] [LOCAL variable
[, variable, ...]]

Defines single line and multiple line functions.

A multiple line DEF function differs from the single line functions
due to the absence of an equal sign following the function
designation on the first line. Any number of arguments of any type
or any mixture of types may be used. Within the multiple line
function definition there must be a statement of the form:

RETURN expression

FNEND

When the RETURN statement is encountered, the expression is
evaluated and used as the value of the function, and exit is
performed from the definition. The definition may contain more
than one RETURN statement, as can be seen from the example
below.

DEFFN

Note

Examples

ON ERROR GOTO line number, GOSUB line number, and
RESUME line number may only call lines within the function.
Only RESTORE to data statements is allowed to point on lines
outside the function.

Single line function:

10 DEF FNA(X,Y)=X+X*Y

Multiple line functions:
The function below determines the larger of two numbers and
returns that number. Such a use of the IF - THEN instruction is
frequently found in multiple line functions:

The next example shows a recursive function that computes the
N-factorial. (However, there are more efficient, non-recursive
routines for the computation of N-factorial.):

Any variable referred to in the body of a function definition which is not an argument or a
local variable of that multiple line DEF function keeps its value in the calling program.
Multiple line DEF functions can be nested; one multiple line function definition can refer
to itself or another multiple line function definition. The same rules apply here as for the
nesting of program loops. There must be no transfer from within the definition to outside
its boundaries or from outside the definition into it. The line numbers used by the
definition must not be referred to elsewhere in the program. If ON ERROR GOTO is
used inside the function it will be disabled as the function exits to the calling
program.

If temporary variables are needed within a function definition they should be declared
local to the function in order to protect the global variables from being disturbed. This
eliminates the need for variable names that are free for usage.

The LOCAL modifier makes possible the local variable name option. Vectors cannot be
declared LOCAL and string variables must have explicit length.

37

FNEND

Format

Function

Use

Note

DIGITS

Format

Function

Action

Note

38

The next example shows a string function:

FNEND

Terminates a multiple line function.

See the instruction DEF FN.

This statement must not be executed. The function shall exit by a
RETURN. statement before FNEND is encountered.

DIGITS number of digits

Gives the number of digits to be printed.

A number printed by means of PRI NT is rounded off to the nearest
value for the last digit. Values too great to be displayed in this form
are printed in exponent form with the specified number of
digits..

The DIGITS instruction does not affect the accuracy of calcula­
tion.

Default: 6/1 6 digits depending on preci sian.

DIM

Format

Function

Use

DIM variablelnl], variable(n,...), ...]
DIM string variable[(n, ...)] [=Iength]
Where the value following the "=" denotes the string length and
<n,...> is the greatest index value. The minimum index equals the
lower limit unless stated otherwise. The lower limit is either 0 or 1
depending on the most recent OPTION BASE statement. The
default value is O.

Gives the maximum number of elements and allocates space for
strings and vectors.

Any number of indices is allowed both for scalar and vector
variables. All values used in DIM statements are rounded off to
integers. If a subscripted value is used without a DIM statement it
is assumed to be dimensioned as 10 for each index. All variables
have a zero value until assigned a value. If a string variable has not
been dimensioned, its max length is automatically set to the current
length the first time that the string is assigned a non-null value
« > "").If less than 80 characters are used a standard length of 80
characters is assigned.

Examples A string vector with the strings A$(lower limit)
-A$(N). Each strinq has a length of 80.

As above but the maximum length of each string
is 14 characters.

Advanced Programming:

The lower limit (0 or 1) indicated above can be overridden individually for each index.
This is done by replacing the single maximum index for each dimension by two values
separated by a colon.

Example

The example will yield a vector with five elements A(-2), A(-1), A(O), A(1), A(2) which
are totally independent of the current lower limit.
A dimensioned variable can be redimensioned only if the new DIM statement defines a
smaller dimension.

39

DOUBLE

Format

Function

Use

Note

END

Format

Function

Use

Note

EXTEND

Format

Function

Note

Example

FLOAT

Format

Function

Use

Note

Example

40

DOUBLE

All variables and expressions with floating point numbers are
changed to double precision (16 digits).

The DOUBLE declaration should be placed before the variables are
used in the program and cannot be changed when the program has
been started by RUN. This change can be made when a program
line has been edited or the CLEAR command has been used. The
default precision is SINGLE.

SINGLE and DOUBLE cannot be mixed in the same program.

END

Terminates the program.

The logically last instruction of a program. END closes all files.

The variables keep their values after END.
END must be the first statement on the line.

EXTEND

Permits long variable names.

In the EXTEND mode, BASIC requires spaces to delimit names
and functions, unless the adjoining character is a line number or an
arithmetic operator (- +*/). If key words are written without
spaces they may be mistaken for long variable names. The variable
names can have unlimited length and all the characters are
significant.

FLOAT

All variables are interpreted as floating point. Integers must have a
% suffix.

See the INTEGER instruction.

FLOAT is the default value. FLOAT and INTEGER cannot be
mixed in the same program.

FOR

Format

Function

Use

FOR variable-expression TO expression [STEP interval]

Where the variable in the FOR - TO statement is set initially to the
value of the first expression. The statements following the FOR
statement are then executed. When the NEXT instruction is
encountered the variable is incremented by the value indicated as
the STEP interval. See NEXT.

If the variable value exceeds the value of the TO expression, the
next instruction executed will be the one following the NEXT
statement.

The expressions within the FOR loop are evaluated once, when the
loop is initially entered. The test for completion of the loop is made
prior to each execution of the loop.

The FOR and NEXT instructions are used together to create a
program loop. A loop means that one or more instructions are
executed a number of times.

A program loop consists of four parts:

1. Initialization to set up the condition which must exist for the first
execution of the loop.

2. The body of the loop; i.e.the instructions for the operations to be
repeated.

3. The modification which alters a value and makes each execution
of the loop different from the others.

4. The termination condition; an exit test which, when satisfied,
completes the loop. Execution continues with the program state­
ment following the loop.

If the STEP interval is omitted from the FOR statement, +1 is the
assumed value. Since +1 is a common STEP interval, that part of
the statement is frequently omitted.

The variable can be modified within the loop. When control falls
through the loop, the variable will have its new value, i.e. the last
value used plus the interval.

FOR loops can be nested but not overlapped. Nesting is a
programming technique in which one or more loops are completely
within another loop.

It is possible to leave a FOR - NEXT loop without the variable
reaching the termination value. A conditional or unconditional
branch can be used to exit from a loop. When reentering a loop
which was left earlier without being completed, be careful to
ensure that the correct termination and interval values are
assigned.

41

Example 1 The following is a demonstration of a FOR - NEXT loop. The loop is
executed 20 times. Before the exit from the loop A=20 is displayed.
The FOR statement contains no STEP interval so the interval is
assumed to be +1.

The loop consists of the lines 10, 20, and 30. When A% has the
value 20 and line 30 is executed, A% is incremented by 1 and line
10 is executed. Since A% is greater than the upper limit, line 10 will
cause control to be passed to line 40 which causes A=21 to be
displayed.

Example 2 Acceptable nesting Unacceptable nesting

Note

NEXT

Format

Function

Use

GET

Format

Function

Note

42

The use of an integer variable in a FOR loop is recommended, since
it results in a faster loop execution.

NEXT variable
Where <variable> is the variable specified in the FOR statement.
The FOR and NEXT statements are the delimiters of the loop.
When the NEXT statement is executed, the variable is incre­
mented by the interval and the program determines if the variable
value exceeds the maximum value given in the FOR statement.
When the value of the variable is greater than the upper limit,
control falls through the loop to the statement following the NEXT
statement.

NEXT terminates a program loop, which begins with a FOR
statement. When NEXT is encountered the variable will be
incremented by the interval.

See FOR.

GET string variable

Reads one character from the keyboard into a string variable.

If the keyboard buffer is empty, the BASIC interpreter will wait until
a key is pressed. Any character can be read.

GET£

Format

Function

Use

GOSUB

Format

Function

Use

Example

Note

GET £ file number, string variable [COUNT number of charac­
ters]

< File number> is the file number defined by the OPEN instruc­
tion.
< String variable> is the string which receives the characterts),
COUNT < number of characters> denotes the number of charac­
ters to be read from the file.

Reads one or more characters from the specified file into the
specified string variable.

See chapter 3.5.

GOSUB line number
< Line number> is the first line number of the called subroutine.
The program execution will go on from that line number.

Unconditional jump to a subroutine.

A subroutine is a sequence of program instructions, which perform
a task that is repeated several times in a program. Subroutines and
functions enable such a sequence of instructions to be called from
several program lines.

A subroutine is a part of the program which can be called by means
of a GOSUB instruction. When the subroutine has completed its
task, a RETURN instruction- is used to exit the subroutine and
continue the program execution with the statement following the
callinq GOSUB statement.

The only instructions that may be used to exit a subroutine are
GOSUB or RETURN.

43

GOTO

Format

Function

Use

Example

Note

IF - THEN - ELSE

Format

Function

Use

44

GOTO line number

Where the < line number> is usually not the next sequential line
in the program.

Unconditional jump to the given line number.

The GOTO instruction is used to accomplish an unconditional jump
to another line than the next sequential line in the program. The
GOTO instruction can be used to jump backward as well as
forward in a program.

When written as part of a multiple statement line, GOTO should
always be the last statement on the line. Any statement following
the GOTO statement on the same line will never be executed.

GOTO can be used in direct mode instead of CON if the execution
is to be resumed at a certain line.

IF condition THEN statement[s]/Iine number [ELSE state­
ment[s]/Iine number]
Where the condition specified is tested. If the condition is met (the
expression is logically true), control is transferred to the line
number given after THEN or the statement given after THEN is
executed. If the condition is not met (the expression is logically
false), the program execution continues at the program line
following the IF statement.

Conditional control of the order of execution of the program
lines.

THEN may be followed by either a line number or one or more
BASIC statements. If BASIC statements are given and the
condition is met, these statements will be executed before the
program continues with the line following the IF statement. The
condition applies to all statements that follow on the same line as
the IF statement.

ELSE is followed either by a line number which is used as a jump
address or one or more statements which are executed before the
line following the IF statement. If the condition is met, the
instructions between THEN and ELSE will be carried out.
When relational expressions are evaluated, the arithmetic opera-
tions take precedence in their usual order. The relational operators
have equal weight and are evaluated after the arthmetic operators
but before the logical operators.

Example

INPUT

Format

Function

Use

The Relational Operators

= Equal
< > Not Equal
< Less Than
> Greater Than
<= Less Than or Equal
>= Greater Than or Equal

A relational expression has a value of -1 if it is evaluated to be true
and zero if it is evaluated to be false.

Example: 5+6*5> 15*2 is true

The condition in line 200 applies both to the PRINT statement and
the assignment statement.

INPUT [£file number/"prompt text"] variable [,variable, ...]

Where <file number> is the number assigned by the OPEN
statement.

< Variable> may be the name of an arithmetic variable, an element
of a numeric vector, a string variable or an element of a string
vector.

If no £ <file number> is given, the system will assume that the
data input comes from the keyboard. The data is read from the file
or device assigned to the specified file number.

< "Prompt text" > is a character string delimited by quotes.
<"Prompt text"> can only be used when the variable is to be
entered from the keyboard.

Fetches data for the current program.

During program execution, the user can type data when the
program asks for it. INPUT causes the computer to wait for an
answer. If no prompt text is given, a question mark is displayed on
the screen.

It is often convenient to display a prompt text to remind the user of
the kind of input data required. See Example 1 below. No question
mark is written after the prompt text.

45

Examples

INPUT LINE

Format

Function

Use

Examples

INTEGER

Format

Function

46

Example 1

is equivalent to

Example 2

Data will be read from file 3 and placed in the string C$.

INPUT LINE [£file number,]string variable

< File number> is the number specified in the OPEN instruction
and stands for an external device or file as a logical unit.

Accepts a line of characters.

The program accepts a line of characters from the specified file. All
characters belonging to the line are read; spaces, punctuation
characters, and quotes. The line termination characters carriage
return (CR) and line feed (LF) are read, as well.

No text can be output by the INPUT LINE statement; this facility is
only available in the INPUT statement. Use the PRINT instruction
to print out the prompt text.

Example 1

Example 2

In Example 2 CR and LF are removed from the string A$.

INTEGER

At data input and program listing, all variables are supposed to be
integer variables, unless otherwise declared.

KILL

LET

Use

Note

Example

Format

Function

Example

Format

Function

Example

When a program is being typed and the INTEGER instruction has
been given, the programmer need not type the integer suffix %.On
the other hand, all floating point variables should be marked by a
decimal point suffix (.). The strings should. have the usual $
suffix.

A program which is stored in text format and contains floating point
variables can be run as an INTEGER program if the command
INTEGER is given prior to loading the program. Save the program
and you have converted it into an integer program.

The default format is FLOAT.
INTEGER and FLOAT cannot be mixed in the same program.

proqrarn.

KILL "[device:]file name[.extension]"

Where the file with the name <file name .extension » is not
delete-protected. The user cannot erase a delete-protected file.

The file in question is erased from the external storage.

When the file XYZ.TXT on the disk is no longer needed, the file can ABCB02

be erased from the disk by means of the following statement:

[LET] variable=expression

The word LET is optional.

Assigns a value to a variable.

47

NAME

Format

Function

Use

Examples

NO TRACE

Format

Function

Example

48

NAME "[device:]file name1.extension" AS
"file name 2.extension"

Changes the name of a file.

The file with the name <file narne l.extension-, will be given the
new name <file namez.extension ».
No file name extension is assumed. The file name extension must
be specified in both cases, if the file is stored under a name which
includes an extension and if an extension should be included in the
new name.

Example 1

Example 2
The following statement:

changes the name of the file ABC.BAC on the disk in ORO:. The
instruction NAME - AS cannot transfer a file from one device to
another.

Example 3

NO TRACE

Terminates the printout of line numbers, which was started by the
instruction TRACE.

The TRACE function is disabled before line 40 and after line
90.

NO EXTEND

Format

Function

Use

ON ERROR GOTO

Format

Function

Use

Note

ON - GOSUB

Format

Function

Example

NO EXTEND

Disables EXTEND mode.

In NO EXTEND mode variable names may be composed of one
letter and one optional digit. The default mode is NO EXTEND.

ON ERROR GOTO [line number]

Branches to the indicated line number on an error.

See chapter 2.6

If < line number> is omitted, no jump will be executed at an error.
RESUME is used to return from the error handler.

ON expression GOSUB line number[,line number,...]

Where control is transferred to a subroutine beginning at one of the
line numbers depending on the integer value of the expression.
Execution is resumed at the line following the statement. If the
value of the expression addresses a line number outside the range
of the list, an error message will be displayed.

Conditional jump to one of several subroutines or to one of several
entry points in a subroutine.

Control is transferred to line

1300
200

1300
400

1300

for X=
1
2
3
4
5

49

ON - GOTO

Format

Function

Example

ON - RESTORE

Format

Function

Use

Example

50

ON expression GOTO line number[,line number,...]

Where the integer value of the < expression> is used as a pointer
in the list of line numbers.
Jumps to one of several line numbers, depending on the value of
the expression.

Control is transferred to:
1. line number 1000 if 0.5 <=A/B < 1.5
2. line number 1500 if 1.5<=A/B<~.5
3. line number 1700 if 2.5<=A/B<3.5
4. error if AlB < 0.5
5. error if AlB >=3.5

ON expression RESTORE line number[,line number, ...]

Where the integer value of the <expression> sets the DATA
pointer to the specified line number.

Sets the DATA pointer by the same' selection routine as ON ­
GOTO.

The ON - RESTORE statement can thus be used to set the DATA
pointer to a specific position in the data buffer.

ON - RESUME

Format

Function

Use

Example

Note

OPEN

Format

Function

Use

ON expression RESUME line number[,line number, ...]

Where the integer value of the < expression> is used as a pointer
in the list of line numbers.

Jumps to one of several line numbers, depending on the value of
the expression. Error handling is resumed.

The ON- RESUME instruction is used to accomplish a conditional
return from an error handling routine.

ON - RESUME is used with ON ERROR GOTO. See chapter
2.6.

OPEN "[device:][file name[.extension]]" AS FILE file number

Where <device> may be for instance
DRO: Disk drive 0
DR1: Disk drive 1
PR: Printer
CAS: Cassette recorder
V24: Serial channel
CON: Keyboard and screen

The expression following AS FILE should be an integer value
between 0 and 255.

Opens a file with a file number internal to the BAStC program.

The optional < file name.extension > is not used when opening the
printer.

OPEN is used to open files which already exist.

Data files or devices have both external names, by which they are
identified within the system, and file numbers, which refer to the
files within the program. The OPEN statement associates the
external file name with the internal file number.
Writing and reading from a file is done by means of instructions
such as INPUT, INPUT LINE, PRINT, GET, and PUT. .~...

ABC 802, 806

Note When data is to be read from an existing file, the file should be ABC 802

opened by the OPEN instruction. Up to seven files may be open at
the same time.

51

Examples

OPTION BASE

Format

Function

Note

POSIT

Format

Function

Use

Examples

52

Example 1

Example 2

The values of the variables A, S, and C7$ are read from the file,
which was opened as file number 2. The values are read directly
after the values last read. If reading is to be done from the beginning
of the file, it must be opened again with the OPEN instruction.

OPTION BASE n

Where n = 0 or 1.

Denotes the lowest vector index value.

The default value is O. The OPTION BASE declaration must be
placed before any DIM sinstructions or use of vectors.

POSIT £file number, position

Positions the file pointer.

POSIT is used to move the file pointer the specified number of
positions from the beginning of the file (the first position). The first
position = O. POSIT can be used together with all file handling
instructions. POSIT(file number) yields the current position of the
file pointer. See chapter 3.5.

Example 1

The file pointer is moved to position 5, i.e. it points to the sixth
character of file number 1.

Example 2

A=the position of the file pointer. In Example 1 above, the file
pointer is in position 5, i.e. A=5.

PREPARE

Format

Function

Use

Example

PRINT

Format

Function

Use

PREPARE "[device:][file name.extension]" AS FILE file number

Creates and opens a new file with an internal file number within the
current program.

PREPARE is used just like OPEN but will set up a new file. OPEN
is used for existing files.

The values of the variables A, B, and C$ are written on file 2
(DATA.TXT)

PRINT [£file number,] "data"/variable [,"data"/variable, ...]

Where £<file number> corresponds to the file number in the
OPEN and PREPARE instructions. If no file number is given, the
data will be displayed on the screen. A semicolon (;) can be used
instead of PRINT.

If an element in the PRI NT list is not a simple variable or a constant,
the expression is evaluated before the data is printed. The
instruction can also contain character strings within quotes.

Prints data on an ASCII format.

The positions on a line are numbered from 0 to 39/79. The line is
subdivided into columns, fixed tabulator positions, starting in
positions 0, 15,30,45, 60, and 75. A comma (,)after a variable or a
string in the PRI NT list means that the next element of the list will
be printed in the next column. Two commas together in a PRINT
statement cause a column to be skipped.

A semicolon (;) following a variable or a string.in the list causes the
next element in the list to be printed in the next position i.e.
immediately after the previous character. If the list is terminated by
a semicolon (;) no line feed will follow the PRINT statement.

When a line is filled, the printout continues on the next line. The
TAB and CUR functions are used to cause data to be printed in
certain positions.

A PRINT statement without any argument causes carriage return
and line feed to be printed, i.e. one blank line.

53

ABCB02

$$

**$

56

A double dollar character causes a dollar character to be printed to
the immediate left of the formatted number. The $$ specify two
more digit positions, one of which is the dollar character. The
exponential format cannot be used with $$. Negative numbers
cannot be used unless the minus sign is trailing.

The combination * *$ at the beginning of a format string combines
the effects of ** and $$. Leading spaces will be filled with
asterisks and a dollar character will be printed before the number.
* *$ specify three more digit positions, one of which is the dollar
character.

A comma to the left of the decimal point in a formatting string
causes a space to be printed to the left of every third digit to the left
of the decimal point. A comma at the end of the format string is
printed as part of the string. This comma serves as the delimiter
between two numbers. A comma specifies one digit position. The
comma has no effect if used with the exponential (tm) format.

Fourup-arrows may be placed after the digitposition characters to
specify exponentialformat. The four up-arrows specify theposition
of E+xx. Any decimal point position may be specified; the exponent
will be adjusted. Unless a leading + or leading or trailing + or - are
specified, one digit position at the beginning of the number will be
used to print the minus sign.

An underscore in the format string causes the next character to be
printed out as a literal character.

%

PUT

Format

Function

Use

RANDOMIZE

Format

Function

Use

CAUTION

READ

Format

Function

Use

The literal character itself may be an underscore if the format
string contains' "__".

If the number to be printed is larger than the specified numeric field,
a percent character is printed before the number. A percent
character is printed also if rounding causes the number to exceed
the field.

PUT £file number, string variable

Where £ < file number> is a file number defined by anyone of the
OPEN and PREPARE instructions. <String variable> may be a
string variable or a string expression.

Writes a string variable on a binary format.

See chapter 3.5.

RANDOMIZE

Sets a random starting value for the RND function (the random
number generator).

The RANDOMIZE instruction should appear before the first
random number generator call RN D in the program. RAN DOMIZE
makes the random number generator produce different random
numbers each time the program is run by initializing RND to start at
a new value when RANDOMIZE is executed.

Should only be used once in a program.

READ variable[, variable, ...]

Used together with DATA statements as a way of assigning values
to variables.

The READ instruction causes the variables listed to be assigned
sequential values from the DATA statements. Before the program
is run, BASIC creates a data block from all the DATA statements in
the order of appearance. Each time a READ instruction is encoun­
tered in the program, the data block will supply the next value.

The READ and DATA statements are used together.

57

Examples

Note

REM

Format

Function

Use

Example

RESTORE

Format

Function

58

If it is necessary to use the same data several times in a program,
the RESTORE or ON RESTORE instructions will set the data
pointer within the data block. See RESTORE and ON
RESTORE.
Example 1

is run, the variables will be assigned the

Example 2

If a comma, quote or apostrophe is to be part of a string, it must be
delimited by quotes.

REM text
I text

Where the text can contain any printing characters on the
keyboard. The BASIC interpreter ignores anything following the
instruction REM or I on a line.

Inserts a comment in a program.

Notes and messages should be inserted in a program to ensure
easy referencing by anyone using the program.

RESTORE [line number]

Enables renewed use of the contents of DATA statements.

RESUME

Format

Function

Use

Example

RETURN

Format

Function

Use

SINGLE

Format

Function

Use

Note

Example 1

Sets the data pointer to the beginning of the first DATA statement
in the progra m.

Example 2

Sets the data pointer to the first data of the OATA statement with
line number 100.

RESUME [line number]

Returns from error handler.

When the error handling routine has been executed, you can
resume execution of the program by means of a RESUME
statement placed at the end of the error handling routine.

If execution is to be restarted at some other line in the program, the
line number should be indicated in the RESUME statement.

Line 2000 returns control to the line that caused the error. Line
2010 returns to line 100.

RETURN [variable]

Returns from a subroutine or multiple line function.

RETURN causes a return from a subroutine to the statement
immediately following the call.

RETURN < variable> causes a return from a multiple line function
with the function value.

See GOSUB and OEF FN.

SINGLE

Changes all variables and expressions, which are floating point
numbers, to single precision (7 digits).

The SINGLE declaration must be placed before the variables are
used and cannot be changed once the program has been started by
RUN. If a line is edited or the command CLEAR is given, SINGLE
may be changed to DOUBLE or vice versa. The default is
SINGLE.

SINGLE and DOUBLE cannot be mixed in the same program.

59

STOP

Format

Function

Use

Note

TRACE

Format

Function

Use

Example

WEND

Format

Function

Use

60

STOP

Stops program execution.

The STOP instruction stops the execution of the program. The
variables are not reset and the open files remain open. The STOP
instruction is recommended for debugging. Several STOP instruc­
tions may be present in one program. A STOP instruction yields the
following display:

The program execution can be continued by one of the commands
CON or GOTO.

TRACE [£file number]

Prints the line numbers of the program lines executed.

When debugging a program to trace the execution of the
program.

The following text will be printed on the printer:

120 125 130 135 140 145
12.345 123 123 12 24.69

WEND

WEND terminates a loop that begins with WHILE.

See WHILE.

WHILE

Format

Function

Use

Example

WH ILE expression

Specifies the condition for the branching out of a program loop.

In program loops where the values that determine the loop
termination are modified when the loop is executed. Compare FOR
loops, where the termination condition will be reached automati­
cally, no matter what the loop contains.

It can often be desirable to execute the loop until a certain value is
reached.

Before the first execution of the loop and at the beginning of each
new execution the condition X< 10 is tested. The iteration will
continue for as long as this is true.

61

ABC 802, 806

10 Functions

10.1 Mathematical Functions

Most programmers often meet with some relatively common mathematical operations.
The results of these operations are likely to be found in mathematical tables; sine,
cosine, log, square root, etc. Since the computer can perform such operations with
speed and accuracy, some of the operations have been built into BASIC II. These
intrinsic functions can be called whenever such a value is needed e.g.:

SIN{23*PI/180)
LOG(144)

The mathematical functions are detailed in the following table:

ABS{X)

ATN{X)

COS{X)

EXP{X)

FIX{X)

HEX${X)

INT{X)

LOG{X)

LOG10{X)

MOD{X,Y)

OCT${X)

PI

RND{X)

SGN{X)

SIN{X)

SQR{X)

TAN (X)

62

The absolute value of X

The arctangent of X

The cosine of X (X in radians)

e**X where e=2.71828 (single precision)

Truncated value of X;SGN{X)*INT{ABS{X))

Converts a decimal number into a hexadectrnal string

The greatest integer <=X

The natural logarithm of X

The common logarithm of X

The remainder of the integer division XIV

Converts a decimal number into an octal string

Constant; value 3.141 59 (single precision)

Random number between 0 and 0.9999999. RND will generate
the same sequence of random numbers every time the program is
run, unless a RANDOMIZE instruction is placed before RND in the
program.

o if X=O, -1 if X<O, +1 if X>O.

The sine of X (X in radians)

The square root of X

The tangent of X (X in radians)

ABS

ATN

cos

EXP

FIX

Format

Function

Example

Format

Function

Example

Format

Function

Example

Format

Function

Example

Format

Function

Example

Note

ABS(argument)

The absolute value of the argument.

The result is Y=3.1

ATN(argument)

The arctangent of the argument.

The result is Y=1

COS(argument)

The cosine of the argument (the argument in radians).

The result is Y=1

EXP(argument)

Gives e**argument where e=2.71828 (single precision).

The result is Y=2.71828

FIX(argument)

Gives the truncated value of the argument (X), Le.

SGN(X)*INT(ABS(X)).

The result is Y=O

Compare with INT(X).

63

HEX$

INT

LOG

Format

Function

Example

Format

Function

Use

Examples

Format

Function

Example

64

HEX$(argument)

Converts a decimal number into a' hexadecimal string.

The result is Y$="FF"

INT(argument)

The value of the greatest integer less than or equal to the argument.
Compare with FIX.

INT can be used to round off a number by means of INT(X+.5). The
INT function can be used to round off a number to any given
number of decimals using the formula:

INT(X*1 0**0%+.5)/1 0* *0%
where 0% is the required number of decimals.

If the number is negative, INT will return the largest integer less
than the argument.

The result is Y=34

The result is Y=35

The result is Y=-24

LOG(argument)

The natural logarithm of the argument.

The result is Y=.693147

LOG10

Format

Function

Example

MOD

Format

Function

Example

OCT$

Format

Function

Example

PI

Format

Function

Example

RND
Format

Function

Examples

LOG10(argument)

The common logarithm of the argument.

The result is Y=1

MOD(argument 1, argument 2)

The remainder of an integer division of the arguments.

The result is Y=2

OCT$(argument)

Converts a decimal number into an octal string.

The result is Y$="73"

PI

Constant with the value 3.141 59 (single precision)

The result is Y=6.28318

RND

Returns a random number between 0 and 0.9999999. RND will
generate the same random number sequence every time the
proqrarn is run, unless a RANDOMIZE instruction is placed before
RND in the program.

Example 1

Y will be assigned a random number between A and B.

65

SGN

SIN

SQR

TAN

Format

Function

Examples

Format

Function

Example

Format

Function

Example

Format

Function

Example

66

5GN(argument)

The function 5GN(X) has the value +1 if X is positive, 0 if X is 0 and
-1 if X is negative.

Example 1

The result is Y=1

Example ·2

Example 3

The result is Y=O

51N(argument)

The sine of the argument (the argument in radians).

The result is Y=1

5QR(argument)

The square root of the argument.

The result is Y=11

TAN(argument)

The tangent of the argument (the argument in radians).

The result is Y=1

ADDS

10.2 String Functions

Besides the intrinsic mathematical functions (e.g. SIN and LOG) various functions
operating on character strings are provided. These functions allow the program to
perform arithmetic operations on numeric strings, concatenate two strings, access part
of a strinq.deterrnine the number of characters in a string, generate the character string
which corresponds to a given number or vice versa.

The following string functions are provided:

ADD$(A$,B$,[-]P%) The arithmetic sum of the strings A$ and B$ with P%
decimals, or if P% is preceded by a unary minus with P% digits.

ASCII(A$) The ASCII value of the first character in A$

CHR$(X%) The character with the ASCII value X%

COMP%(A$,B$) True or false, numeric comparison

DIV$(A$,B$,[-]P%) The quotient A$/B$ with P% decimals or digits (-P%)

INSTR(I%,A$,B$) The starting position of the substring B$ in A$

LEFT$(A$,I%) The 1% characters furthest to the left in A$

LEN(A$) The number of characters in A$

MID$(A$,P%,K%) Gives a substring. Assigns a value to a substring

MUL$(A$,B$,[-]P%) The numeric product A$*B$ with P% decimals or digits(­
P%).

NUM$(V) Numeric string corresponding to the value V

RIGHT$(A$,I%) The characters furthest to the right in A$ starting at character
position 1%

SPACE$(N%) A string consisting of N% spaces

STRING$(I%,C%) A string consisting of 1% characters with the ASCII value
C%

SUB$(A$,B$,[-]P%) The numeric difference A$ - B$ with P% decimals or digits
(-P%).

VAL(A$) The numeric value of A$

A$+B$ Concatenates two strings

Format

Function

Example

ADD$(A$,B$,[-] P%)

Adds the values of the strings A$ and B$ with P%decimals, or if P%
is proceded by a unary minus with P% digits.

67

Note

ASCII

Format

Function

Example

CHR$

Format

Function

Example

COMP%

Format

Function

Example

DIV$
Format

Function

Example

Note

68

ASCII arithmetic calculations can operate on up to 125 charact­
ers.

ASCII(A$)

Yields an integer equal to the ASCII value of the first character of
A$.

The result is Ao/o=84

CH R$(argument[,argument,...])

A character string which corresponds to the ASCII values of the
arguments.

The result is an A printed on the screen.

COMP%(A$,B$)

Yields the value -1, 0 or 1 as a result of a numeric comparison of
two numeric strings. The function value is -1 if A$< B$, 0 if A$=B$
and 1 if A$> B$.

DIV$(A$,B$,[-]P%)

The quotient A$/B$ rounded off to P% decimals, or if P% is
preceded by a unary minus with P% digits.

ASCII arithmetic calculations .can operate on up to 125 charac­
ters.

INSTR
Format

Function

Example

LEFT

Format

Function

Example

LEN

Format

Function

Example

MID

Format

Function

Example

INSTR(N%,A$,B$)

Searches for the string B$ in A$ starting at position N%. If B$ is not
present in the part of A$ which is searched, the function value is O.
If B$ is found, the function value equals the position in A$ where
B$ begins. The position refers to the beginning of the string. The
first character occupies position 1.

LEFT($)(A$,I%)

The first 1% characters of the string A$.

LEN(A$)

The number of characters of the string A$, Le. the string length
(including spaces).

MID[$](A$,P%,K%)

Assigns new values to the characters no.P% to Po/o+K%-1 in A$, Le.
exchanges the characters indicated in the string.

69

MID

Format

Function

Example

MUL$

Format

Function

Example

NUM$

Format

Function

Example

RIGHT

Format

Function

Example

70

1\11 D[$] (A$,P%,K%)

Gives the substring of A$, which starts at position P% and has a
length of K% characters, Le. the characters from no.P% to
Po/o+K%-1.

MUL$(A$,B$,[-]P%)

The product A$*B$ with P% decimals, or if P% is preceded by a
unary minus with P% digits.

NUM$(argument)

The numeric string corresponding to the argument. The string is
printed as follows: positive number - the sign position is not indi­
cated; negative number - a minus sign is printed.

RIGHT[$](A$,N%)

The last characters of A$ starting at position N%.

SPACES

Format

Function

Example'

STRINGS

Format

Function

Example

SUBS

Format

Function

Example

Note

VAL

Format

Function

Example

SPACE$(N%)

Yields a string consisting of N% spaces.

spaces.

STRING$O%,K%)

Yields a string of 1% ASCII characters. The string has the length 1%
and consists of equal characters with ASCII value K%.

SUB$(A$,B$,[-JP%)

The arithmetic difference A$-B$ of the numeric strings A$ and 8$
with P% decimals, or if P% is preceded by a unary minus with
P% digits.

ASCII arithmetic calculations can operate on up to 125 charac­
ters.

VAL(A$)

Calculates the numeric value of the numeric string A$. A numeric
string may contain digits, +, -, ., and E. The result is a floating point
number.

71

A$+B$

Format

Function

Example

A$+B$

Concatenates two strings.

The result is A$="NAME and ADRESS"

10.3 Other Functions

CALL(A%,[D%])

CUR(M%,N%)

CVT%$(X%)
CVT$%(X$)

CVTF$(X)
CVT$F(X$)

ERRCODE

FN

INP(I%)

OUT

PEEK(I%)

PEEK2(1%)

POKE

SWAP%(N%)

SYS(I%)

TAB(I%)

TIME$

VAROOT(X)

VARPTR(X)

72

Calls a machine language routine

Positions the cursor on line M%,position N%

Converts the variable from an integer into a string and vice
versa

Converts the variable from a floating point number into a string
and vice versa

Returns the value of the most recent error code

User-defined function

Yields the data value from input port number 1%

Transfers data to an output port

Returns the contents of storage address 1%

PEEK(I%)+256*PEEK(lO/o+1 %)

Writes data at the specified storage address

The first and second byte of N% change places

Returns system status information

Tabulates to the I%th position on the line

Returns the time and date

Returns the address of the variable X

Returns the address of the value of X

CALL

CUR

CVT

Format

Function

CAUTION

Format

Function

Use

Example

Format

Function

Use

Examples

CALL(A%[,D%])

Calls an ASSEMBLY program starting at adress A% (decimal).
Yields a function value from the HL register of the zao processor
when returning to BASIC. If D% is specified, it is placed in the DE
register of the zao processor at the call.

This function is machine-oriented, and should only be used for
advanced programming. CALL can destroy a program execution if
used erroneously.

CUR(L%,N%)

where L% (line) is in the interval 0-23 and N% (position) in the
interval 0-39/79.

Moves the cursor to line L%, position N%.

When printing or with the graphics

CVT%$(integer variable)
CVT$%(string variable)

CVTF$(floating point variable)
CVT$F(string variable)

Stores numbers as strings or regains the numbers.

The CVT function is used to save disk space. Numeric values that
are stored on disk require as much space as when they are printed
by means of PRINT. Integers require up to six characters, floating
point numbers in single precision (81NGLE) twelve characters, and
floating point numbers in double precision (DOUBLE) require up to
twenty-two characters. Each character is stored in one byte. By
means of the CVT (from convert) function these data can be stored
in 2, 4, and a bytes, respectively.

The integer 1% is stored on the file NUM.DAT in two bytes. To
regain the number, proceed as follows:

73

ABCB06

Note

ERRCODE

Format

Function

FN

Format

Function

Note

INP

Format

Function

CAUTION

74

The example below shows how to store a floating point number.
The number may have either single or double precision:

The next example shows how to regain the number stored in the
example above:

LEN(CVTF$(O)) is used to find out if the precision is SINGLE or
DOUBLE.

ERRCODE

Returns the value of the latest generated error code. If no error has
been indicated, the function value is O.

FNidentifier[%/$] [(parameter [,parameter, ...])]

where < identifier> is the name of the function.

Calls a user-defined function.

Compare with the instruction DEF FN.

INP(I%)

Returns a data value from the input port 1%.

This function is machine oriented, and should only be used for
advanced programming.

OUT

Format

Function

CAUTION

Note

PEEK

Format

Function

CAUTION

PEEK2

Format

Function

CAUTION

POKE
Format

Function

Use

CAUTION

OUT port,data [,port,data, ...]

where the port numbers and the data are given as decimal
numbers.

Addresses the out ports at data output.

This is a machine-oriented instruction intended for advanced pro­
gramming. This instruction and the instruction INP give the user
access to the I/O-functions and the I/O-bus of the ABC 800.

The I/O channel is selected by means of the OUT instruction. That
channel will remain accessible until a new selection is made by
means of OUT.

PEEK(I%)

Gives the contents of storage address 1%.

This function is intended for advanced programming.

PEEK2(BO%)

Reads the contents of two bytes in the following way:

Jo/o=PEEK(BO%)+256*PEEK(BOO/o+1 %)

This function is intended for advanced programming.

POKE address,data [,data, ...]

where the < address> is a decimal number. If more than one
< data> item is specified, the address will be incremented for each
new item.

Loads a value into a storage cell.

POKE is mainly used when BASIC cooperates with ASSEMBLER
language programs.

This function is intended for advanced programming. If used
erroneously, it may destroy the contents of the computer stor­
age.

75

SWAP%

Format

Function
CAUTION

SYS

Format

'SCB02, B06 Function

Example

TAB

Format

Function

Example

TIME$

Format

Function

Use

76

SWAP%(N%)

The first and the second bytes of N% change places.
This function is machine-oriented, and should only be used for
advanced programming.

SYS(I%)

System status information as follows:
SYS (2) Total storage space
SYS (3) Program size
SYS (4) Remaining storage space
SYS (5) Keyboard flag. Can be cleared by means of GET,

INPUT, or INPUT LINE.
SYS (6) Puts back the last input character into the keyboard

buffer.
SYS(11) Starting address of the program
SYS(12) Variable root

The result is the program size.

TAB(I%)

where 1% is in the interval 1 - 40/80.

Tabulates to the I%-th position on the line.

TIME$

Returns year-month-day hour.min.sec

The internal clock can be set by means of the following
program:

·if

....

!\\\\\:;i·;\'

......... :,

: i,:):;::::::(: :: .. :):::::::::,:::{'i/(:
:

".:.

...):t:

VAROOT

Format

Function

CAUTION

VARPTR

Format

Function

CAUTION

10.4

VAROOT (variable)

Gives the address of a table, which contains information about a
variable.

This function is intended for advanced programming.

VARPTR (variable)

Gives the address of the value of a variable.

This function is intended for advanced programming.

77

ABCB02

IBC802,B06 11 Graphics and Colours

11.1 General Information
ABC 800 C graphics correspond to the Teletext standards. In the graphic mode every
output character is interpreted as a graphic character formed by a combination of six
graphic points.

When text or graphics are displayed on the screen, the selection of colours etc. is
controlled by means of certain arguments in the PRINT statement. The statement
affects one line at a time. Each argument puts a control character on the screen.
Although these characters are invisible, they take up one position each. The control
characters can be covered by a background colour, if the control arguments are given in
the correct order.

The following colours are available:

Red (RED)
Green (GRN)
Yellow (VEL)
Blue (BLU)
Magenta (MAG)
Cyanide (eVA)
White (WHT)

The characthers available in the ABC 800 are listed below. The table gives the ASCII
value of each character and its meaning in the character mode and graphic mode. One
way of planning a graphical picture is to draw it on a copy of the graphics chart and feed
the program the appropriate data.

When you have finished the picture on a copy of the chart you can type the lines one by
one. Do not forget to allow space for the control characters, if you vary the control
arguments.

Note that the capital letters still remain the same in graphic mode. You can mix capital
letters and graphic characters just as you like.

In graphic mode there are 72 graphic lines (0-71), each one with 78 graphic positions
(0-77).

78

A C A C A C A C

32 Space 56 8 80 P 104 h

33 I 57 9 81 Q 105 i

34 " 58 : 82 R 106 j
35 et 59 ; 83 S 107 k
36 $ 60 < 84 T 108 l
37 0/0 61 = 85 U 109 m

38 & 62 > 86 V 110 n
39 63 ? 87 W 111 0

40 (64 @ 88 X 112 P
41) 65 A 89 Y 113 q
42 • 66 B 90 Z 114 r

43 + 67 C 91 [115 s
44 68 0 92 \ 116 t
45 - -69 E 93] 117 u

46 70 F 94 .-... 118 v
47 / 71 G 95 - 119 w

48 0 72 H 96 \ 120 x
49 1 73 I 97 a 121 y
50 2 74 J 98 b 122 z
51 3 75 K 99 c 123 {

52 4 76 L 100 d 124 I

53 5 77 M 101 e 125 }

54 6 '78 N ,102 f 126 -*
55 7 79 0 103 g 127 •

A C G A C G A C G A C G

32 Space D 56 8 ~ 80 P P 104 h [j
33 ! r 57 9 ~ 81 Q Q 105 I II
34 " [j 58 : ~ 82 R R 106 j [I
35 ,t U 59 ; ~ 83 S S 107 k ~
36 $ ~ 60 < ~ 84 T T 108 l ~
37 0/0 ~ 61 = 13 85 U U 109 m ~
38 & ~ 62 > ~ 86 V V 110 n ~
39 ~ 63 ? ~ 87 W W 111 0 ~

G @
. ,

40 (64 @ 88 X X 112 p -41) ~ 65 A A 89 Y y 113
.1

q ..
42 ~ 66 B B 90 Z Z 114 '.• r -43 ~ 67 C C 91 115 -+ s -44 ~ 68 0 0 92 1/2 1/2 116 t ~
45 - ~ 69 E E 93 .. • 117 u L
46 ~ 70 F F 94 t t 118 v I:
47 / ~ 71 G G 95 # # 119 w ~

48 0 ~ 72 H H 96 - Q 120 x ..
49 1 ~ 73 I I 97 Q ~ 121 y ~

50 2 ~ 74 J J 98 b c= 122 z ~
51 3 ~ 75 K K 99 c ~ 123 1/4 :I
52 4 iJ 76 L L 100 d ~ 124 II •
53 5 IJ 77 M M 101 e ~ 125 3/4 II
S4 6 ij 78 N N 102 f ~ 126 --7-*11
55 7 ~ 79 0 0 103 g ~ 127 • I

*) Not generated from key­
board

*) Not generated from key­
board

ASCII codes (A) for character mode (C) and graphic mode (G).

79

(X
) o

11
~t
8o
o

71
f-'

-'~
-'"

01
70

~~~~
t~,

6
9

:::
::

:::
"1:

;;;1
:;:;:

1
11

67
::::

::::::
6

6
:::

:::
::::

15
1:::

:1:
::::

2\
64

:::::
::::,

63
x-

:.:.
:

62
1;';

'1;
';"

31
61

:~:~
:~:~

:
60

:::
:::

:::

5!r
ID"

';o;
o·

41
58

:~:~
:~:~

:
57

:::
:.:

:::
:

56
~;'

;'I
';'

;'
51

-5
5

:::::
:::::

54
:::

:::
:::

'
53

'
l:::

:I;:
::::

'
61

52
::::

::::
:,1

51
:::

::
:::

:

U50
::::

::::
:

7
4

9
.:.

:.:
.:...

.
48

:::
::

:::
:

8
::

~i~i~
i~i~

44
-~;

~::
m·:

:;:
9

1
4

3
:::

:::
:::

:
4

2
'::

:::
:::

:
4J

l
~-
.-
.~
-.
-.

1
0

I4
0

~~~~
~t

39
:::

:.:
:::

:

11
1
i!t

I[~
i

351
°;O

;w·
···

1
21

3
4

~:~:
~:~:

~
33

:::
::

:::
:

32
I::

::.
~::

:::
13

13
1

:::::
:::::

3
0

:::
:::

:::
:

29
~';

';l
;';

"
14

\2
8

~:~:
:~:~

:
27

::::
::::

::1

1
51

~i
~f[

!i!

1
61

~~
lii!

1iii

1
7

!i
i!{f

1
8

~i~
f:!

!!i~
14

I:::
:

1
91

13
~:~:

~:::
::

12
...

.:t•
••

~
,

2
21

;
~!!!!l

!!!~!

V
ID

E
O

G
R

A
P

H
IC

S
C

H
A

R
T

P
R

O
G

R
A

M
.

tI
~%
~I
t~
~I
~~
~%
~!
~I
II
t!
~~
It
t~
II
II
I:

-r
es

er
ve

d
fo

r
g

ra
p

h
ic

co
n

tr
o

l
ch

ar
ac

te
rs

11 .2 Instructions

PRINT
ABC 806

ABC 802, 80E

Format

Function

PRINT [CUR(L,N)]argument [;argument;...]"text"

Used for printing text and graphics. The arguments control the
colour selection etc. A G at the beginning of the colour selection
argument (e.g.GRED) sets the line to the graphic mode so that all
characters within quotes are interpreted as being graphics (see the
ASCII table). If CUR(L,N) is specified, the picture is drawn from the
starting point at line L (0-23), position N (0-39/79).

The following arguments are available:

RED,GRN,YEL,BLU,
MAG,CYA,WHT Alphanumeric colour characters

GRED,GGRN,GYEL,GBLU,GMAG,
GCYA,GWTH Colour graphics

FLSH,STDY

NRML,DBLE

GCON,SEP

NWBG,BLBG

GHOL,GREL

HIDE

Flashing, steady

Normal, double height

Continuous, separated graphics

New background, black background

Hold, release graphics

Concealed text/graphics

Example

TXPOINT

Format

Function

The control arguments should be given in the following order:

PRINT < background colour argument> < argument for new
background colour> < text colour argument> "Text" < argument
for black background>

The result is a yellow "dog" on red background

TXPOINT X,Y[,1/0]

Turns on (1) or off (0) a graphical point in position X, Y, where
X=O-77 and Y=O-71.

81

ABC 802, 806

Example

Note
ABCB02

SET DOT
Format

Function

Note
ABCB02

CLR DOT

Format

Function

Note
ABCB02

DOT

Format

Function

Note

82

The lines 10 - 40 clear the screen and set it to the graphic mode
(green). The lines 50 - 70 draw a sine curve. Line 80 displays SINE
in red, flashing and with double height.

TXPOINT can be used as a function, too, to check if a point is
turned on (-1) or off (0). TXPOINT(X,Y).

The origin is in the lower, left-hand corner.

SET DOT L%,N%

Turns on the graphic point in position L%,N%,where Lo/o=O-71 and
No/o=2-79.

The origin is in the upper left-hand corner.

CLR DOT L%,N%

Turns off the graphic point in position L%,N%,where Lo/o=O-71 and
No/o=2-79.

The origin is in the upper, left-hand corner.

DOT(L%,N%)

Will be -1 (true) if the point is lit, else 0 (false). Lo/o=line (0-71),
No/o=position (2-79)

The origin is at the upper, left-hand corner.

12 High Resolution Graphics

12.1 General Information

High resolution graphics, which is an option, can be used with the ABC 800 Cas well as
with the ABC 800 M.

The screen is subdivided into 240 x 240 picture elements (pixels). Each pixel can be
addressed directly and is independent of the others. Two data bits correspond to each
pixel. The data bits are used to select one of four colours. High resolution graphics can
be shown together with the usual text or graphics display. The origin of the picture is in
the lower left-hand corner and the positions are numbered from 0 to 239.

ABC 802, 806

ABC806

239

y

I
I
I

I

o __
o x 239

The screen is adjusted to obtain the following relations between height and width:

Height (rnrn) Width (rnrn) W/H

ABC 810
ABC 815

185 + - 2
166 + - 2

225 + - 2
250 +- 2

1.2
1.5

83

ABCB06 12.2 Instructions

• The colour number is a digit from 0 to 3, where 0 indicates the background colour.
The meaning of the digit is listed in the colour selection table (chapter 12.4)

• The colour number is optional. If no colour number is given, the previous colour
number will be used.

• The starting position of the picture is selected by means of OUT 6,line number,
where line number is in the interval 0 - 255.

FGCTL

Format

Function

FGFILL
Format

Function

FGLINE
Format

Function

FGPAINT

Format

Function

Note

FGCTL colour selection command

Where the < colour selection command> is in accordance with
the colour selection table (chapter 12.4)

Selects the colour combination to be used. Each combination
consists of four of the colours available. Black and white are treated
as colours.

FGFILL x,y[,colour number]

Fills a rectangle from the previous position to the position indicated
by the coordinates (x,y).

FGLINE x,y[,colour number]

Draws a line from the previous position to the position indicated by
the coordinates (x.v),

FGPAINT x,y[,colour number]

Fills a closed area.

The function has certain limitations.

FGPAINT fills this area

FGPAINT x,y

84

This area will not be filled

FGPOINT

Format

Function

FGPOINT

Format

Function

FGPOINT <vl. colour number]

Will turn on a pixel in position x,v, x=O-239, V=O-239

FGPOINT (x.v)

Returns the colour number of pixel x,v.

12.3 Animation Mode

Two colours are used in the animation mode.
The following procedure can be used:

1. Pick out a colour selection group (72-127, 200-255). The colour selection groups
are used two and two together e.g. 72-73, 74-75 .

2. Draw a picture with colour number 1 or 2. Select the same colour as the one the
picture is drawn on. The picture cannot be seen.

3. Change the colour selection group so that the picture that was drawn in point 2
above becomes visible.

4. Draw a new picture according to point 2 above.

5. Change the colour selection group so that the picture that was drawn in point 2
disappears and the one drawn in point 4 will show.

6. Erase the picture drawn in point 2 and draw a new one.

7. Change the colour selection group so that the picture drawn in point 6 becomes
visible.

Repeat the procedures under points 6 and 7.

To protect the current picture until a new picture is to be shown use the following
method:

This instruction will cause a line to be drawn from the previous position to the point
100,100 with colour number 1. Colour number 2 is protected and will not be
changed.

85

ABCB06

ABCB06 12.4 Colour Selection Table

The colour selection command (according to the table below) is in the interval 0-255.
Values less than 128 mean that the ordinary text and graphics are displayed on top of
the high resolution graphics. From 128 upwards the high resolution graphics memory is
displayed. The values from 72 to 127 and 200 to 255 are used in animation mode (see
above).

B=blue, C=cyanide, Y=yellow, GR=green, M=magenta, R=red, BK=black, W=white

Selection Colour Selection
Command Command
Graphics + 0 2 3 Graphics
text only

0 BK BK BK BK 128
1 BK W W W 129
2 BK R GR Y 130
3 BK R GR B 131
4 BK R GR M 132
5 BK R GR C 133
6 BK R GR W 134
7 BK R Y B 135
8 BK R Y M 136
9 BK R Y C 137
10 BK R .Y W 138
11 BK R B M 139
12 BK R B C 140
13 BK R B W 141
14 BK R M C 142
15 BK R M W 143
16 BK R C W 144
17 BK GR Y B 145
18 BK GR Y M 146
19 BK GR Y C 147
20 BK GR Y W 148
21 BK GR B M 149
22 BK GR B C 150
23 BK GR B W 151
24 BK GR M C 152
25 BK GR M W 153
26 BK GR BK W 154
27 BK Y B M 155
28 BK Y B C 156
29 BK Y B W 157
30 BK Y M C 158
31 BK Y M W 159
32 BK Y C W 160
33 BK B M C 161

86

Selection Colour Selection
command 0 1 2 3 command
Graphics + Graphics
text only

34 BK B M W 162
35 BK B C W 163
36 BK M C W 164
37 R GR y B 165
38 R GR y M 166
39 R GR y C 167
40 R GR y W 168
41 R GR B M 169
42 R GR B C 170
43 R GR B W 171
44 R GR M C 172
45 R GR M W 173
46 R GR C W 174
47 R Y B M 175
48 R Y B C 176
49 R Y B W 177
50 R Y M C 178
51 R Y M W 179
52 R Y C W 180
53 R B M C 181
54 R B M W 182
55 R B C W 183
56 R M C W 184
57 GR y B M 185
58 GR y B C 186
59 GR y B W 187
60 GR y M C 188
61 GR y M W 189
62 GR y C W 190
63 GR B M C 191
64 GR B M W 192
65 GR B C W 193
66 GR M C W 194
67 y B M C 195
68 y B M W 196
69 y B C W 197
70 Y M C W 198
71 B M C W 199
72 BK R BK R 200
73 BK BK R R 201
74 BK GR BK GR 202
75 BK BK GR GR 203
76 BK Y BK Y 204
77 BK BK Y Y 205
78 BK B BK B 206
79 BK BK B B 207
80 BK M BK M 208
81 BK BK M M 209
82 BK C BK C 210
83 BK BK C C 211
84 BK W BK W 212

87

Selection Colour Selection
command 0 1 2 3 command
Graphics + Graphics
text only

85 BK BK W W 213
86 R GR R GR 214
87 R R GR GR 215
88 R Y R Y 216
89 R R Y Y 217
90 R B R B 218
91 R R B B 219
92 R M R M 220
93 R R M M 221
94 R C R C 222
95 R R C C 223
96 R W R W 224
97 R R W W 225
98 GR y GR y 226
99 GR GR y y 227
100 GR B GR B 228
101 GR GR B B 229
102 GR M GR M 230
103 GR GR M M 231
104 GR C GR C 232
105 GR GR C C 233
106 GR W GR W 234
107 GR GR W W 235
108 Y B Y B 236
109 Y Y B B 237
110 Y M Y M 238
111 Y Y M M 239
112 Y C y C 240
113 Y Y C C 241
114 Y W Y W 242
115 Y Y W W 243
116 B M B M 244
117 B B M M 245
118 B C B C 246
119 B B C C 247
120 B W B W 248
121 B B W W 249
122 M C M C 250
123 M M C C 251
124 M W M W 252
125 M M W W 253
126 C W C W 254
127 C C W W 255

88

12.5 Examples

Example 1

Example 2

89

ABCB06

ABC802,806 13 Function Keys

The computer has eight function keys that are situated between the alphanumeric and
the numeric keys. The function keys are labelled PF1, PF2, ..., PF8.

A programmer can assign various functions to the function keys,e.g.cursor movements
or a jump to a program module.

The function keys can produce 32 different ASCII values as shown in the following
table:

SHIFT CTRL SHIFT+CTRL

PF1 192 208 224 240
PF2 193 209 225 241
PF3 194 210 226 242
PF4 195 211 227 243
PF5 196 212 228 244
PF6 197 213 229 245
PF7 198 214 230 246
PF8 199 215 231 247

When a function key is pressed, a subroutine can be called as shown below:

Example:

When a function key is pressed at INPUT or INPUT LINE, an error is generated. The
ERRCODE is 53. The program should contain a routine which handles error 53. To find
out which one of the function keys that was pressed, use the function SVS(6) and read
the character by means of GET.

90

14 Differences in BASIC between
ABC 800 and ABC 80 ABCB06

The changes, which have been made in relation to the ABC 80 BASIC, are adjustments
to the ANSI standards. The memory mapping and the internal code have also been
changed.
1. When an integer variable is assigned a floating point value, the value will be

rounded off.
Example:

!1~~lnnort the value:

is printed at position 6 (i.e. the positions are 0-39)
ABC 800: B is printed at position 5 (i.e, the positions are
1-40/80)

3. When the value of a variable is printed using NUM$, the position which was meant
for the + sion is no loncer used.

Example:

ABC 80: 3
ABC 800: 4

2. When TAB is used for printouts, the printing position is specified starting at
TAB(1).

Example:

The result is:
ABC 80 : 1234
ABC 800: 1234

4. When numeric variables that are to be printed are separated by a semicolon, an
extra space will be printed between them.

Example:

ABC 80:00
ABC 800:0 0

5. The CALL instructions for file access are replaced by POSIT, GET - COUNT, and
PUT.
Example: Reading

ABC 80:
Z=CALL(28666,file number)+CALL(28668,sector number)

ABC 800:
POSIT £file number,sector number*253 : GET£file number,
00$ COUNT 253
Writing
ABC 80:
Z=CALL(28666,file number) : OO$=A$: Z=CALL(28670,sector
number)
ABC 800:
POSIT £file number,sector number*253: PUT £file number,A$

6. The CHAIN"" instruction is removed or changed to END in ABC 800 programs. ABCB02

7. The END instruction should be the only instruction on the line. END closes all files
but does not clear the variables.

8. The instruction JON ERROR GOTO replaces ON ERROR GOTO O.
9. An ABC 80 program can be tranformed to ABC 800 if it is stored in text format

(.BAS) i.e. by means of the LIST <file name> command, The lines which are
incompatible will cause error messages. A question mark following the line number
will indicate such a line.

91

15 Error Messages

Error no. 19-68: I/O errors
Error no. 120-129: ISAM errors
Error no. 130-176: Errors during program execution
Error no. 180-191: Logical errors
Error no. 200-211 : General errors
Error no. 220-234: Formal BASIC errors

Error Message Comment

19 Cannot open more files Seven files are open
20 Line overflow (> 160 characters) A line may contain a maximum of 160

characters
21 File not found The file is not present or has been

called by a wrong name
32 File not opened
34 End of file Attempt to read after EOF (end of

file)
35 CRC or AM error during read The disk or the cassette tape is dam-

aged
36 CRC or AM error during write The disk is damaged
37 Incorrect sector format Disk or cassette error
38 Sector number outside the file Attempt to read further than the file

allows
39 File write-protected
40 File delete-protected
41 Disk space full The disk is too full to accomodate the

file
42 Disk not ready No disk present or the flap is open
43 Disk write-protected
44 Logical file not opened
45 Illegal logical file number
46 Illegal unit number
47 Illegal trap number
48 Failure in system data
49 Incorrect physical file number Disk error
51 Unit busy
52 Illegal device operation
53 Function key Function key has been pressed in

INPUT or INPUT LINE statement
54 IEC, both talker and listener IEC option
55 IEC, listener not active IEC option
56 IEC, talker not active IEC option
57 Character from keyboard too late
58 Invalid character loaded
64 Incorrect "NAME" The new file name already exists

68 Incorrect time specification

120 The key does not exist ISAM option
121 Double key ISAM option
122 Wrong key ISAM option
123 Error at check reading ISAM option
124 Index does not exist ISAM option

92

Error Message Comment

125 Wrong post length ISAM option
126 Wrong ISAM file version ISAM option
127 Reserved code ISAM option
128 End of memory in the central ISAM option
129 Reserved code ISAM option

130 Floating point overflow ABC B02,B~

131 Index outside array Attempt to use an index greater than
the DIM allows

132 Integer overflow
133 Error in ASCII arithmetic expression
134 Index outside string Index is too great or negative
135 Negative "SPACE$", "STRING$",

or "TAB" < 1
136 String too long The dimensions of the receiving string

are too small
137 Extending "DIM" not permitted A vector cannot be extended beyond

its original length
138 Incorrect value in "ON" expression
139 "RETURN" without "GOSUB" A RETURN statement is encoun-

tered when no GOSUB has been
executed

140 Incorrect "RETURN" variable
141 End of data

142 Incorrect argument in function
143 Incorrect "SYS" function
144 Invalid line
145 "FNEND" not preceded by

"RETURN"
146 "PRINT USING" error

147 Wrong data
148 Too little input data
149 "RESTORE" not on a "DATA" line
150 Too much input data

151 "RESUME" without error
176 Graphic dot outside screen
180 Cannot find this line number

181 Incorrect jump into function
182 "NEXT" or "WEND" missing
183 "FOR" or "WHILE" missing
184 Wrong variable after "NEXT"
185 Mixed "FOR" loops with same vari-

able
186 "FOR" loop with local variable not

permitted
187 Function not defined
188 More than one function with same

name
189 Incorrect function

The data list is exhausted and a READ
statement wants more data

Wrong format in PRINT USING
statement

Too few data items typed at INPUT

Too many data items typed at
INPUT

Reference to a non-existant linenum­
ber

Applies to multiple line functions

Call for undefined function

Mixing of several DEF instructions is
not allowed

93

Error Message

190 Wrong number of indexes

191 Not allocable (in a function)

Comment

The number of indexes is not in accor­
dance with the DIM statement
The argument of the function cannot
be assigned within the function

200 Unit not connected
201 End of memory

202 "LIST"-protected program
203 Incorrect program format

204 "MERGE" cannot be used on "BAC"
file

205 "COMMON" error
206 Use "RUN" command
207 Cannot continue

208 Invalid as a command

209 Wrong data with command

210 Incorrect number

211 Precision must not be changed

220 Spelling error
221 Illegal character after statement

222
223

224

225

226
227
228
229
230

231
232
233
234

94

Must be first on a line
Wrong number or types or argu­
ments
Illegal mixture of numbers and
strings
Not single variable

Wrong statement after "ON"
"," missing
"=" missing
")" missing
"AS FILE" missing

"AS" missing
"TO" missing
Line number missing
Wrong variable

Not enough space for program and
data in the main storage

The program is saved under an
incompatible BASIC version

Applies to GOTO line number and
CON
The instruction cannot be used as a
command
Wrong argument to the command
e.g. LIST ££
The number contains other charact­
ers than digits
Change of precision after assignment
not allowed
Formal BASIC error
Formal BASIC error. The computer
expects Return, colon (:) or exclama­
tion point (I)

Indexed variable not allowed e.g. in a
FOR loop
Formal BASIC error
Formal BASIC error

Formal BASIC error
In OPEN and PREPARE instruc­
tions
Error in NAME ... AS ...
In FOR loops

16 Summary of Commands and
Instructions

ABS
Format
Function

ADDS
Format
Function

ASCII
Format
Function

ATN
Format
Function

AUTO
Format

Function

SBAS
Format
Function

BYE
Format
Function

CALL
Format
Function
CAUTION

CHAIN
Format
Function

CHRS
Format
Function

(function) Page 63
ABS(argument)
The absolute value of the argument.

(function) Page 67

ADD$(A$,B$,[-] P%)
Adds the values of the strings A$ and B$ to P%decimals,
or digits (-P%).

(function) Page 68
ASCII(A$)
The ASCII value of the first character of A$.

(function) Page 63
ATN(argument)
The arctangent (in radians) of the argument.

(command) Page 25
AUTO [argument 1[, argument 2]]
where < argument 1> specifies the first line number to be written
and < argument 2> specifies the line interval.
Automatic line numbering.

(command under DOS) Page 26
$BAS
Transfers control to BASIC.

(command) Page 26
BYE
Transfers control to the disk operating system (DOS).

(function) Page 73
CALL(A%[,D%])
Calls an assembler program.
CALL can destroy a program execution if used erroneously.

(instruction) Page 35
CHAlN "file name.extension"/string variable
Loads and executes a program.

(function) Page 68
CHR$(argument[,argument,...])
A character string which corresponds to the ASCII values of the
arguments.

95

ABCB06

CLEAR
Format
Function

CLOSE
Format
Function

ABCB06 CLR DOT
Format
Function

Note

(command)
CLEAR
Clears all variables and closes all open files.

(instruction)
CLOSE [file number, ...]
Closes the filets).

(instruction - graphics)
CLR DOT L%,N%
Turns off the graphic point on line L% (0-71) and l
position N% (2-79). -
The origin is in the upper, left-hand corner.

Page 26

Page 35

Page 82

COMMON
Format

Function

COMP%
Format
Function

CON
Format
Function

COS
Format
Function

CUR
Format
Function

CVT
Format

Function

DATA
Format
Function

DEF
Format

Function

96

(instruction) Page 35
COMMON variable[(n,...)] [,variable, ...]
COMMON string variable[(n,...)]=length Lstrinq variable=length, ...]
A declaration of the variables, whose values are to be
transferred to another program.

(function) Page 68
COMP%(A$,B$)
Comparison of two numeric strings.

(command) Page 26
CON (or CONTINUE)
Will continue program execution.

(function) Page 63
COS(argument)
The cosine of the argument (the argument in radians).

(function) Page 73
CUR(L%,N%)
Moves the cursor to line L%(O-23), position N%(O-39/79).

(function) Page 73
CVT%$(integer variable)
CVT$%(string variable)
CVTF$(floating point variable)
CVT$F(string variable)
Stores numbers as strings or recovers the numbers.

(instruction) Page 36
DATA value [,value, ...]
Assigns values to variables (used with READ).

(instruction) Page 36
Single line function:
DEF FNidentifier[(argument)]=function
Multiple line function:
DEF FNidentifier[%/$] [Iarqurnentl] [LOCAL variable [, variable, ...]]

Defines single line and multiple line functions.

DIGITS (instruction) Page 38
Format DIGITS number of digits
Function Gives the number of digits to be printed.

DIM (instruction) Page 39
Format DIM variablelnl]. variable(n, ...), ...]

DIM string variable[(n,...)] [=Iength]
Function Allocates space for strings and vectors.

DIV$ (function) Page 68
Format DIV$(A$,B$,[-] P%)
Function The quotient A$/B$ rounded off to P% decimals/digits.

DOT (instruction - graphics) Page 82 ABCB06

Format DOT(L%,N%)
Function Will be -1 (true) if the point is lit, else 0 (false).

Lo/o=line (0-71), No/o=position (2-79)
Note The origin is at the upper, left-hand corner.

DOUBLE (instruction) Page 40
Format DOUBLE
Function Floating point numbers are double precision (16 digits).

ED (command) Page 27
Format ED [line number]
Function Starts program editing.

END (instruction) Page 40
Format END
Function Terminates the program.

ERASE (command) Page 28
Format ERASE line number I [- line number II]

ERASE line number -
ERASE - line number

Function Erases one or more program lines.

ERRCODE (function) Page'74
Format ERRCODE
Function The value of the latest generated error code.

EXP (function) Page 63
Format EXP(argument)
Function Gives e* * argument.

EXTEND (instruction) Page 40
Format EXTEND
Function Allows long variable names.

FGCTL (instruction - high res. graphics) Page 84 ABCB02

Format FGCTL colour selection command
Function Selects the colour combination.

97

ABC802 FGFILL (instruction - high res. graphics) Page 84
Format FGFILL x,y[,colour number]
Function Fills a rectangle from the previous position to the position

indicated by the coordinates (x,y).
Note The origin is at the lower left-hand corner.

ABCB02 FGLINE (instruction - high res. graphics) Page 84
Format FGLINE x,y[,colour number]
Function Draws a line from the previous position to the position

indicated by the coordinates (x,y).
Note The origin is at the lower left-hand corner.

ABCB02 FGPAINT (instruction - high res. graphics) Page 84
Format FGPAINT x,y[,colour number]
Function Fills a closed area.
Note The origin is at the lower left-hand corner.

ABCB06

ABCB02 FGPOINT (instruction - high res. graphics) Page 85
Format FGPOINT x,y[, colour number]
Function Will turn on a pixel in position x,y. x=O-239, y=O-239.
Note The origin is at the lower left-hand corner.

FIX (function) Page 63
Format FIX(argument)
Function Gives the truncated value of the argument.
Note Compare with INT(X).

FLOAT (instruction) Page 40
Format FLOAT
Function All variables are interpreted as floating point.

FN (function) Page 74
Format FNidentifier[%/$] [(parameter [,parameter, ...])]
Function Calls a user-defined function.
Note Compare with DEF FN.

FNEND (instruction) Page 38
Format FNEND
Function Terminates a multiple line function.

FOR-TO-STEP (instruction) Page 41
Format FOR variable=expression TO expression [STEP interval]
Function Starts a program loop.

GET
Format
Function

GET£
Format

Function

98

(instruction)
GET string variable
Reads one character from the keyboard.

(instruction)
GET £ file number, string variable
[COUNT number of characters]
Reads from a file.

Page 42

Page 43

GOSUB
Format
Function

GOTO
Format
Function

HEX$
Format
Function

(instruction)
GOSUB line number
Unconditional jump to a subroutine.

(instruction)
GOTO line number
Unconditional jump to the given line number.

(function)
H EX$(argument)
Converts a decimal number into a hexadecimal string.

Page 43

Page 44

Page 64

IF-THEN-ELSE (instruction)
Format I F condition THEN statement(s)/Iine number

ELSE statement(s)/Iine number
Function Conditional control of the order of execution of

the program lines.

Page 44

INP
Format
Function
CAUTION

(function)
I NP(I%)
Gives the data value from the input port 1%.
This function is machine oriented, and should only
be used for advanced programming.

Page'74

INPUT
Format
Function

INPUT LINE
Format
Function

INSTR
Format
Function

INT
Format
Function

INTEGER
Format
Function

KILL
Format
Function

LEFT
Format
Function

(instruction) Page 45
INPUT [£file number/"prompt text"] variable [,variable, ...]
Fetches data for the current program.

(instruction) Page 46
I NPUT LINE [£file number,]string variable
Accepts a line of characters.

(function) Page 69
I NSTR(N%,A$,B$)
Searches for the string B$ in A$ starting at position N%.

(function) Page 64
INT(argument)
The value of the greatest integer less than or equal to the
argument. Compare with FIX.

(instruction) Page 46
INTEGER
All variables are supposed to be integer variables, unless
otherwise declared.

(instruction) Page 47
KILL "[device:]file name.extension"
The file in question is erased from the external storage.

(function) Page 69
LEFT[$](A$,I%)
The first 1% characters of the string A$.

99

LEN
Format
Function

(function) Page 69
LEN(A$)
The number of characters of the string A$, i.e. the string length
(including spaces).

LET
Format
Function

LIST
Format

Function

LOAD
Format
Function

LOG
Format
Function

LOG10
Format
Function

MERGE
Format
Function

(instruction)
[LET] variable=expression
Assigns a value to a variable.

(command)
LIST [device:]file name[.extension]
LIST [line number [-line number]]
LIST line number-
LIST - line number
LIST device: [,line number. - line number]
Lists the whole program or part of it.

(command)
LOAD [device:]file name[.extension]
Loads a BASIC program into the computer.

(function)
LOG(argument)
The natural logarithm of the argument.

(function)
LOG 1O(argument)
The common logarithm of the argument.

(command)
MERGE [device:]file name[.extension]
Merges program files.

Page 47

Page 28

Page 29

Page 64

Page 65

Page 29

MID
Format
Function

MID
Format
Function

(instruction) Page 69
MID[$](A$,P%,K%)
Assigns new values to the characters no.P%to Po/o+K%-1 in A$, i.e.
exchanges the characters indicated in the string.

(function) Page 70
M ID[$](A$,P%,K%)
Gives the substring of A$, which starts in position P% and has a
length of K% characters, i.e. the characters from no.P% to
Po/o+K%-1.

MOD
Format
Function

MUL$
Format
Function

100

(function)
MOD(argument 1, argument 2)
The remainder of an integer division of the arguments.

(function)
MUL$(A$,B$,[-]P%)
The product A$*B$ with P% decimals or digits (-P%).

Page 65

Page 70

NAME
Format

Function

NEW
Format
Function
Note

NEXT
Format
Function

NO EXTEND
Format
Function

NO TRACE
Format
Function

NUMS
Format
Function

OCTS
Format
Function

ON ERROR
GOTO
Format

ON ~ GOSUB
Format
Function

ON ~ GOTO
Format
Function

(instruction) Page 48
NAME "[device:]file name1.extension" AS "file name2.exten­
sion"
Changes the name of a file.

(command) Page 30
NEW
Clears the storage.
The command SCR (scratch) can be used, as well.

(instruction) Page 42
NEXT variable
NEXT terminates a program loop, which begins with a
FOR statement.

(instruction) Page 49
NO EXTEND
Terminates work in EXTEND mode.

(instruction) Page 48
NO TRACE
Terminates the printout of line numbers, which was started
by the instruction TRACE.

(function) Page 70
N UM$(argument)
The numeric string corresponding to the argument.

(function) Page 65
OCT$(argument)
Converts a decimal number into an octal string.

(instruction) Page 49
ON ERROR GOTO fline numberl

(instruction) Page 49
ON expression GOSUB line number[,line number,...]
Conditional jump to one of several subroutines or to one of
several entry points in a subroutine.

(instruction) Page 50
ON expression GOTO line number[,line number,...]
Jump to one of several line numbers, depending on the value
of the expression.

ON­
RESTORE
Format
Function

(instruction)
ON expression RESTORE line number[,line number,...]
Sets the DATA pointer by the same selection routine as
ON - GOTO.

Page 50

101

ON - RESUME (instruction) Page 51
Format ON expression RESUME line number[,line number, ...]
Function Jump to one of several line numbers, depending on the value

of the expression. Error handling is resumed. Used with
ON ERROR GOTO.

OPEN
Format
Function

(instruction) Page 51
OPEN "[device:][file name[.extension]]" AS FILE file number
Opens a file.

OPTION
BASE
Format
Function

(instruction)
OPTION BASE n
Denotes the lowest vector index value (11=0 or 1).

Page 52

OUT
Format
Function
CAUTION

(instruction) Page 75
OUT port,data [,port,data, ...]
Addresses the out ports at data output.
This is a machine oriented instruction meant for advanced
programming. This instruction and the instruction INP give the
user access to the I/O-functions and the I/O-bus of the
ABC 800.

PEEK
Format
Function
CAUTION

PEEK2
Format
Function
CAUTION

PI
Format
Function

(function)
PEEK(I%)
Gives the contents of storage address 1%.
This function is meant for advanced programming.

(function)
PEEK2(B%)
Reads the contents of two bytes.
This function is meant for advanced programming.

(function)
PI
Constant with the value 3.141 59 (single precision)

Page 75

Page 75

Page 65

POKE
Format
Function
CAUTION

(function) Page 75
POKE address,data [,data, ...]
Loads a value into a storage cell.
This function is meant for advanced programming. If the
instruction is used erroneously it may destroy the contents of the
computer storage.

POSIT
Format
Function

(instru ction)
POSIT £file number, position
Positions the file pointer.

Page 52

PREPARE
Format
Function

102

(instruction) Page 53
PREPARE "[device:][file name.extension]" AS FILE file number
Creates and opens a new file.

PRINT
Format
Function

PRINT
Format
Function

Note

(instruction) Page 53
PRINT [£file number,] "data"/variable [,"data"/variable, ...]
Prints data on an ASCII format.

(instruction - colour selection etc.) Page 81
PRINT [CUR(L,N)]argument [;argument...]"text"
Used for printing text and graphics. The arguments control
the colour selection etc. The starting point is at line L (0-23),
position N (0-39/79).
The origin is at the upper, left-hand comer.

PRINT USING (instruction) Page 54
Format -PRINT [£file number] USING "formatstring";"data"/variable

[,"data"/variable, ...]
Function Prints numbers and strings in the format specified.

PUT
Format
Function

RANDOMIZE
Format
Function

CAUTION

(instruction)
PUT £file number, string va 3ble
Writes a string variable.

(instruction)
RANDOMIZE
Sets a random starting value for the RND function
(the random number generator).
Should only be used once in a program.

Page 57

Page 57

READ ~~

Format
Function

(instruction) Page 57
READ variable[, variable, ...]
Used together with DATA statements as a way of assigning
values to variables.

REM
Format
Function
Note

RENUMBER
REN
Format
Function

(instruction)
REM text
Inserts a comment in a program.
REM can be exchanged for!

(command)

REN[UMBER] [line number[,interval[,from line -to line]]]
Changes the line numbering of the current program.

Page 58

Page 30

REStORE
Format
Function

(instruction) Page 58
RESTORE [line number]
Makes possible renewed use of the contents of DATA
statements.

RESUME
Format
Function

(instruction)
RESUME [line number]
Return from error handler.

Page 59

103

RETURN
Format
Function

RIGHT
Format
Function

RND
Format
Function

RUN
Format
Function

(instruction)
RETURN [variable]
Return from subroutine or multiple line function.

(function)
RIGHT[$](A$,N%)
The last characters of A$ starting at position N%.

(function)
RND
A random number between 0 and 0.9999999.

(command)
RUN [device:]file name[.extension]
Loads and executes a BASIC program or executes the
current program.

Page 59

Page 70

Page 65

Page 31

SAVE
Format
Function

ABC802, SCR
806 Format

Function
Note

ABC806 SET DOT
Format
Function
Note

(command) Page 32
SAVE [device:]file name[.extension]
Creates a program file on an external storage and stores the
current program on that file.

(command) Page 25

SCR
Clears the storage.
The command NEW can be used, as well. It works
just like SCR.

(instruction - graphics) Page 82
SET DOT L%,N%
Turns on a graphical point in position L% (0-71), N% (0-77).
The origin is in the upper left-hand corner.

SGN
Format
Function

SIN
Format
Function

(function)
SGN(argument)
The function SGN(X) has the value +1 if X
is positive, 0 if X is 0 and -1 if X is negative.

(function)
SIN(argument)
The sine of the argument (the argument in radians).

Page 66

Page 66

SINGLE
Format
Function

Note

(instruction) Page 59
SINGLE
Changes all variables and expressions, which are floating
point numbers, to single precision (7 digits).
SINGLE and DOUBLE cannot be mixed in the same program.

SPACES
Format
Function

SQR
Format
Function

104

(function)
SPACE$(N%)
Yields a string consisting of N%·spaces.

(function)
SQR(argument)
The square root of the argument.

Page 71

Page 66

STOP
Format
Function
Note

STRINGS
Format
Function

SUBS
Format
Function

SWAP%
Format
Function

SYS
Format
Function

TAB
Format
Function

TAN
Format
Function

TIMES
Format
Function

TRACE
Format
Function

TXPOINT
Format
Function

Note

(instruction) Page 60
STOP

.Stops the program execution.
The program execution can be continued by one of the
commands CON or GOTO.

(function) Page 71
STRI NG$(I%,K%)
A string of 1% ASCII characters.

(function) Page 71
SUB$(A$,B$,[-]P%)
The arithmetic difference A$-B$ of the numeric strings A$
andB$ with P% decimals or digits (-P%).

(function) Page 76
SWAP%(N%)
The first and the second bytes of N% change places.

(function) Page 76 ABC 802,

SYS(I%) 806

The system status as follows:
SYS(2) Total storage space
SYS(3) Program size
SYS(4) Remaining storage space
SYS(5) Keyboard flag
SYS(6) Puts back the last input character into the

keyboard buffer.
SYS(11) Starting adress of the program
SYS(12) Variable root

(function) Page 76
TAB(I%)
Tabulates to the I%-th position on the line.

(function) Page 66
T AN(argument)
The tangent of the argument (the argument in radians).

(function) Page 76
TIME$
Returns year-month-day hour.min.sec

(instruction) Page 60
TRACE [ffile number]
Prints the line numbers of the executed program lines.

(instruction - graphics) Page 81 ABC806

TXPOINT x,y(,1/0)
Turns on (1) or off (0) a graphical point in position x, y,
where x=O-77 and y=0-71.
The origin is in the lower left-hand corner.

105

UNSAVE (command) Page 32
Format UNSAVE [device:]file name[.extension]
Function Erases a file from a disk.

VAL (function) Page 71
Format VAL(A$)
Function Calculates the numeric value of the numeric string A$.

VAROOT (function) Page 77
Format VAROOT (variable)
Function Gives the address of a table which contains information

about a variable.
CAUTION This function is meant for advanced programming.

VARPTR (function) Page 77
Format VARPTR (variable)
Function Gives the address of the value of a variable.
CAUTION This function is meant for advanced programming.

WEND (instruction) Page 60
Format WEND
Function WEND terminates a loop that begins with WHILE.

WHILE (instruction) Page 61
Format WH ILE expression
Function Specifies the condition for branching out of a program loop.

ABC 802, A$+B$ (function) Page 72
806 Format A$+B$

Function Concatenates two strings.

106

17 Literature References

• "The ABC of Microcomputers" by Gunnar Markesjo.
Explains how the ABC 800 works.

• "ABC's of BASIC" by Anders Andersson, Arne Kullbjer, Jan Lundgren and Soren
Thornell.
An introduction to ABC 80 BASIC.

• "Controlling and Measuring with the ABC 80" by Ake Westh.

• "ABC's of Programming and Documentation" by Jan Lundgren and Bengt
Lundin.

• "Programming the ABC 80" by Lennart Rade.

• "Instruction Manual for PASCAL" by Anders Haraldsson.

• "BASIC Computer Games" by David H. Ahl.

• "More BASIC Computer Games" by David H. Ahl.

• "Z80. Technical Manual" published by Zilog.

• "Z80 Programming Manual" published by Zilog.

• "Data Processing Glossary". Swedish Standard SIS Handbook 142.

Books about the ABC 800, BASIC II and programming will be issued from time to
time during 1981.

107

18 Appendices

ABCB02,B06 Appendix 1: BASIC II Errata

If variables are dimensioned (01M) or assigned values before a COMMON declaration,
ABC 800 will "get lost".

ABCB06 Appendix 2: The I/O Ports of ABC 800

Port Address

bit bit
7 0

CTC 011XXXOO channel 0
011 XXX0 1 channel 1
011XXX10 channel 2
011XXX11 channel 3

510/2 010XXXOO V24 data channel B
010XXX01 V24 control channel B
010XXX10 cassette data
010XXX11 cassette control

DART 0010XXOO printer data channel A
0010XX01 printer control channel A
001 OXX1 0 keyboard data
0010XX11 keyboard control

X = don't care

108

Appendix 3: Storage Disposition

ABC 800 M/C HR Memory Map without Disk Drives.

ABC 802, 806

DECIMAL
ADDRESS

HEXA­
DECIMAL
ADDRESS

OKTAL
ADDRESS

65280

65024

64768

SIMPLE VARIABLES

CASBUF2

CASBUFl

32 KB RAM
WORKING STORAGE

FFOOH

FEOOH

FDOOH

377:000

376:000

375:000

32768

31744

30720

28672

24576

I --------

2 KB RAM 2 KB ROM

ISPLAYSTORAGE' GRAPHICS2
r.----------L- - - - - - - -

2 KB ROM

PRINTER/fERMINAL

4 KB ROM

DOS

24 KB ROM

BASIC

8000H 200:000

7COOH 174:000

7800H 170:000

7000H 160:000

6000H 140:000

16384 ,-----­
I

1 16 KB RAM
IGRAPHICS2

1

I
I
I

4000H 100:000

1. ABC 800 C uses only 1 kB CRT text display storage (31744 -32786).

2. The CRT text display storage (2 kB) on the VU board is parallel with the graphics
system program (2 kB) on the PU board. Likewise, the CRT graphics display storage
(16 kB) is parallel with the system program for BASIC. The different areas of the
memory do not interact. ABC 800 runs in a special mode when the graphics storage
is addressed. If storage space for machine language routines is to be allocated, the
following addresses are changed:
• The pointer for the lowest memory address of a BASIC program (BOTTOM):
65292
• The pointer for the highest memory address of a BASIC program (TOP):
65294

109

ABC 800 Memory Map with Disk Drives.

200:000

174:000

170:000

160:000

OCTAL
ADDRESS

100:000

140:000

377:000

376:000

375:000

374:000

373:000

372:000

371:000

370:000

367:000

366:000

365:000

OH

OH

OOH
OOH
OOH
OOH
OOH
OOH
OOH
OOH

500H

7000H

6000H

4000H

8000H

7COOH
7800H

HEXA­
DECIMAL
ADDRESS--

SIMPLE VARIABLES
- FFO

VACANT FOR POKE
- FEO

SYSTEM VARIABLES - FD
CASBUF2 DOSBUF7

- FC~

CASBUF 7 DOSBUF6
- FB-

DOSBUF 5
FA--

DOSBUF4
F9

DOSBUF3
- F8

DOSBUF2
F7r-

DOSBUF1
F6

DOSBUF 0
F

STACK

32 KB RAM

WORKING STORAGE

----- ----8 -

2 KB RAM 2 KB ROM

DISPLAY STORAGE' GRAPHICS2
.&..-_-------0

2 KB ROM

PRINTER/TERMINAL
-2

4 KB ROM

DOS
-6

24 KB ROM

BASIC

,------ -84

I
I 16 KB RAM
I GRAPHICS2
I
I
I
I _I-

3276

31744

3072

163

2867

2457

65280

65024

64768

64512

64256

64000

63744

63488

63232

62976

62720

DECIMAL
ADDRESS

110

Appendix 4: Keyboard Layout, ASCII Codes

CDCDrnrnrnrnGJrnCDCDCDffiO
~@J §J ®@ W0 @] OJ @] 0 @ CD (RETURN)

80@]@J(£J@]CBJ0@[gITDGJGJ8
800@J0~@~OO(I)EJG

()
Viewdata keyboard

88
88
BB
88

ABC 802, 806

0(!J[!JG
0~0G
CD0@]m
(0)OW

CDCDrnrnrnrnG]rnCD5J8EJCD 88 0(!J[!JG
~@J§J ®@ W0 @] OJ @] 0 GJ CO (RETURN] 88 0~0G
80@]@J(£J@]CBJ0@[gCDCDGJ8 BB CD0@][U
EJ00@J0~@~[JLJCDEJG 88 (0)0 ~

(]
Typewriter keyboard

Codes obtained from the keyboard

Key

ASCII ABC ABC ASCII
code CTR L Shift 800 C 800 M name Function

a x @ @ NUL Time filler character
1 X A A SOH
2 X B B STX
3 X C C ETX Stops execution
4 X 0 0 EOT
5 X E E ENQ
6 X F F ACK
7 X G G BEL "Beep" issued by loudspeaker
8 X H H BS *) "-" key
9 X I I HT *) "~" key

10 X J J LF Line feed
11 X K K VT
12 X L L FF *) Erases screen
13 X M M CR *) "RETURN" key
14 X N N SO
15 X 0 0 SI
16 X P P DLE
17 ,x Q Q DCl
18 X R R DC2
19 X S S DC3 Steps one program instruction
20 X T T DC4
21 X U U NAK
22 X V V SYN
23 X W W ETB
24 X X X CAN *) Deletes entered line
25 X Y Y EM
26 X Z Z SUB
27 X ~ [ESC
28 X 1/2 \ FS
29 X ~] GS
30 X t t RS
31 X X 0 0 US

127 X < < DEL

*) These characters affect the screen directly.

111

A C A C A C A C

32 Space 56 8 80 P 104 h
33 I 57 9 81 Q 105 i
34 58 82 R 106 j
35 ri 59 ; 83 S 107 k
36 $ 60 < 84 T 108 I
37 0/0 61 = 85 U 109 m
38 & 62 > 86 V 110 n

39 63 7 87 W 111 0

40 (64 @ 88 X 112 P
41) 65 A 89 y 113 q
42 . 66 B 90 Z 114 r

43 + 67 C 91 [115 s
44 68 0 92 \ 116 t
45 - 69 E 93 l 117 u
46 70 F 94 - 118 v
47 / 71 G 95 - 119 w
48 0 72 H 96 \ 120 x
49 1 73 I 97 a 121 y
50 2 74 J 98 b 122 z
51 3 75 K 99 c 123 {

52 4 76 L 100 d 124
53 5 77 M 101 e 125 }

5~ 6 78 N 102 f 126 -*
55 7 79 0 103 9 127 •

A C G A C G A C G A C G

32 Space D 56 8 ~ 80 P P 104 h
[,

33 I ~ 57 9 ~ 81 Q Q 105 1 ~
34 .. [j 58 ~ 82 R R 106 J

f.
35 .t ~ 59 ; ~ 83 S S 107 k

,
36 $ ~ 60 < i3 84 T T 108 l ill
37 0/0 ~ 61 = ~ 85 U U 109 m !'Ii
38 & ~ 62 > ~ 86 V V 110 n it
39 ~ 63 ? ~ 87 W W 111 a •40 (G 64 @ @ 88 X X 112 P -41) ~ 65 A A 89 Y Y 113 ·q -42 . ~ 66 B B 90 Z Z 114 r

·.-43 + ~ 67 C (91 . . 115 s --44 ~ 68 D 0 92 1/2 1/2 116 t II.
45 - ~ 69 E E 93 . . 117 u L
46 ~ 70 F F 94 t t 118 v .:
47 / ~ 71 G G 95 # # 119 w II:
48 0 ~ 72 H H 96 - Q 120 x ..
49 1 ::J 73 I I 97 a ~1 121 :.1I1 y
50 2 ~ 74 J J 98 b [-= 122 z ..
51 3 ~ 75 K K 99 c ~ 123 1/4 :I
52 4 iJ 76 L L 100 d ~ 124 II •
53 5 IJ 77 M M 101 e -.; 125 3/4 •54 6 ~ 78 N N 102 f -= 126 --,-*.
55 7 rl 79 0 0 103 9 -= 127 • •

ASCII codes (A) for character mode (C) and graphic mode (G).

Decimal codes obtained from function keys.

SHIFT CTRL SHIFT + CTRL

PF1 192 208 224 240

PF2 193 209 225 241

PF3 194 210 226 242

PF4 195 211 227 243

PF5 196 212 228 244

PF6 197 213 229 245

PF7 198 214 230 246

PF8 199 215 231 247

The following commands are used as control functions and are typed at the
keyboard:

RETURN
CTRL/C

CTRL/H or ~
CTRL/I or ___
CTRL/L
CTRL/S
CTRL/X or CE

112

the DO IT command
stops program execution
(NOTEI CTRL/C terminates execution twice)
erases one character
used for editing
clears the screen
single step execution
erases the last entered line

Appendix 5: Differences between
ABC 800 and ABC 802

This appendix contains the differencies in the BASIC program for ABC 802 as com­
pared with the program for ABC 800. The paragraphs affected are indicated with ABC
802 in the text margin.

6.4 Guide to the Statements
(Page 21)

The paragraph "To define and ... INPUTLINE." is omitted.

Miscellaneous statements:
COMMON and DIM sets the size of variables.
STOP, TRACE, and NOTRACE facilitate the debugging of a
program.
WIDTH chooses the number of characters per line (40 or 80).

8 Commands

(Page 24)

• the devices are addressed as ORO:, DR1:, CAS:, PR:, CON:, or MEM:.

• the primary default device is disk drive 0 (ORO:) and the secondary one is disk drive
1 (DR1 :). If both a disk drive and a cassette recorder are connected, the device
CAS: must be given if a command is to act on the cassette recorder. Correspon­
dingly, the device MEM: must be given if a command is to act on the external
memory.

LIST (page 28)

Note

70876-173

A long program is listed on the screen until it is filled. The next line
will be displayed when you press the space bar. A listing can be
stopped by CTRUC, RETURN or any BASIC command.

When the device MEM: is given, file name.extension shall be
replaced by a number (No.). This number is for identifying the file
and for calculating the address on which the file is stored. The
address is to be calculated in the following way:

Address = number x 253

113

LOAD (page 29)

Note

RUN (page 31)

Examples

SAVE (page 32)

Note

114

If no extension is given, the computer will first search for .BAC and
then .BAS. The entire file is read, until EOF (end of file) and not
only to the END.

When the device MEM: is given, file name.extension shall be
replaced by a number (No.). This number is for identifying the file
and for calculating the address on which the file is stored. The
address is to be calculated in the following way:

Address = number x 253

Example 1

Example 2
If the same program had been stored on an external storage
under the name AADDB, the screen would look like this:

When the device MEM: is given, file name.extension shall be
replaced by a number (No.). This number is for identifying the file
and for calculating the address on which the file is stored. The
address is to be calculated in the following way:

Address = number x 253

If the file exists already on the disk, the old file will be destroyed
and replaced by the new program, unless the file or the disk is
write protected.

When the device MEM: is given, file name.extension shall be
replaced by a number (No.). This number is for identifying the file
and for calculating the address .on which the file is stored. The
address is to be calculated in the following way:

Address = number x 253

70876-774

UNSAVE (page 32)

Note

WIDTH (page 34)

CHAIN (page 35)

Note

KILL (page 47)

Example

OPEN (page 51)

Format

When the extension is omitted, the computer will look for .BAC
first and then .BAC.
The command UNSAVE cannot be used on an erase protected
file or on MEM:.

Selects a number of characters per line

Variables can be passed on to a CHAINed program by means of
the COMMON instruction.

When the device MEM: is given, file name.extension shall be
replaced by a number (No.). This number is for identifying the file
and for calculating the address on which the file is stored. The
address is to be calculated in the following way:

Address = number x 253

When the file XYZ.TXT on the disk is no longer needed, the file
can be erased from the disk by means of the following statement:

Note that the instruction KILL does not function together with
MEM:.

OPEN "[device:][file name[.extension]]" AS FILE file number

Where
DRO:
DR1:
PR:
CAS:
CON:
MEM:

<device> may be for instance
Disk drive 0
Disk drive 1
Printer
Cassette recorder
Keyboard and screen
32 Kbyte internal RAM (RAM-floppy)

Note

70876-775

The expression following AS FILE should be an integer value
between 0 and 255.

When data is to be read from an existing fHe, the file should be
opened by the OPEN instruction. Up to seven files may be open at
the same time.

When the device MEM: is given, file name.extension shall be
replaced by a number (No.). This number is for identifying the file
and for calculating the address on which the file is stored. The
address is to be calculated in the following way:

Address = number x 253

115

PREPARE (page 53)

Example

The values of the variables A, B, and C$ are written on file 2
(DATA.TXT).

When the device MEM: is given, file name.extension shall be
replaced by a number (No.). This number is for identifying the file
and for calculating 'the address on which the file is stored. The
address is to be calculated in the following way:

Address = number x 253

WIDTH (page 61)

Format

Function

Use

Example

WIDTH [#file number,] number of characters

Denotes number of characters per line for the current file. When #
file number is omitted the screen is intended (40 all. 80 charac­
ters).

Is used for conversion of line length.

Converts ABC 802 to 40-character mode.

Converts file 1 to 64 characters per line.

10.3 Other Functions
SYS (page 76)

SYS (6)

SYS (8)
SYS(11)
SYS(12)

Function

1'16

System information as follows:
SYS (2) Total storage space
SYS (3) Program size
SYS (4) Remaining storage space
SYS (5) Keyboard flag. Can be cleared by means of GET,

INPUT, or INPUT LINE.
Puts back the last input character into the key­
board buffer
Is -1 when a key is pressed
Starting adress of the program
Variable root

70876-716 '

10.4 Inverted video (Page 77)

Inverted video can be displayed. This is done by inserting (1) bit 8 (128) into the ASCII­
value of the character in question. The following programming example can be used for
presentation of inverted video.

11 Graphics and Colours (Page 78)

11.1 General Information
ABC 802 graphics correspond to the Teletext standards. In the graphic mode every
output character is interpreted as a graphic character formed by a combination of six
graphic points.

When text or graphics are displayed on the screen, the selection of colours etc. is
controlled by means of certain arguments in the PRINT statement. The statement
affects one line at a time. Each .argument puts a control character on the screen.
Although these characters are invisible, they take up one position each. The control
characters can be covered by a background colour, if the control arguments are given in
the correct order.

N.B.
Programs for colours can be written on ABC 802 for later execution on ABC
800 C and ABC 806. ABC 802 cannot be used for presentation of colours.

The following colours are available:

Red (RED)
Green (GRN)
Yellow (VEL)
Blue BLU)
Magenta (MAG)
Cyanide (CVA)
White (WHT)

The characters available in the ABC 802 are listed below. The table gives the ASCII
value of each character and its meaning in the character mode and graphic mode. One
way of planning a graphical picture is to draw it on a copy of the graphics chart and feed
the program the appropriate data.

10816-117 117

When you have finished the picture on a copy of the chart you can type the lines one by
one. Do not forget to allow space for the control characters, if you vary the control
arguments.

Note that the capital letters still remain the same in graphic mode. You can mix capital
letters and graphic characters just as you like.

In graphic mode there are 72 graphic lines (0-71), each one with 78/158 graphic
positions (0-77/157).

The number of graphical positions/line is dependent upon which character mode has
been selected, 40 or 80 characters.

A C G A C G A C G A C G

32 Blank D 56 8 ~ 80 P P 104 h [j
33 ! LJ 57 9 ~ 81 Q Q 105 i ~
34 " [j 58 ~ 82 R R 106 j [J
35 # ~ 59 ; ~ 83 S S 107 k r1
36 $ ~ 60 < ~ 84 T T 108 l ~
37 0/0 ~ 61 = 113 85 U U 109 m ~
38 & ~ 62 > ~ 86 V V 110 n ~
39 ~ 63 ? ~ 87 W W 111 a ~
40 (G 64 @ @ 88 X X 112 p ~

41) ~ 65 A A 89 y y 113 q ~

42 • ~ 66 B B 90 Z Z 114 r ~

43 + ~ 67 C C 91 [[115 s =44 ~ 68 0 0 92 \ \ 116 t iJ
45 - ~ 69 E E 93]] 117 u IJ
46 ~ 70 F F 94 t t 118 v ~

47 / ~ 71 G G 95 - - 119 w -=
48 0 ~ 72 H H 96 Q 120 x ~

49 1 ~ 73 I I 97 Cl ~ 121 y =-50 2 ~ 74 J J 98 b c= 122 z ~

5·1 J Cj 7S K K 99 (~ 123 { CI
52 4 iJ 76 L L 100 d ~ 124 , iii
53 5 IJ 77 M M 101 e ~ 125 } Ii
54 6 ij 78 N N 102 f ~ 126 -* ~

55 7 ~ 79 0 0 103 g ~ 127 • •
ASCII code interpreted into character mode (C) and graphic mode (G).

Argument CHR$() Argument CHR$()

RED
GRN
VEL
BLU
MAG
CVA
WHT
FLSH
STDV
NRML
DBLE
GRED
GGRN

118

129
130
131
132
133
134
135
136
137
140
141
145
146

GVEL
GBLU
GMAG
GCVA
GWHT
HIDE
GCON
GSEP
BLBG
NWBG
GHOL
GREL

147
148
149
150
151
152
153
154
156
157
158
159

10816-118

9(
80

0
V

ID
E

O
G

R
A

P
H

IC
S

C
H

A
R

T
P

R
O

G
R

A
M

.

~
.

-o

o
~~

I~~~~
••

1
:;

~~i~
~I

·8
8 8
5

I~I
2

:
3

:~
I~~~~

~
8

0

4
::

t~
t

57
.:-

:-:
-:.

5
::

tI
~

54

6
:~

I~I
51

7
:~

rI~
48

:::
:::

:::

8
:~

!i~i~
i!~!

45

9
~

:I!I
42 4

1

II~
:

10
4

0
39

11
38

fi
I

37 36
:::

:::
:::

1
2

3
5

!!~!
f!

34 3
3

1
3

3
2

I:!j!j!
31 30

14
29

i!i!
~il

28 27 26

t!i!
i!

15
25 2

4

16
23

t~
I

22 21
:::

:::
::-

17
2

0

~f
~I

19 18

1
8

~i
~!r

!I
19

14

IiI
13 12

2
0

.1

!I!t
10 s

21
8

·i!~
!t!

7 R 5

I/II
I/!I

I

2
2

4 3

2
3

2 1 0 lO
O

T
:f

f :0
1

1
1

I~
!~

1
1

1
1

1
1

12
2

6i
~
I~
'g

81
~

,~
~

;;1
"""

7
1
~

/
i

/

~
/

/
2

3
4

5
ID

a
~

I"
In

~
3

l
a
·
~

l
a
'
~

1
2

,3
14

:5
n
~

2
.3

6.
1.

C
H

R
;

0
1

2
3

4
5

6
7

8
9

1
0

11
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
21

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

31
32

3
3

3
4

3
5

3
6

3
7

3
8

3
9

II
II

!I
!I

II
II

II
!I

~I
II

I!
II

!I
I:

-r
es

er
ve

d
fo

r
g

ra
p

h
ic

co
n

tr
o

l
ch

a
ra

ct
e

rs

11.2 Instructions (page 81)

PRINT

Format

Function

PRINT [CUR(L,N)]argument [;argument; ...]"text"

Used for printing text and graphics. The arguments control the
colour selection etc. A G at the beginning of the colour selection
argument (e.g. GRED) sets the line to the graphic mode so that all
characters within quotes are interpreted as being graphics (see
the ASCII table). If CUR (L,N) is specified, the picture is drawn
from the starting point at line L (0-23), position N (0-39).

The following arguments are available:

RED, GRN, VEL,
BlU, MAG, CVA,
WHT

GRED, GGRN,
GVEl, GBlU,
GMAG, GCVA,
GWTH

FlSH,STDV

NRMl, DBlE

GCON, SEP

NWBG, BlBG

GHOl, GREl

HIDE

Alphanumeric colour characters

Colour graphics

Flashing, steady

Normal, double height
N.B. DBLE cannot be generated on ABC
802

Continuous, separated graphics
N.B. Cannot be generated on ABC 802

New background, black background

Hold, release graphics
N.B. Cannot be generated on ABC 802

Concealed text/graphics

Example

120

The arguments can also be given with CHR$.
The control arguments should be given in the following order:

PRINT <background colour argument> <argument for new
background colour> <text colour argument> "Text" <argument
for black background>

The programs can thus be written for colour, for execution on, for
example, ABC 800 C.

70876-720

TXPOINT (page 81)

Format

Function

Example

Note

SET DOT (page 82)

Format

Function

CLR DOT (page 82)

Format

Function

DOT (page 82)

Format

Function

70876-727

TXPOINT X,Y [,1/0]
where X=0-77/157 and Y=0-71.

The upper X limit varies according to 40/80-character mode.

Turns on (1 can be omitted) or turns off (0) a graphic point in
position X, Y.

The lines 10-40 clear the screen and set it to the graphic mode
(green). The lines 50-70 draw a sine curve. Line 80 displays 81 NE
in red, flashing text. TXPOINT can also be used as a function, to
check if a point is turned on (-1) or off (0). TXPOINT(X,V).

The origin is in the lower, left-hand corner.

SET DOT R%,K%

where R%=0-71 and K%=2-79/159, according to 40- or 80­
character mode.

Turns on a graphic point (the origin is in the upper left-hand
corner).

CLR DOT R%,K%

where R%=0-71 and K%=2-79/159 (40 alt 80 characters).

Turns off a graphic point (the origin is in the upper left-hand
corner).

DOT(R%,K%)

where R%=0-71 and K%=2-79/159 (40 alt 80 characters).

Will be -1 (true) if the point is lit, else 0 (false).

121

12 High Resolution Graphics

(page 83)

This section is not valid for ABC 802.

13 Function Keys

(page 90)

ABC 802 is provided with special function codes. These are generated by CTRL,
SHIFT and certain alphanumeric keys, see table 1.

These function codes correspond completely with the codes which are generated by
ABC 800 function keys (PF1-PF8).

A programmer can assign various functions to the function keys, e.g. cursor move-
ments, jump to a program module etc. For assigning the same functions to ABC 802 as
those included in ABC 800, the following combinations are used.

The function keys can produce 32 different ASCII values as shown in the following
table:

Table 1

UNSHIFT SHIFT CTRL SHIFT+CTRL

PF1 CTRU1 SHIFT/CTRL 1 CTRUSHIFT C CTRUSHIFT A
PF2 CTRU2 SHIFT/CTRL 2 CTRUSHIFT W CTRUSHIFT S
PF3 CTRU3 SHIFT/CTRL 3 CTRUSHIFT E CTRUSHIFT D
PF4 CTRU4 SHIFT/CTRL 4 CTRUSHIFT R CTRUSHIFT F
PF5 CTRU5 SHIFT/CTRL 5 CTRUSHIFT T CTRUSHIFTG
PF6 CTRU6 SHIFT/CTRL 6 CTRUSHIFTY CTRUSHIFT H
PF7 CTRU7 SHIFT/CTRL 7 CTRUSHIFT U CTRUSHIFT J
PF8 CTRU8 SHIFT/CTRL 8 CTRUSHIFT I CTRUSHIFT K

Table 2

UNSHIFT SHIFT CTRL SHIFT+CTRL

PF1 192 208 224 240
PF2 193 209 225 241
PF3 194 210 226 242
PF4 195 211 227 243
PF5 196 212 228 244
PF6 197 213 229 245
PF7 198 214 230 246
PF8 199 215 231 247

122 70876-722

When a function key is pressed, a subroutine can be called as shown below:

Example

When a function key is pressed at INPUT or INPUT LINE, an error is generated. The
ERRCODE is 53. The program should contain a routine which handles error 53. To find
out which one of the function keys that was pressed, use the function SYS(6) and read
the character by means of GET.

14 Differences in BASIC between
ABC 800 and ABC 80 (Page 91)

6. The instruction CHAIN"" is changed to CHAIN"NUL:".

16 Summary of Commands and
Instructions (Pages 97,98, and 104)

FGCTL, FGFILL, FGLINE, FGPAINT, FGPOINT and SCR are omitted.

Page 76

SYS(8)
SYS(11)
SYS(12)

(function)
SYS(I%)
The system status as follows:
SYS(2) Total storage space
SYS(3) Program size
SYS(4) Remaining storage space
SYS(5) Keyboard flag
SYS(6) Puts back the last input character into the key­

board buffer
Is -1 when a key is pressed
Starting adress of the program
Variable root

SYS (page 105)
Format
Function

WIDTH (page 106)
Format
Function

(instruction)
WIDTH [#file number] number
Denotes number of characters per line.

Page 61

70876-723 123

Appendix 1: BASIC II Errata (page 108)

Appendix 1 is omitted.

Appendix 3: Storage Disposition (page 109)

ABC 802 without Disk Drives

DECIMAL
ADDRESS ,-. ---.,

65280

65024

64768

SIMPLE VARIABLES

MEMBUF : CASBUF 2

CASBUF 1

32 kB RAM

WORKING STORAGE

HEXA-
DECIMAL OCTAL
ADDRESS ADDRESS

FFOOH 377:000

FEOOH 376:000

FDOOH 375:000

32768
2 kB RAM I2kSROMT - - - - - - - 8000H 200:000

31744 DISPLAY 1 I 7000H 174:000

30720
STORAGE ____I

7800H 170:000
2 kB ROM

28672
PRINTER/TERMINAL:

7000H 160:000
4 kB ROM I 32 kB RAM

DOS I for storing data
24576 I (MEM:) 6000H 140:000

24 kB ROM
BASIC I

I
16384 I 4000H 100:000

I
I
I
I
I

1. The display storage (2 kB) is parallel with the system program in PROM. Likewise
is the MEM: storage (32 kB) parallel with the system program for BASIC. The
different areas of the memory do not interact. ABC 802 runs in a special mode
when the graphics storage is addressed. If storage space for machine language
routines is to be allocated, the following addresses are changed:
• The pointer for the lowest memory address of a BASIC program (BOTTOM):

65292
• The pointer for the highest memory address of a BASIC program (TOP):

65294.

124 70876-724

ABC 802 Memory Map with Disk Drives

DECIMAL
ADDRESS

65280

64768

64512

64256

64000

63744

63488

63232

62976

62720

32768

31744

30720

28672

24576

16384

10816-125

SIMPLE VARIABLES

SYSTEM VARIABLES

CASBUF 2 DOSBUF 7 MEMBUF

CASBUF 7 DOSBUF 6

DOSBUF 5

DOSBUF 4

DOSBUF 3

DOSBUF 2

DOSBUF 1

DOSBUF 0

STACK

32 kB RAM

WORKING STORAGE

2 kB RAM~UBROMT- - - - - - -
DISPLAY 1 I

STORAGE ____I
2 kB ROM

PRINTER/TERMINAL 1

4 kB ROM 32 kB RAM
DOS for stori ng data

24 kB ROM
(MEM:)

BASIC

HEXA-
DECIMAL OCTAL
ADDRESS ADDRESS

FFOOH 377:000

FDOOH 375:000

FCOOH 374:000

FBOOH 373:000

FAOOH 372:000

F900H 371 :000

F800H 370:000

F700H 367:000

F600H 366:000

F500H 365:000

8000H 200:000

7000H 174:000

7800H 170:000

7000H 160:000

6000H 1.40:000

4000H 100:000

125

Appendix 4: Keyboard Layout, ASCII Codes (page 111)

(JJCDwrnrnrnrnrnrn(I)[J@J[J
~@]~ [IJ@ W~@] CD @] 0 CD OJ (RETURN)

80@]@J(I)@J®0@(IJCDCDITJ8
a0~@J0~~~OO88G

()

Codes obtained from the keyboard

ASCII CTRL SHIFT Key ASCII Function
code name

0 X @ NUL Time filler character
1 X A SOH
2 X B STX
3 X C ETX Stops execution
4 X D EOT
5 X E ENQ
6 X F ACK
7 X G BEL
8 X H BS *) "~" key
9 X I HT *) "~" key

10 X J LF Line feed
11 X K VT
12 X L FF *) Erases screen
13 X M CR *) "RETURN" key
14 X N SO
15 X 0 SI
16 X P DLE
17 X Q DC1
18 X R DC2
19 X S DC3 Steps one program instruction
20 X T DC4
21 X U NAK
22 X V SYN
23 X W ETB
24 X X CAN *) Deletes entered line
25 X Y EM
26 X Z SUB
27 X [ESC
28 X \ FS
29 X] GS
30 X i RS
31 X X 0 US

127 X < DEL Generates a filled square (.)

*) These characters affect the screen directly.

126 70876-726

Argument CHR$()
-
RED 129
GRN 130
VEL 131
BlU 132
MAG 133
CVA 134
WHT 135
FlSH 136
STDV 137
NRMl 140
DBlE 141
GRED 145
GGRN 146
GVEl 147
GBlU 148
GMAG 149
GCVA 150
GWHT 151
HIDE 152
GCON 153
GSEP 154
BlBG 156
NWBG 157
GHOl 158
GREl 159

A C G A C G A C G A C G

32 Blank D 56 8 ~ 80 P P 104 h [j

33 I ~ 57 9 ~ 81 Q Q 105 i ~

34 " [j 58 ~ 82 R R 106 j [J

35 # Lj 59 ; ~ 83 S S 107 k n
36 $ ~ 60 < ~ 84 T T 108 I ~

37 0/0 ~ 61 = ~ 85 U U 109 m ~

38 & ~ 62 > ~ 86 V V 110 n ~

39 ~ 63 7 ~ 87 W W 111 0 ~

40 (G 64 @ @ 88 X X 112 p ~

41) ~ 65 A A 89 y y 113 q C;J
42 . ~ 66 B B 90 Z Z 114 r ~

43 + ~ 67 C C 91 [[115 s ==
44 ~ 68 0 0 92 \ \ 116 t ~

45 - ~ 69 E E 93]] 117 u IJ
46 ~ 70 F F 94 t t 118 v ~

47 I ~ 71 G G 95 - - 119 w Ie
48 0 ~ 72 H H 96 Q 120 x ~

49 1 ~ 73 I I 97 a ~ 121 y ~

50 2 ~ 74 J J 98 b [) 122 z ~

51 3 ~ 75 K K 99 c ~ 123 { ~

52 4 iJ 76 L L 100 d ~ 124 ii
53 5 IJ 77 M M 101 e ~ 125 } Ii
54 6 ~ 78 N N 102 f ~ 126 -* ~
55 7 ~ 79 0 0 103 9 ~ 127 • I

ASCII codes (A) for character mode (C) and
graphic mode (G).

Decimal codes obtained from function keys and their correspondence in ABC 800.

UNSHIFT SHIFT CTRL SHIFT+CTRL

PF1 CTRU1 192 CTRUSHIFT/1 208 CTRUSHIFT Q 224 CTRUSHIFT A 240
PF2 CTRU21S3 CTRUSHIFT/2209 CTRUSHIFT W 225 CTRUSHIFT S 241
PF3 CTRU3 194 CTRUSHIFT/3210 CTRUSHIFT E 226 CTRUSHIFT D 242
PF4 CTRU4 195 CTRUSHIFT/4211 CTRUSHIFT R 227 CTRUSHIFT F 243
PF5 CTRU5196 CTRUSHIFT/5212 CTRUSHIFT T 228 CTRUSHIFT G 244
PF6 CTRU6197 CTRUSHIFT/6213 CTRUSHIFT Y 229 CTRUSHIFT H 245
PF7 CTRU7 198 CTRUSHIFT/7214 CTRUSHIFT U 230 CTRUSHIFT J 246
PF8 CTRU8199 CTRUSHIFT/8215 CTRUSHIFT I 231 CTRUSHIFT K 247

The following commands are used as control functions and are typed at the keyboard:

RETURN
CTRUC

CTRUH or ~
CTRUI or~
CTRUL
CTRUS
CTRUX or CE

70876-727

the DO IT command
stops program execution
(NOTE! CTRUC terminatesexecution twice)
erases one character
used for editing
clears the screen
single step execution
erases the last entered line

127

Appendix 6: Differences between
ABC 800 and ABC 806

This appendix contains the differencies in the BASIC program for ABC 806 as com­
pared with the program for ABC 800. The paragraphs affected are indicated with ABC
806 in the text margin.

6.4 Guide to the Statements
(Page 21)

The paragraph "To define and ... INPUTLINE." is omitted.

Miscellaneous statements:
COMMON and DIM sets the size of variables.
STOP, TRACE, and NOTRACE facilitate the debugging of a
program.
WIDTH chooses the number of characters per line (40 or 80).

8 Commands

(Page 24)

• the devices are addressed as DRO:, DR1:, PR:, V24:, or CON:.

• the primary default device is disk drive 0 (DRO:)and the secondary one is disk drive
1 (DR1 :).

WIDTH (page 34)

OPEN (page 51)

Format

Selects a number of characters per line

OPEN "[device:][file name[.extension]]" AS FILE file number

Where
DRO:
DR1:
PR:
CON:

<device> may be for instance
Disk drive 0
Disk drive 1
Printer
Keyboard and screen

70876-729

The expression following AS FILE should be an integer value
between 0 and 255.

129

WIDTH (page 61)

Format

Function

Use

Example

WIDTH [#file number,] number of characters

Denotes number of characters per line for the current file. When #
file number is omitted the screen is intended (40 all. 80 charac­
ters).
The number of characters is a number between 0 and 255.

Is used for conversion of line length.

Converts ABC 806 to 40-character mode.

Converts file 1 to 64 characters per line.

10.3 Other Functions
CUR (page 73)

SYS (6)

SYS (8)
SYS(11)
SYS(12)

Format

SYS (page 76)

Function

130

CUR(L%,N%)

where L% (line) is in the interval 0-24 (physical 1-25) and N%
(position) in the interval 0-39/79. Line 24 is a status line.

System information as follows:
SYS (2) Total storage space
SYS (3) Program size
SYS (4) Remaining storage space
SYS (5) Keyboard flag. Can be cleared by means of GET,

INPUT, or INPUT LINE.
Puts back the last input character into the key­
board buffer
Is -1 when a key is pressed
Starting adress of the program
Variable root

70876-730

11 Graphics including attribute
handling (page 78)

ABC 806 can use graphics with a resolution of 78/158 x 72 pixels (picture elements). If
the 40 character mode (78 pixels) is used, the graphics are compatible with the
VIDEOTEX standards.

A separate attribute in the computer can be used for storing control characters for text
and graphics. However, in the VIDEOTEX mode the control characters are saved in the
character storage. The instruction ATTRIBUTE 1 enables you to determine which
version to use.

High resolution graphics (see chapter 12) can be used in conjunction with ordinary text
and graphics, since the high resolution graphics are saved in a separate storage. By
defining a priority of your own choice, you determine what will be displayed first.

11.1 VIDEOTEX graphics
If no attribute or ATTRIBUTE 0 has been programmed, all characters will be stored in
the ordinary character memory. When the memory content is displayed on the screen,
each control character will occupy one position.

ABC 806 graphics correspond to the VIDEOTEX standards. In the graphic mode every
output character is interpreted as a graphic character formed by a combination of six
graphic points.

When text or graphics are displayed on the screen, the selection of colours etc. is
controlled by means of certain arguments in the PRINT statement. The statement
affects one line at a time. Each argument puts a control character on the screen.
Although these characters are invisible, they take up one position each. The control
characters can be covered by a background colour, if the control arguments are given in
the correct order.

The following colours are available:

Black (BlK)
Red (RED)
Green (GRN)
Yellow (VEL)
Blue (BLU)
Magenta (MAG)
Cyanide (eVA)
White (WHT)

The characters available in the ABC 806 are listed below. The table gives the ASCII
value of each character and its meaning in the character mode and graphic mode. One
way of planning a graphical picture is to draw it on a copy of the graphics chart and feed
the program the appropriate data.

When you have finished the picture on a copy of the chart you can type the lines one by
one. Do not forget to allow space for the control characters, if you work with AT­
TRIBUTE 0 or if you have not indicated any attribute.

Note that the capital letters still remain the same in graphic mode. You can mix capital
letters and graphic characters just as you like.

The number of graphical positions/line is dependent upon which character mode has
been selected, 40 or 80 characters. In VIDEOTEX standards there are only 40
characters/line.

70876-737 131

11.1.1 ASCII codes for characters, graphics and arguments

A C G A C G A C G A C G

32 Blank D 56 8 ~ 80 P P 104 h [j
33 ! ~ 57 9 ~ 81 Q Q 105 i ~

34 " [j 58 ~ 82 R R 106 j []

35 # lj 59 ; ~ 83 S S 107 k n
36 $ ~ 60 < ~ 84 T T 108 l ~

37 0/0 ~ 61 = ~ 85 U U 109 m ~

38 & ~ 62 > ~ 86 V V 110 n ~

39 ~ 63 ? ~ 87 W W 111 0 ~

40 (G 64 @ @ 88 X X 112 P ~

41) ~ 65 A A 89 Y Y 113 q ~

42 • ~ 66 B B 90 Z Z 114 r ~

43 + ~ 67 C C 91 [[115 s =
44 ~ 68 0 0 92 \ \ 116 t iJ
45 - ~ 69 E E 93]] 117 u IJ
46 ~ 70 F F 94 t t 118 v ~

47 I ~ 71 G G 95 - - 119 w -=
48 0 ~ 72 H H 96 Q 120 x ~

49 1 ~ 73 I I 97 Q ~ 121 y ~

50 2 ~ 74 J J 98 b ~ 122 z ~

51 3 Cj 75 K K 99 (~ 123 { CI
52 4 iJ 76 L L 100 d ~ 124 , iii
53 5 IJ 77 M M 101 e ~ 125 } Ii
54 6 ij 78 N N 102 f ~ 126 -* ~

55 7 r 79 0 0 103 9 ~ 127 • •
ASCII codes (A) for character mode (C) and graphic mode (G).

Argument CHR$() Argument CHR$()

BLK 128 GBLK 144
RED 129 GRED 145
GRN 130 GGRN 146
VEL 131 GVEL 147
BLU 132 GBLU 148
MAG 133 GMAG 149
CVA 134 GCVA 150
WHT 135 GWHT 151
FLSH 136 HIDE 152
STDV 137 GCON 153
ULN 138 GSEP 154
NULN 139 BLBG 156
NRML 140 NWBG 157
DBLE 141 GHOL 158
EL 142 GREL 159

132 10816-132

o
~~

fti
89 88

:-:
.:.

:-:
1

87
t:

~:~:
66 85

II~
2

:;
3

:~
!~!~!

~!~!
80 59

!!!if
!

4
58 57 56

t~~
I

5
55 54

6
~~

j!j~
t~~

51

7
:~

:;::
::::

:
48

:::
:::

:::

8
:~

!~!i!
i!i!

45

9
~

~I
~I

42
:-:.

.:-:-
41

10
40

f~
~t

39 38
tt

~
11

37 36
:::

:::
:::

35

I!!!!
!

1
2

34 33

1
3

32

f~~j
!~!

31 30 29

i!i!
!iI

14
28 27 26

!i!i!
i!!!

15
25 2

4
23

i~ii.i
~i~i

16
22 21

17
~:

!!i!i
i!i!i

1
8

17
:::

:::
:::

.

~~
~{
·~
t

19
14

iii!
i!i!~

13 12

2
0

n
!t!~

!!!
10 9 8

:i!i!
!i!ii

:
21

7 6 5

iiiiJ
I

2
2

4 3

2
3

2 1 0 lO
O

T
16

1 I
~I
~

1
1

1
1

1
1

12
~

~
~
~
~

2
2

':I
3

1
4

....
..

~i
~
,
~
~

~I
~

I~
~

~
1
6
;
~
1
6
6
~

7
1 T7

,7
II

7
7

:.0
1

2
3

4
5

16
7

18
Q

14
5

Ib
ti

lH
~

7
8

'9
o

1
11

1
~

1M
Y

"1
?

~
4:

5
.t

l
~

2
.3

6.
1_

C
H

R
'

0
1

2
3

4
5

6
7

8
9

1
0

11
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
21

2
2

2
3

24
2

5
2

6
2

7
2

8
2

9
3

0
31

.3
2

33
3

4
3

5
·3

6
3

7
13

8 3
9

I

w w

®

0
0

V
ID

E
O

G
R

A
P

H
IC

S
C

H
A

R
T

P
R

O
G

R
A

M
.

-
J
.

-
J
.

-
J
.

i\
) s:: n> 'U o -

-
h

C
O
~ n> 'U ::T o· en o ~ ~ o o ::T n> ~ n> 0­ CD ~ en

-
re

se
rv

e
d

fo
r

g
ra

p
h

ic
co

n
tr

o
l

ch
a

ra
ct

e
rs

11.2 Handling of attributes
When operating with ordinary text and graphics, the computer handles attributes
without having to display control characters (for graphics and the like) on the screen.
Instead, all information of this kind is saved in the attribute storage, which can contain
information about

• Colour of the character
• Background colour
• Steady character
• Flashing character
• Double character height
• Double character width
• Underlining
• Concealed text
• VIDEOTEX graphics
• Soft-scroll; to be generated from disk

If ATTRIBUTE 1 has been specified, all control characters will be stored in a separate
attribute memory. Then colours etc. can be changed one by one without affecting the
content of the character memory. Since the control character and the actual character
are in parallel in the memory, they will be displayed in the same position on the screen.

11.3 Programming examples
The difference between ATTRIBUTE 0 and ATTRIBUTE 1 is evident from the two
examples below. Each control character takes up one position on the screen when
ATTRIBUTE 0 is used.

134 70876-734

11.4 Instructions (page 81)

ATTRIBUTE

Format

Function

PRINT

Format

Function

ATTRIBUTEn

Specifies whether the attributes of text and graphics shall be
stored in the character memory (compatible with ABC 800 if no
attribute is specified) or in the attribute memory. The instruction
also controls the function soft-scroll.

ATTRIBUTE 0 Mode compatible with ABC 800. The attributes
of text and graphics are stored in the character
memory.

ATTRIBUTE 1 The attributes of text and graphics are stored in
the attribute memory.

ATTRIBUTE 2 Activates soft-scroll.

Different attributes can be combined, e.g. 3, which will engage
both the soft-scroll function and storing in the attribute memory.

The drive routine SOFTOPT.REL that handles attribute 2 is gene­
rated from a disk.

PRINT [CUR(L,N)]argument [;argument; ...]"text"

Used for printing text and graphics. The arguments control the
colour selection etc. A G at the beginning of the colour selection
argument (e.g. GRED) sets the line to the graphic mode so that all
characters within quotes are interpreted as being graphics (see
the ASCII table). If CUR (L,N) is specified, the picture is drawn
from the starting point at line L (0-24), position N (0-39/79).

The following arguments are available:

70876-735

RED, GRN, VEL,
BLU, MAG, CVA,
WHT

GRED, GGRN,
GVEL, GBLU,
GMAG, GCVA,
GWTH, GBLK

FLSH,STDV

EL,DBLE

NRML

Alphanumeric colour characters

Colour graphics and capital letters

Flashing, steady

Double width and height

Normal width and height

135

GCON, GSEP

NWBG, BLBG

GHOL, GREL

HIDE

ULN, NULN

Continuous, separated graphics
N.B. Cannot be generated on ABC 806

New background, black background

Hold, release graphics
N.B. Cannot be generated on ABC 806

Concealed text/graphics

Underline, not underline

The arguments can also be given with CHR$.
The control arguments should be given in the following order:

PRINT <background colour argument> <argument for new
background colour> <text colour argument> "Text" <argument
for black background>

Example

The results will be a yellow dog with red background colour.

The instructions TXPOINT, SET DOT, CLR DOT, and DOT in an ABC 800 program
cause no action on the screen of ABC 806. Instead you will get an error message, see
chapter 15.

12 High Resolution Graphics (page83)

High resolution graphics can be displayed in three different ways.

• Graphics according to ABC 800, where colours are selected by means of the table
in section 12.4. Resolution is 240x240 picture elements (pixels).

• Graphics freely selected among four colours. Text and graphics can be mixed on
the screen and they can be assigned different priorities. Resolution is 512x240
pixels.

• Graphics freely selected among 2x8 colours. Text and graphics can be mixed on
the screen and they can be assigned different priorities. Resolution is 256x240
pixels.

Each pixel can be addressed independent of the others by specifying its X and Y
coordinates. The origin of the picture is in the lower, left-hand corner and the positions
are numbered from ato 239, alt. 256/512 and 0 to 239.

136 10816-136

239

y

I
I
I

I

o
o x 239

256/512

The screen is adjusted to obtain the following relations between height and width:

Height (mm) Width (mm) W/H

ABC 812/ABC 815 187 ±2 225 ±2 1.2

Which resolution is obtained (256 or 512 pixels) is dependent on the number of colours
selected. If you select no more than four colours, the resolution will be 512x240 pixels.

Example FGCTL GRED+ RED+ BLU+GRN
o 1 2 3

After selection, the colours are assigned the serial numbers 0-3, which are used for the
instructions FGFILL, FGLINE and FGPAINT.

The letter G before the name of the colour means that this is the foregound colour. As
described above, the instruction FGFILL X, Y,0 will assign priority 1 to the graphics, i.e.
the graphics will be in front of any text displayed. On the other hand, if FGFILL X, Y, 1 is
specified, the graphics will be behind the text.

If more than four colours are selected, the resolution will be 256x240 pixels and
colours in the range 0 to 15 can be used.

Example

10816-137

FGCTL RED+ GRN+ GBLU...GWHT
o 1 2 15

137

You can use the instruction FGPICTURE to select a certain picture to be displayed
while the computer is generating another picture.

Example FGPICTURE 0, 1, 2

In this example picture 1 will be displayed while picture 0 is generated. The last digit
denotes the number of pictures.

However, a picture is not displayed automatically. You must give the instruction FGCTL
to display the picture on the screen. If FGPICTURE is not specified, picture 0 will be
displayed.

The high resolution graphics can be used together with text and graphics (according to
chapter 11), since the information is stored in separate memories.

If the high resolution graphics is not used, the whole graphics memory space (128
Kbyte) can be used as data storage or RAM-floppy.

12.1 High resolution graphics on ABC 815
To display high resolution graphics on ABC 815, you must state covering graphics in
the colour selection command, e.g. FGCTL RED + GBLU. Note that even the colour
selection command GBLK will result in visible graphics on a monochrome screen.

12.2 Instructions (Page 84)

The general instructions below are applicable.

• The colour number is a number from 0 to 3 all. 0 to 15. When using a mode
compatible with ABC 800 the meaning of the number can be seen in section 12.4.

• The colour number is optional. If no colour number is given, the previous colour
number will be used.

FGCTL

Format

Function

138

FGCTL colour selection command (compatible mode)
FGCTL colour + colour .

Selects the colour combination to be used. In compatible mode
the colour selection command is controlled by a number between
0-255, according to 12.4. The choise between 256/512 pixels/line
is defined by the selection of colours.

10816-138

Foreground colour

The following colours are available

Background colour

Example

BLK
RED
GRN
VEL
BLU
MAG
CVA
WHT

FGCTL 132

GBLK
GRED
GGRN
GVEL
GBLU
GMAG
GCYA
GWHT

Black
Red
Green
Yellow
Blue
Magenta
Cyanide
White

FGFILL

Format

Function

FGLINE

Format

Function

FGPAINT

Format

Function

FGPICTURE

Format

Function

Example

70876-739

Compatible mode with colour combination 132.

FGCTL BLK+RED+GCVA+GVEL

512 pixels per line with four colour parameters.

FGCTL BLK+RED+BLU+WHT+GRED...

256 pixels per line with 16 colour parameters.

FGFILL x,y[,colour number]

Fills a rectangle from the previous position to the position
indicated by the coordinates (x,y)

FGLINE x,y[,colour number]

Draws a line from the previous position to the position indicated by
the coordinates (x,y).

FGPAINT x,y[,colour number]

Fills a closed area.

FGPICTURE No.1, No.2, number of pictures.

Controls which picture shall be displayed and which picture shall
be generated. This enables you to display one picture while
updating another one. The picture designated No.2 is displayed
whereas No. 1 is the picture to be updated. Pictures are num­
bered from 0 to 3. The number of pictures is designated by
figures 1 through 4.

FGPICTURE 2, 3, 4

Picture 3 is displayed while picture 2 is updated.
Four pictures are used.

139

CAUTIONI
The graphics memory will be erased if you shift to high resolution graphics
by using a colour selection command that is compatible with ABC 800.

FGPOINT

Format

Function

Example

Note

FGPOINT, function

Format

Function

Example

FGPOINT x,y[,colour number]

Will turn on a pixel in position x,y

FGPOINT 100, 100, 2

FGPOINT (x,y) assigns the colour number of pixel (x,y).

FGPOINT (x,y)

Assign the colour number of pixel (x,y)

FGPOINT (100,100)

According to the example above it will be 2.

12.3 Examples

140 10816-140

LvLin-nsoi

12.3 Animation mode (Page 85)

This section is not valid for ABC 806.

12.4 Colour Selection Table (Page86)

The colour selection command (according to the table below) is in the interval 0-255.

For colour selection commands 1-71 the colour 0 is displayed behind the text, whereas
colours 1-3 are displayed in front of the text.

In the interval 72-127 the colour 0 and the colour being the same as colour 0 are
displayed behind the text, whereas the other two colours are displayed in front of the
text.

From 128 upwards all high resolution graphics are displayed in front of the text.

See table on pages 86-88.

12.5 Examples (page89)

The examples are not applicable to ABC 806.

13 Function Keys (Page90)

The computer enables the use of special function codes. These are generated in
different ways dependent on which keyboard is used. The table below shows which
keys are to be operated on the different keyboards in order to generate the function
codes. A total of 32 different codes can be used to accomplish different, fixed functions
when you are programming. Examples of such functions are cursor movements,
change of pages or jump to a program module.

A programmer can assign various functions to the function keys, e.g. cursor move­
ments, jump to a program module etc. For assigning the same functions to ABC 802 as
those included in ABC 800, the following combinations are used.

ABC 77 and Value ABC 55
ABC 22

PF1 192 CTRL+1
PF2 193 CTRL+2
PF3 194 CTRL+3
PF4 195 CTRL+4
PF5 196 CTRL+5
PF6 197 CTRL+6
PF7 198 CTRL+7
PF8 199 CTRL+8

142 70876-742

ABC 77 and Value ABC 55
ABC 22

SHIFT +PF1 208 CTRL+SHIFT+1
SHIFT+PF2 209 CTRL+SHIFT+2
SHIFT+PF3 210 CTRL+SHIFT+3
SHIFT+PF4 211 CTRL+SHIFT+4
SHIFT+PF5 212 CTRL+SHIFT+5
SHIFT+PF6 213 CTRL+SHIFT+6
SHIFT+PF7 214 CTRL+SHIFT+7
SHIFT+PF8 215 CTRL+SHIFT+8

SHIFT +PF1 224 CTRL+SHIFT+0
SHIFT+PF2 225 CTRL+SHIFT+W
SHIFT+PF3 226 CTRL+SHIFT+E
SHIFT+PF4 227 CTRL+SHIFT+R
SHIFT+PF5 228 CTRL+SHIFT+ T
SHIFT+PF6 229 CTRL+SHIFT+Y
SHIFT+PF7 230 CTRL+SHIFT+U
SHIFT+PF8 231 CTRL+SHIFT+1

SHIFT +CTRL+PF1 240 CTRL+SHIFT+A
SHIFT +CTRL+PF2 241 CTRL+SHIFT+S
SHIFT +CTRL+PF3 242 CTRL+SHIFT+D
SHIFT +CTRL+PF4 243 CTRL+SHIFT+F
SHIFT +CTRL+PF5 244 CTRL+SHIFT+G
SHIFT +CTRL+PF6 245 CTRL+SHIFT+H
SHIFT +CTRL+PF7 246 CTRL+SHIFT+J
SHIFT +CTRL+PF8 247 CTRL+SHIFT+K

Example (ABC 55):
Functions PF1 to PF8 are obtained by simultaneous pressing of CTRL+ 1....8
SHIFT +PF1-PF8 is generated by pressing CTRL+SHIFT+1 8
CTRL+PF1-PF8 is generated by pressing CTRL+SHIFT+0 1
SHIFT +CTRL+PF1-PF8 is generated by pressing CTRL+SHIFT+A....K.

When a function key is pressed, a subroutine can be called as shown below:

Example

When d function key is pressed at INPUT or INPUT LINE, an error is generated. The
ERRCODE is 53. The program should contain a routine which handles error 53. To find
out which one of the function keys that was pressed, use the function SYS(6) and read
the character by means of GET.

70876-743 143

14 Differences in BASIC between
ABC 800 and ABC 80 (Page 91)

This section is not valid for ABC 806.

14 Differences in BASIC between
ABC 806 and ABC 800 (Page 91)

A program that has been written on ABC 806 and that includes any of the new
instructions, e.g. ATTRIBUTE, cannot be loaded into ABC 800.

The new instructions are:
ATTRIBUTE
FGCTL colour+colour
FGPICTURE
WIDTH

The instructions TXPOINT, SET DOT, CLR DOT and DOT in a program for ABC 800
cause no action on the screen of ABC 806. However, the error message 200 is
generated. See chapter 15.

16 Summary of Commands and
Instructions (Pages 96,97,104, and 105)

CLR DOT, DOT, SCR, SET DOT and TXPOINT are omitted.

ATTRIBUTE (page 95) (instruction) Page 135

Format

Function

FGPICTURE (page 98)

Format

Function

144

ATTRIBUTEn

Specifies whether the attributes of text and graphics shall be
stored in the attribute memory or in the character memory.
N.B. .
Is not ATTRIBUTE specified the storing will be in the character
memory.

Page 139

FGPICTURE no. 1, no. 2, number of pictures

Controls which picture shall be displayed and which picture shall
be generated.

10816-144

SYS (page 105)

Format

(function)

SYS(I°1f>)

Page 76

Function The system status as follows:
SYS(2) Total storage space
SYS(3) Program size
SYS(4) Remaining storage space
SYS(5) Keyboard flag
SYS(6) Puts back the last input character into the keyboard

buffer
SYS(8) Is -1 when a key is pressed
SYS(11) Starting adress of the program
SYS(12) Variable root

WIDTH (page 106)

Format

Function

(instruction)

WIDTH [#file number] number

Denotes number of characters per line.

Page 61

Appendix 1: BASIC II Errata (Page 108)

Appendix 1 is omitted.

10816-145 145

Appendix 2: The I/O ports of ABC 806 (Page 108)

Port Address bit Function Output Input
7 0 Decimal

ABC bus OOOXXOOO Input port 0 0
000XX001 Input port 1 1
000XX010 Input port 2 2
000XX111 1/0 RESET 7
OOOXXOOO Output port 0 0

000XX001 Output port 1 1
000XX010 Output port 2 2
000XX011 Output port 3 3
000XX100 Output port 4 4
000XX101 Output port 5 5

HR graphics 000XX110 HRC 6
000XX111 HRS 7

ABC bus XOUTSTB, XINSTB 0-31

DART 0010XXOO Printer data CH.A 32 32
0010XX01 Printer control CH.A 33 33
0010XX10 Keyboard data 34 34
0010XX11 Keyboard control 35 35

CRTC 00110XX1 Read register 49
VIDEO 00110100 Table of memory blocks 52 52

00110101 Attribute 53 53
00110111 Sync signal delay 55
00110111 FGCTL PROM+CLOCK 55

CRTC 00111XXO Write register address 56
00111XX1 Write register 57

SI0/2 010XXXOO V24 data CH.B 64 64
010XXX01 V24 control CH.B 65 65

CTC 011XXXOO Channel 0 96 96
011XXX01 Channel 1 97 97
011XXX10 Channel 2 98 98
011XXX11 Channel 3 99 99

ABC bus 1XXXXXXX XOUTSTB, XINSTB 128-255

Addresses not presented are not used
X = Don't care

146 10816-146

Appendix 3: Storage Disposition (Page 109)

ABC 806 Memory Map with Disk Drives

Decimal
address

Hexadecimal Octal
address address

FFFFH 377:377
FFOOH 377:000

FDOOH 375:000

FCOOH 374:000

FBOOH 373:000

FAOOH 372:000

F900H 371:000

F800H 370:000

F700H 367:000

F600H 366:000

F500H 365:000

65535
65280

64768

64512

64256

64000

63744

63488

63232

62976

62720

32768
31744
30720

28678

24576

I 64 kbyte Graphic/Data memory

I 64 kbyte Graphic/Data memory

Variables

System variables

--
DOSBUF7

DOSBUF6

DOSBUF5

DOSBUF4

DOSBUF3

DOSBUF2

DOSBUF1

DOSBUFO

32 kbyte RAM
Working memory

2 kbyte RAM I 2 kbyte PROM
Character memory ___~R_QT~p_h~c______

2 kbyte PROM
Printer/Terminal

4 kbyte PROM
DOS --

24 kbyte PROM
BASIC II

~

~

8000H
7COOH
7800H

7000H

6000H

200:000
174:000
170:000

160:000

140:000

The display storage (2 kbytes) is parallel with the system program for high resolution
graphics. The two areas of the memory do not interact. ABC 806 runs in a special mode
when the graphics storage is addressed. When the operating system CP/M is loaded
parts of the graphics storage is used.

If storage space for machine language routines is to be allocated, the following
addresses are changed:

• The pointer for the lowest memory address of a BASIC program (BOTTOM): 65292
• The pointer for the highest memory address of a BASIC program (TOP): 65294.

The graphics/data memory cannot be directly addressed in BASIC.

70876-747 147

Appendix 4: Keyboard Layout, ASCII Codes
(Page 111)

88
88
BB
BEJ

Alphanumeric
keys Function

keys Numeric
keys

Alphanumeric
keys

148

ABC 22

Function
keys

Numeric
keys

70876-748

Codes obtained from the keyboard

ASCII CTRL SHIFT Key ASCII Function
code name

0 X @ NUL Time filler character
1 X A SOH
2 X B STX
3 X C ETX Stops execution
4 X D EOT
5 X E ENQ
6 X F ACK
7 X G BEL "Beep" in the loudspeaker
8 X H BS *) "~" key
9 X I HT *) "~" key

10 X J LF Line feed
11 X K VT
12 X L FF *) Erases screen
13 X M CR *) "RETURN" key
14 X N SO
15 X 0 SI
16 X P DLE
17 X Q DC1
18 X R DC2
19 X S DC3 Steps one program instruction
20 X T DC4
21 X U NAK
22 X V SYN
23 X W ETB
24 X X CAN *) Deletes entered line
25 X Y EM
26 X Z SUB
27 X [ESC
28 X \ FS
29 X i GS
30 X = RS
31 X X 0 US

127 X < DEL Generates a filled square (.)

*) These characters affect the screen directly.

The following commands are used as control functions and are typed at the keyboard:

RETURN the DO IT command
CTRUC stops program execution

(NOTE! CTRUC twice, terminates execution)
CTRUH or ~ erases one character
CTRUI or~ used for editing
CTRUL clears the screen
CTRUS single step execution
CTRUXorCE erases the last entered line

70876-749 149

19 Index

112
112

20, 112
112

73,96
73,96
78,81

36,96
7

81
10
13

13,36,96
5,24

38,97
9, 15,39,97

9
3

26
, 68,97

82,97
82,97

26

CTRL/I
CTRL/L
CTRL/S
CTRL/X
CUR, function
CVT, function
CYA

D

DATA, instruction
Data
DBLE
Debugging
Declaration
DEF-FN, instruction
Device
DIGITS, instruction
DIM, instruction
Dimension
Direct mode
Disk operating system
DI.V$, string function
DOT, instruction - graphics
DOUBLE, instruction
DOS

26,95
32
28

1
81

78,81
10

26,95

63,95
67,95

12
85
14
4

68,95
79, 112

63,95
25,95

A

B

c

ABS, mathematical function
ADD$, string function
Addition
Animation mode
AND, operator
Arithmetic expression
ASCII, string function
ASCII table
ATN, mathematical function
AUTO, command

$BAS
BAC, file extension
BAS, file extension
BASIC interpreter
BLBG
BLU
Buffer
BYE, command

CALL, function 73, 95
CHAIN, instruction 35, 95
Character strings 15
CHR$, string function 68, 95
CLEAR, command 26, 96
CLOSE, instruction 11, 35, 96
Closing a file 11
CLRDOT, instruction - graphics 82, 96
Colon 2,4
Colour 78
Colour selection command 86
Colour selection table 86
Commands 24
Comment 3
COMMON, instruction 35, 96
COMP%, string function 68, 96
CON, command 26, 96
Conditional jump 44,60
Constants 7
Conventions 24
Corrections of program 19
COS, mathematical function 63, 96
COUNT 10, 43, 98
CTRL/C 20,112
CTRL/H 112

E

ED, command
Editing
END, instruction
EOF, end-of-file
EQV, operator
Erase
ERASE, command
ERRCODE, function
Error handling
Error messages
Exclamation point
Execution
Exclusive OR (XOR), operator
EXP, mathematical function
Exponentiation
Expression
EXTEND, instruction
EXTEND mode

27,97
19,27
40,97

11
14
19

28,97
74,97

5
92

3
20

12,14
63,97

62
4

40,97
8,40

150

F

False 4 IF-THEN-ELSE, instruction 44,99
FGCTL 84,97 IMP, operator 14
FGFILL 84,98 Indexed variables 9
FGLINE 84,98 INP, function 74,99
FGPAINT 84,98 Input port 108
FGPOINT 85,98 INPUT, instruction 10,45,99
File extension 24 INPUT LINE, instruction 10,46,99
File handling 10 INSTR, string function 69,99
File name 24 Instructions 33
File number 5,10 INT, mathematical function 64,99
File pointer 10,52 INTEGER, instruction 46,99
FIX, mathematical function 63,98 Integer 12
FLOAT, instruction 12,40,98 Integer range 13
Floating point number 12 Integer arithmetics 13
Floating point number I/O 13 Integer suffix 8
FLSH 81 Interpreter 1
FN, function 74,98 I/O device 10
FNEND, instruction 38,98 I/O ports 108
FOR-TO-STEP, instruction 41,98
Functions, mathematical 62
Functions, string 67
Functions, other 72 J
Function keys 90, 112

Jump, conditional 44
Jump, unconditional 44

G

GBLU 81 K
GCON 81
GCYA 81 Key word 3
GET, instruction 42,98 KILL, instruction 47,99
GET£-COUNT, instruction 10,43,98
GGRN 81
GHOL 81
GMAG 81
GOSUB, instruction 43,99
GOTO, instruction 44,99 L
Graphics 78
GRED 81
GREL 81 LEFT$, string function 69,99
GRN 78,81 LEN, string function 00, 100
GSEP 81 LET, instruction 47, 100
GWHT 81 Line number 2
GYEL 81 LIST, command 28, 100

LOAD, command 29,100
LOG, mathematical function 64, 100
LOG10, mathematical
function 65, 100

H
Logical device 5
Logical expressions 4
Logical integer variables 14

HEX$, mathematical function 64,99 Logical operators 14
HIDE 81 Logical variables 14
High resolution graphics 83 Loop 41

151

M

MAG
Mathematical functions
Mathematical operations
Matrix indexing
Memory map
MERGE, command
MID$, string function
Mixing of data types
MOD, mathematical function
MUL$, string function
Multiple program line

N

78,81
62
12

9
109

29,100
70,100

8
65, 100
70, 100

4

p

Parentheses 12
PEEK, function 75, 102
PEEK2, function 75,1 02
PI, mathematical function 65, 102
Pixel 83
POKE, function 75, 102
POSIT, instruction 10, 52, 102
Precision 13, 40, 59
Prefix FN 8
PREPARE, instruction 10, 53, 102
Priority 12
Program lines 18
Program typing 18
PRINT, instruction 10,53, 103
PRINT, instruction - graphics 81, 103
PRINT USING, instruction 54,103
PUT, instruction 10, 57, 103

OCT$, mathematical function 65, 101
ON ERROR GOTO,
instruction 49, 101
ON-GOSUB, instruction 49, 101
ON-GOTO, instruction 50, 101
ON-RESTORE, instruction 50, 101
ON-RESUME, instruction 51, 102
OPEN, instruction 10, 51, 102
Opening a file 10
Opernnd 2
Operators, logical 14
Operators, relational 12, 45
Operator priority 12
OPTION BASE, instruction 9, 52, 102
OR, operator 14
OUT, function 75,102
Output port 108

NAME, instruction
Nested program loop
NEW, command
NEXT, instruction
NO EXTEND
NOT, operator
NO TRACE, instruction
NRML
NUM$, string function
Number ranges
Numeric values
Numeric variables
NWBG

o

48, 101
41

30, 101
42, 101
49, 101

14
48, 101

81
70, 101

7
12

7
81

R

RANDOMIZE, instruction
Ranges of numbers
READ, instruction
RED
Relational operators
Relational expression
REM, instruction
REN, command
RENUMBER
RESTORE, instruction
RESUME, instruction
RETURN, instruction
RETURN key
RIGHT$, string function
RND, mathematical function
Rounding
RUN, command

s

SAVE, command
SCR, command
SET DOT, instruction ­
graphics
SGN, mathematical function
SIN, mathematical function
SINGLE, instruction
SPACE$, string function
SOR, function

57,103
7

57, 103
78,81
12,45

4
58, 103
3), 103
30,103
58,103
59, 103
59,104

18,24
70,104
65,104

91
31, 104

32,104
25

82,104
66,104
66,104
59,104
71,104
66,104

152

