

INNEHALLSFBRTECKNING

I Anvisningar fiér éverfdring fran kassett till disk
II Foreword
111 FORTH on the ABCBO

v Excerpts from fig-FORTH Installation Manual

Copyright ARBRC-klubben 1

/

Anvisningar f6r overfdring frédn kassett till disk

Denna version av Fig-FORTH som ABC-klubben f&rvirvat rdttigheterna
till har utvecklats av docent Robert Johnsen vid Institutionen f&r
Fysikalisk Kemi, Uppsala universitet. Den kan kdras pd en standard
ABC-80 utrustad med 5-tums flexskiveutrustning. Programmet &r
skrivet i1 assembler och k&res under CMDINT.SYS.

Det &r vdr férhoppning att programvaran skall komma att utvecklas

och anpassas dven till andra system sdsom ABC-80 med enbart kassett,
8-tums flexskiveutrustning eller ABC-800. ABC-klubben stidller gérna
kdllkoden till férfogande till dem som vill gdra sddana utvecklingar.

Av praktiska sk&l distribueras promgramvaran pd kassett. P3 ABC-
kassett nr 4 ligger FORTH.ABS f&r ABC-80 utan extra minne. Den kan
kéras &ven pd ABC-80 med 32 K RAM men dirvid utnyttjas inte hela
RAM-minnet effektivt. Fo6r den utbyggda versionen finns FORT32.ABS
som l&ggs pd ABC-kassett nr 5. FORTH utnyttjar inte det vanliga
filhanteringssystemet pd ABC-80 utan lagrar program och data pa

s k screens. Varje screen upptar 3 sektorer pd disketten och lagras
fr o m spdr 3 sektor 1 och uppdt. Man bestimmer sj&lv hur stort
utrymme man vill reservera for screens. Om man reserverar plats

for 75 screens sd ryms hela programbibloteket, tiotalet egna screens
samt FORTH.ABS och CMDINT.SYS pad en skiva med enkel densitet.
Programbibloteket till FORTH distribueras i form av textfilerna
SCREEN.TXT och SCREEN2.TXT. SCREEN.TXT innehdller screens nr 3

till 36. SCREEN2.TXT som liggs pd& ABC-kassett nr 5 innehdller
screens nr 34 till 64 samt en fullstidndigare version av screen

nr 7. Screens nr 34 till 36 i SCREEN.TXT kommer att skrivas &ver

av andra screens fradn SCREEN2.TXT. Det kan vara skil att spara
screen 36 genom att flytta den till annan plats med nummer hoégre

dn 64.

For att ldgga upp screens pa disketten i det format de skall
ligga i anvédndes programmet DOSCREEN som ligger pd ABC-kassett
nr 4. Programmet 8verfdr screens frdn textfil SCREEN.TXT resp
SCREEN2.TXT till Forth-format samt skriver ett directory med
filnamnet "Forthscr.een". Ldser man det med vanliga LIB s& kan
man se hur mdnga sektorer dessa screens tar upp. Forthscr.een
dr ingen vanlig fil, man kan dd@rfér inte kopiera den med
COPYLIB. F6r att kopiera till annan diskett mdste man anvidnda
ndgot program som kopierar fran spdr till spdr i exakt samma
form som orginalet.

Copyright ABC-klubben

S8 hidr gdr det till att frdn de leverade filerna pa
kassett gdra en systemskiva for FORTH:

1.

2.
3.

-~ o

sverfdr forst de aktuella programmen pad ABC-kassetten
till diskett med hj&dlp av programmet CASDISK.
Formatera en ny diskett och s&tt den i drive O.

Sitt skivan med de frédn kassetten dverfdrda programmen
i drive 1 och gér RUN DOSCREEN.

Svara pa frédgan om det redan finns ett screen-directory
med tillré&cklig plats. Svara N f6r nej ndr du goér en
helt ny systemskiva.

Svara pa frédgan om det hdgsta screen-nummer du vill
reservera plats foér. RETURN sdtter standardvédrde
(default) till 75.

Ange filnamn SCREEN.TXT resp SCREEN2.TXT.

Kopiera d&refter over FORTH.ABS (eller FORTH32.ABS)
samt CMDINT.SYS till den nya systemskivan med

hjdlp av COPYLIB.

Finns det plats kan du l&dgga in &ven andra filer

t ex LIB, COPYLIB och COPYDISK som kan vara bra att

ha pd systemskivan.

Om du redan har en systemskiva med tillrdklig plats bdr du svara
J £6r ja i punkt 4. Frdgan i punkt 5 hoppas d& 6ver och &vriga
programfiler kommer att vara ofdr&dndrade varfsér du inte behdver
géra kopieringen enligt punkterna 7 och 8. Vill du utéka utrymmet
fér screens kommer alla gamla screens som ej skrivs &ver av nya
att vara kvar ofdrdndrade men du mdste kopiera in &vriga
programfiler enligt punkt 7 och 8.

For att kora FORTH sdttes systemskivan i drive 0 och du
skriver BYE. Ddrefter ger du kommandot FORTH (eller FORTH32
om du har extra minne och vill anvinda den versionen. Det

kan i

sd fall vara praktiskt att dépa om den versionen till

FORTH.ABS och den gamla till FORTH16.ABS.)

FORTH &r nu klar att anvdnda. Lycka till

Gunnar Tidner

3

Copyright ABC-klubben

\/

FOREWORD

The information presented on the following pages is the basic
instruction manual for running FORTH on the ABCS80. The GLOSSARY
has been taken from the fig—FORTH INSTALLATION MANUAL, provided
through the courtesy of the FORTH INTEREST GROUP, PO Box 1105,
San Carlos, CA 94070. Here you will find a description of each
word in the standard core vocabulary, with notes on which para-
meters are expected to be on the stack when the WORD (routine) is
called, and which values are found on the stack on return from
the routine.

An introduction to FORTH on the ABC80 is also presented. Here
you will find information about additional WORDS available in the
core in this ABC80 implementation, thus adding to the basic
glossary. An explanation of SCREENS and how to edit them is
included, with comments on the various editors available on this
system. And in conclusion, some remarks are made about the FORTH
assembler, contributed through the courtesy of John J. Cassady of
the FORTH INTEREST GROUP.

How does one learn to write programs in FORTH? BYTE magazine
devoted an entire issue to FORTH in August, 1980. Until recent-
ly, that was probably the best starting point for learning the
language. Last year Leo Brodie of FORTH, Inc. published a book
entitled "Starting FORTH". The book is filled with examples, it
is written in a pleasant, light-hearted, often joking, style, and
it presents almost everything you need to know to use and enjoy
FORTH. Another source book for FORTH is the instruction manual
for PET-FORTH. It is written in Swedish, and is concerned with
an implementation of fig-FORTH on the Commodore PET. Most of the
information applies as well to ABC80-FORTH. Some of the PET
enhancements are not (yet) found on the ABC80, others are found
under another name (and some ABC80 enhancements are not found on
the PET). The manual is well-written, contains some good exam—
ples and many valuable comments and explanations.

And finally, the FORTH INTEREST GROUP in California produces
FORTH DIMENSIONS, six issues per year. These newsletters contain
articles for both beginners and experienced FORTH programmers.
(A one year membership in the FORTH INTEREST GROUP, together with
air mail subscription to FORTH DIMENSIONS costs 27 US dollars).

Every FORTH system should contain a WARNING:

THIS PRODUCT IS HABIT-FORMING!
You may never write another program in BASIC!

Uppsala, 1982.06.07
Bob Johnsen

Copyright ABC-klubben 4q

FORTH on the ARCBO

i Introduction

1.1 General
1.2 poly-FORTH and fig-FORTH
1.7 Deviations from fig—-FORTH

1.%3.1 Screen size and block size
1.3.2 Direct input, KEY and EMIT

1.4 Additions to fig-FORTH

1.4.1 Pseudonyms poly—-FORTH <--* fig—-FORTH
1.4.2 Ease of handling (RER, LB, /7COMFILE/)
1.4.3 ABCBO enhancements

Constants, variables and colon

1.4.%3.1 Constants

XCUR, YCUR, CLOCE, NEXT, 7PR, RXD,
1.4.32.2 Variables

DISE~-ERRDR, #CR, FR-TYFE., DTIME
1.4.2.72 Colon definitions

VEDIT, CLEAR, RINARY, OCTAL, <CMOVE, PAGE,

CURADDR, FR-ON, FR-0OFF, ASCII-0OUT,

IN, BAUD, I",J, J°, ZDROF, 25WAF,

CCONSTANT, CVARIARLE

r

Starting up on the ARC8O

L2

Editing

Introduction

VEDIT

fig—-FORTH editor

Ending the editing session
poly-FORTH editor

(GRS I

L U 0 O

4 8080 assembler

S Additional comments

[Decscription of screens
7 References

An implementation of fig-FORTH on the ARCH8O

By Robert Johnsen
Uppsala
June 6, 1982

Copyright ABRC—~klubben

1 Introduction
1.1 General

FORTH was created by Charles Moore in the early 707s. It”s
prominent features are compactness, speed and good structure.
Since the noticeable deficiencies of microcomputers lie in their
limited memory capacity and limited speed, the FORTH language is
especially appreciated by microcomputer enthusiasts. The FORTH
language is especially useful for instrument and process control,
and games, is quite good for data-bases and is weakest in pure
"number-crunching"” applications.

The FORTH language consists of a collection of subroutines. Any
subroutine can be called and executed by merely writing its name.
In FORTH, the subroutines are called WORDS. A new WORD is con-
structed by starting its definition with a colon (:) followed by
a space, then the name of the new WORD. We then list the WORDS
called by the new definition, and end the definition with a
semicolon (;). Parameters are passed to and from subroutines on
the stack. (There is a separate stack for return addresses.)

1.2 poly-FORTH and fig-FORTH

There are two main "dialects"” of FORTH. poly-FORTH is the pro-
duct of Charles Moore”s company, FORTH, INC. This is available
for the ABC80 in a PROM version.

The second "dialect” is produced by the Forth Interest Group in
California, and 4is called fig-FORTH. This implementation is
derived from fig—-FORTH. The fig-FORTH editor enhancements are
taken from Kim Harris” contribution to FORTH DIMENSIONS II/6 and
the poly-FORTH-type editor, from a contribution by S.H.Daniel to
FORTH DIMENSIONS, 1III/3. The 8080 assembler was contributed by
John J. Cassady (the author of the 8080 implementation of fig-
FORTH) .

There are very few differences between poly-FORTH and fig-FORTH.
Both allow subroutine names (called WORDS) of up to 31 charac-
ters. In poly-FORTH the number of characters in the name is
recorded along with the first 3 characters, while fig-FORTH
records the number of characters in the name and ALL characters
in the name. This means that WORDS of the same length, beginning
with the same three letters, will confuse poly-FORTH, but not
fig-FORTH. Compilation time will be longer for fig-FORTH, but
execution times will be uneffected.

In fig-FORTH variables must be given values when defined. For
example, the variable SIZE, in fig-FORTH would be defined:

0 VARIABLE SIZE

while in poly-FORTH one would define

VARTABLE SIZE

Copyright ABC-klubben

1.3 Deviations from fig-FORTH

Although FORTH does not require the use of floppy discs, it would
be inconvenient to use it without discs for any but the "simplest
applications. The discs are divided into BLOCKS of 1024 bytes
(the appropriate number of sectors are logically "blocked to-
gether”). On a conventional large screen, a BLOCK is displayed
on 16 1lines of 80 characters. The limited size of the ABC80
screen makes this impossible, so that a BLOCK in this implementa-
tion is defined as 768 bytes.

A BLOCK containing program text is commonly called a SCREEN. An
application is commonly edited onto one or more SCREENS and then
loaded when the program is to be run. In the present implementa-
tion, a SCREEN is displayed on 21 lines of 36 characters, making
a total of 756 bytes used on a SCREEN. Although this arrangement
was forced on us due to the small size of the ABCS80 screen, it
has actually proved to be an advantage. A WORD definition may be
written as one long string of WORDS, just as a program may be
written in PASCAL as one long string of commands. In order to
make the program easier to understand, we prefer to break it up
into shorter lines, indenting DO loops and IF and ELSE state-
ments. The same approach is used in FORTH. The resulting "pro-
gram” is thus "tall and slim” rather than "short and broad". In
many cases you will find that a program that occupies a conven-
tional 1024 byte screen will fit just as well on the ABC80 756
byte screen!

When text (or numbers) are entered directly from the keyboard,
you may enter up to 80 characters without pressing RETURN, just
as you may enter lines up to 120 characters in BASIC.

1.4 Additions to fig-FORTH

A few WORDS have been defined identically under two different
names: the fig-FORTH name and the poly-FORTH name. For example,
the fig. word 0= is identical to the poly. name NOT, and the fig.
DP is identical to poly.”s H. Either word may be used in this
implementation.

The Swedish keyboard for the ABC80 lacks some characters used in
FORTH, noteably the square brackets. The three words, K, R and
ACOMPILER have a strange appearance on the ABC80. These words
have also been given the names LB (Left Bracket), RB (Right
Bracket) and /COMPILE/.

ABC80 enhancements

In addition to the above pseudonyms which have been encorporated
for the wuser”s convenience, many words not contained in the
original core vocabulary have been added to the core.

FORTH words are generally of three kinds: constants, variables

and colon definitions. When a CONSTANT is named, its value will
be put on the stack. When a VARIABLE is named, its address will

Copyright ABC-klubben

be put on the stack. When a COLON defined word is named, it will
be executed.

CONSTANTS

XCUR returns the value 65012, which you may recognize as the
address of the byte containing the column position of the cursor.

YCUR returns the value 65011 (row position of the cursor).

CLOCK returns 65008, the address of the lowest byte of the ABC80
three byte clock.

?PR returns O if the printer is not activated, 1 if a CENTRONICS
interfaced printer 1is activated and 2 if a serial interfaced
printer is activated.

NEXT, RXD and TXD are start addresses for machine code routines
which you might want to use in assembler coded definitions (more
will be said about this later).

VARIABLES

OUT is a standard fig-FORTH variable which is incremented for
each character that is out-put. This can be used as a tabulator
to produce an attractive layout for the computer output. A new
variable has been added to this implementation, called#CR. This
variable 1is incremented for each carriage return output, and is
intended for use in formatting the page length of the output.

PR-TYPE has been added to this implementation, and contains, by
default, the value 1, indicating that a CENTRONICS interfaced
printer is indicated when printing is requested. This wvariable
should be set to 2 if a serial interfaced printer is to be used.

DISK-ERROR 1is a variable which contains the error code returned
by the disc controller when an error is encountered in disc
access. This 1is automatically converted to an error message
which will appear on the screen when an error occurs.

COLON DEFINITIONS

New WORDS are defined in FORTH with colon definitions (WORDS
defined with the assembler begin with the word CODE, rather than
a colon). Since parameters are passed to and from routines via
the stack, it is common practice to illustrate the top-most
elements on the stack prior to calling the routine, as well as on
return from the routine. A colon definitions is thus appears as:

HEJ (n-3, n-2, n-1 -- m-2, m-1)
n-1, n-2 and n-3 are parameters passed to the routine, with n-1
top—most on the stack. m-1 and m-2 are the values returned by

the routine, with m-1 top—most on the stack. Although the num-
bering may vary from author to author, the order is always the

Copyright ABC-klubben

same: the top-most stack element is to the right in the group of
parameters.

VEDIT (screen ——)
is an elementary video editor. See below (under Editing) for
more details.

CLEAR (screengt—-)
fills a block with blanks. See Editing.

PAGE (——)
will clear the screen and home the cursor without issuing a
formfeed to the printer.

BINARY and OCTAL (--) .
change the calculation base to base 2 or base 8, just as the
standard words DECIMAL and HEX change the base to 10 or 16.

{CMOVE (source-addr, destination-addr, number --)
is a block move similar to CMOVE, but it moves the last byte
first. It is a stantard poly-FORTH word.

CURADDR (X, Y -- addr)
assumes that the X and Y screen coordinates (column and row) are
on the stack, and converts these to the video memory address for

that coordinate.

PR-ON (——)
informs the system that all future output should go both to the
screen and to the printer.

PR-OFF (--)
negates the PR-ON, and all future output goes only to the screen.

BAUD (baud-rate --)
uses the value on the top of the stack to set the baud rate for
serial output or input through the V24 contact.

ASCII-OUT (char —-)
sends out the character on the top of the stack in serial form
via pin 2 of the V24 contact.

ASCII-IN (-- char)
receives a character on pin 3 of the V24 contact. You can exit
this routine by pressing any key.

2DROP (n-2, n-1 -)
will drop the top two stack members.

2SWAP (n-4, n-3, n-2, n-1 -- n-2, n-1, n-4, n-3)
will swap stack members 1 and 2 with stack members 3 and 4.

0> (number -- true/false)

returns TRUE (1) if the top stack member is greater than O,
otherwise, FALSE (0).

Copyright ABC-klubben

I, J and J° (-- number)

are standard poly-FORTH words. They do not belong to the core
vocabulary in fig-FORTH, but they have been entered in the core
in this implementation.

CCONSTANT and CVARIABLE (usage: O CCONSTANT name)
define byte constants and variables in the same way that CONSTANT
and VARIABLE define cell values (2 byte values).

2 Starting up on the ABC80

Insert the program disc in drive O and type BYE to come into the
disc operative system. Next, type FORTH. When FORTH has fin-
ished 1loading (it takes about 8 seconds) the screen will be
cleared and the message Z80 FIG-FORTH 1.1 will appear. Replace
the program disc in DRO with the FORTH SCREENS disc and write 6
LOAD (FORTH sees the difference between capitals and small let-
ters, so you must write LOAD and not load). You have now added
some new words to your vocabulary, and you are informed that you
can add some new vocabularies by writing EDIT or POLYED for
editors, or ASM for an 8080 assembler.

FORTH has a very primative disc system. There is no file direc-
tory in the system. In order to review the contents of a disc,
you should use the word INDEX. By writing, for example, 3 20
INDEX, you will 1list on the screen the first line of each of
screens 3 through 20. It is a FORTH convention that each screen
begins with a comment line which should indicate the contents of
that screen. If you write, instead, PR-ON 3 20 INDEX PR-OFF you
can make a hard copy on your printer.

3 Editing

At first, it will be fun to try the various FORTH commands di-
rectly at the keyboard. You can enter definitions directly on
the keyboard, and use them until you turn off the ABC80. But you
cannot list a definition, if you forgot exactly how you wrote it.
It exists in the computer in compiled form, which is only a list
of addresses to the routines called by the definition. You will
soon find that it is much more convenient to edit the definitions
onto a screen, and then load the screen. If it is a good defini-
tion, you“ll want to use it again sometime. If it”s a bad defi-
nition (it doesn”t work the way you intended) you can easily
change it with the editor and try again.

VEDIT

An elementary video editor has been included in the core vocabu-
lary. It is intended primarily for the convenience of new users

who do not have the SCREENS disc available, as well as for those
who choose to change the screen format. (1If you have expanded
the screen to 80 characters, you might like to try the conven-
tional 64 character, 16 line screen). VEDIT should adapt itself
automatically to any new format implemented in the core.

to

Copyright ABC-klubben

5 VEDIT will initialize editing of screen 5. The existing screen
5 is listed with line numbers, and a white border appears on the
right of the screen, to show the editing limits. The cursor is
moved around the screen by the use of keys left-arrow (left), ¢
(up), right—arrow (right) and RETURN (down). Any printable
characters entered are placed on the screen. ctrl-E (with an
accent) will cause you to leave the editor.

It is best to list a screen (5 LIST, for example) before editing
it. If you are working with a newly formated disc, the screen
will be filled with ascii character 96. Blank the screen by
typing 5 CLEAR, and list it again. Then edit it with VEDIT.

The FORTH code for VEDIT and its related routines is included on
the SCREENS disc. It is constructed around a CASE statement,
and was authored by Major Robert A. Selzer. It was first pub-
lished in FORTH DIMENSIONS II/3. A greatly expanded version,
called FEDIT, appeared in FORTH DIMENSIONS II/5 (by Edgar H.
Fey), with important errata in FORTH DIMENSIONS III/5.

Fig—-FORTH editor

The fig-FORTH editor is rather primative, but two commands have
been added to it which make it very easy to use. Write EDIT and
this editor will be loaded from the disc. Write EDITOR and you
will be able to use the editor vocabulary. Find an unused screen
and list it. Screen 80 is probably free, so write 80 LIST. If
it is filled with rubbish, write 80 CLEAR. L will 1list the
screen again, and show that it is now clear. Lines are numbered
from O to 20:

NEW

Enter new text on a line by entering O NEW (for line O0). Write
in what you want (up to 36 characters) and RETURN. You can
continue directly now, entering text on line 1, or you can press
RETURN to leave the NEW mode. NEW replaces existing text on a
line, unless you press RETURN at the very beginning of the line.

The first line of a screen should be a comment line, which starts
with (followed by a blank, then the comment text, and ended with
a).

UNDER

This command will allow you to squeeze in a new line wunder an
existing line, without replacing existing text. The last 1line
(the old line numbered 20) will disappear forever. O UNDER will
let you enter a new line 1l: the old line 1 will be moved down to
line 2, etc. After RETURN you can continue to squeeze in more

lines. An immediate RETURN will cause you to leave the UNDER
mode.

N

Copyright ABC-klubben

Ending the editing session

On the first free line after your definitions on a screen, write
3S. When the screen is later loaded, this FORTH word, ;S, will
cause loading to cease. After this word, you can write anything
you like on the screen, and it will not be loaded. A few expla-
natory comments and the date might be nice to have there, for
instance. Now write FLUSH and the newly edited screen will be
copied onto the disc.

The poly-FORTH editor

This editor has many useful functions not found in the fig-FORTH
editor. You can Find a given string directly on a screen: you
can Delete a string, or Replace a string, and even Search through
the current screen and subsequent screens after all occurances of
a given string. Its functions and uses are well described in
Brodie”s excellent book, Starting FORTH.

4 8080 assembler

An assembler is included, which uses the 8080 mnemonics, and the
typical FORTH post-fix notation. An example of its use is in-
cluded on the FORTH SCREENS disc. An assembler definition of a
WORD must end in a jump to the inner interpreter. The address of
the inner interpreter is NEXT, which is a CONSTANT in this imple-
mentation. RXD and TXD are CONSTANTS which are equal to the
start addresses of the routines for serial input and output. In
an assembler definition you can put the ASCII character to be
sent into register E and write TXD CALL. Or write RXD CALL and
you will find the ASCII character received in the E register. AN
ASSEBLER ROUTINE MUST PRESERVE THE BC REGISTER PAIR.

5 Additional comments

Disc formatting

The discs used on this system should be formatted with DOSGEN,F.
A single density disc has tracks O to 39, each track containing

sectors O to 7. The BLOCK, track, sector organization is as
follows:

12

Copyright ABC-klubben

BLOCK DRIVE TRACK SECTOR

1 0 3 1

2

3

2 3 4

5

6

3 3 7

4 0

1

2

98 0 39 4

5

6

99 1 3 1
2, etc.

A double density disc contains 80 tracks, with 8 sectors per
track. Blocks 1 to 205 are laid out consecutively. The system
assumes single density discs by default. A double density FORTH
SCREENS disc will be read properly until you address screen 99 or
greater. At that time the system will fetch the block from DR1.
In order to prevent this you must enter 1 DENSITY ! before add-
ressing a screen number greater than 98.

Notice that in order to avoid splitting a screen between two
discs one sector (for single density) is unused at the end of

each disc.

Serial printer connection

The cord connecting the V24 contact on the ABC80 and a serial
interfaced printer should have the following connections:

V24 printer

pin 2 -~ > pin 3 transmission

pin 5 {-—————----—- pin 20 printer ready
pin 7 -—- pin 7 signal ground

For serial output (to HIPLOT, for example) transmission is from
pin 2 and signal ground on pin 7. No check for device ready is
made in the ASCII-OUT routine.

For serial input (from HIPAD, for example) reception is on pin 3,
with signal ground on pin 7. ASCII-IN waits for the start bit,
then counts in 8 serial bits and pushes the value onto the stack.
If something goes wrong, and no start bit arrives, you can inter-
rupt the routine by pressing any key.

Ports may be addressed in FORTH with the words
PE (port# — n)
P! (n, port¥# —)

3

Copyright ABC-klubben

Loreen
4 - 5

& - 7

8

Q

10

11

12 14
15

16 — 20
21
Copyright

Description
Title screen must be included

Error messages — reported when error occurs if WARNING
is set to 1, as it is by default. (Set WARNING to O if
a disc without error messages on blocks 4 and 5 is
placed in DRO.) Line 1% of screen 4 is printed by

writing 15 MESSAGE.

My standard starting screens. Initializes things 1
usually want available. If error occurs when loading a
screen, write WHERE.

Notice the defining word LOADED-RY.

If you define a number of words using FORTH assembler,
it would be a good idea to load the assembler when
starting up the system.

Notice also the definition of the word ASCII. It
allows vou to write in a program, for example, ASCII A,
and to get the value 65 on the stack.

Frint a copy of the screen on a printer. The name of
the colon definition on line 4 is ascii character 127
(ctrlwé), which is a non—-printing character.

Illustrates temporary storage on return stack (line 3)
and temporary use of current dictionary space for
storage.

A printing version of INDEX.
List screens on printer, 2 per page with message.

DRO~->DR1 is used to produce a back-up disc of screens
and DR1->*DRCO has a similar function. Used in the form
10 20 DRO-:*DR1 to copy screens 10 to 20 from DRO to
DR1.

Memory dump routines. F2769 20 DUMP will dump the
first 20 bytes, starting at location 32769, on the
screen, 8 locations per line. 32769 20 DUMFA will also
dump the first 20 bytes, but will start at 2768, which

is the first lower address that is divisible by 8.

Loading screen for the poly—-FORTH editor. This program
was submitted to FORTH DIMENSIONS (III/Z, page 80) by
S.H. Daniel

poly-FORTH editor definitions. E on screen 20 ié taken
frrom BRODIE®s book.)! puts) at next-to-last place on
the current line (see the index listing).

I I8 READ.SECTOR will copy sector 2, track I8 to the
2856 byte buffer starting at &2720. The address, 2720,
will be left on the stack. Inspect a sector by using
READ.SECTOR, followed by 256 DUMF.

ABRC—-klubben
14

-y

41

4=

47

- 40

- 46

3038 WRITE.SECTOR will copy the 256 bytes in the buffer
starting at 62720 onto sector I of track 38. Evperi-
ment (carefully) with the directory tracks or bit map,
if you like.

An example of how a program may ask for an input number
(interactive input).

The loading screen for the fig-FORTH editor.

The fig-FORTH editor definitions as taken directly from
the Installation Manual., with a few changes appropriate
to the ARCHBO screen size.

tig-FORTH editor extensions, NEW and UNDER, as proposed
by Kim Harris in FORTH DIMENSIONS II/6.

Loading screen for the 8080 assembler. Notice the
"dummy" definition of ASM. It is & good habit to
always start a session with FORTH by loading screen 6

(which continues onto screen 7). As mentioned pre-
viously, these screens contain additional conveniences
which I generally want available. Among other things,

the defining word, LOADED-RY is constructed there, and
used to define the word ASM. When I later type ASM I
cause screen 42 to be loaded. This screen re-defines
ASM, and also loads the assembler. When I write a new
definition, using assembler mnemonics, I always start
the screen with ASM. When that screen is later loaded,
it will cause the assembler to be loaded, before the
new word is defined. If the assembler has already been
loaded, the definition of ASM on screen 42 will prevent
an additional loading of the assembler.

The 8080 assembler, as contributed by John Cassady of
the FORTH Interest Group.

Examples of the use of the 8080 assembler. CODE is
used to start the definition (instead of the colon) and
Ci ends the definition (instead of the semi-colon).
The first example is the definition of CSWAF, which
fills the same function as the BASIC instruction SWAP:
it swaps the first and second bytes of a two-byte
integer. For example, HEX 1234 CSWAF . will produce
3412 as output.

The second example is for the word LCFOLD, which con—
verts lower case letters to upper case. Try this on
the text on screen &2. 62 BLOCE 736 LCFOLD 62 LIST
will display screen 62 in only capital letters. Notice
the use of FORTH program structure together with assem-
bler mnemonics.

Copyright ABC-klubben

48 Another example of the use of the assembler. The word
STATUS is defined. The hex value 80 is sent to the
command port with hex address FO. Then the status port
FI is read until the value received matches the numer-—
ical value that was on the stack when STATUS was call-
ed. The subroutine DELAY is never called from FORTH,
only from another assembler routine. It therefore
concludes with RET. S8TATUS, on the other hand, is
called from FORTH, and is therefore concluded with Cj.

49 — 50 An example of the use of ASCII-OUT to drive the plotter
HIFLOT. The baud rate is 2600, which is set on screen
S50. Words defining one step movement of the pen are
defined on the first half of screen 49. The second
half of this screen contains words for longer pen
movements. 5 NS will move the pen 35 steps North, for
example.

CIRCLE, on screen 50, draws an octagon of any desired
size, and DRAW draws the cirle, then moves the pen to
the far—side of the circle.

rJ

This is a direct translation from BASIC to FORTH of
the algorithm to produce the best "staight" line with a
displacement X, Y. The word, BESTLINE, has such a long
definition, that it stretches over two screens. This
is very poor FORTH style! A FORTH word should rarely
be more than a few lines long.

93 Using ASCII-IN to drive the Houston digitizer, HIFAD.
15 ascii characters are accepted from HIFPAD, and stored
on the stack, in the word HIFAD, and they are printed
out by the word FRFPAD.

Routines For setting and reading the ABRCBO clock. A
temporary copy of the clock is saved, and manipulated,
in the four byte variable MYCLOCE. INVERT.CLOCKE cor-—
rects the default in the clock decrementing routine in
the BASIC rom, and inverts the three bytes. SET.TIME
sets the clock, and READ.TIME reads the clock, using
READ. CLOCK to copy the clock into MYCLOCK until
CHECKE.CLOCE shows that the clock hadn®t changed while
being read.

=54 -

i
]

Sé6 There is no case statement (multiple choice branching)
in FORTH. This version of CASE: is taken from BYTE,
August 1980. The case numbering is from zero, sequen-—
tially upward. In the example, a branching word ANIMAL
is defined. If we type O ANIMAL, then the first rou-
tine named after ANIMAL in line 11 should be executed.
The routines®™ names do not have to begin with numbers,
as OFET, 1PET, 2PET: what is important is the order in
which they follow the branching word (ANIMAL).

/6
Copyright ARC-klubben

57 — 59
o0 ~ A2
63 ~ b4
Temporary

FORTH DIMENSIONS devoted an entire issure (1I1/3) to the
CASE structure, and various suggestions for
implementing it in FORTH. Screen 37 presents Major
Robert Selrer’s suggestion. It’s use is seen on screen
39, in the example of a video editor, called VEDIT.
The proposed CASE construct has the advantage of not
requiring sequential case numbering, and the
disadvantage of requiring a THEN for each use of CASE.
However, his example, VEDIT (with supporting
definitions on screen 58) is excellent. In a later
issue of FORTH DIMENSIONS (II1/35) Edgar H. Fey presented
a greatly eupanded video editor constructed on the
principles outlined by Selzer.

An implementation of graphics on the ARCBO, It
controls a matrix of 78 (horizontal =X) by 72
(vertical=Y).

45 52 SET.DOT will set a dot at X=45 and Y=3Z.
45 52 CLEAR.DOT will clear that dot.

435 52 ?DOT will be TRUE (£:0) if the dot at X=45, Y=52
is set, otherwise, FALSE(0Q).

The above definitions are found on screen 60. A few
examples are found on screen 61, and some commentary
text., on screen 62.

Y/N is a word that is used to ask a gquestion requiring
a vyes/no answer in a program, and wait for the reply.
A very simple example of its use is found on screen 64.

SCIreens, included on the first cassette, but over-

written by the second cassette.

4

-
3

Non—destructive stack print, adapted from BRODIE’s
book.

F«. an example from BRODIE

This screen shows the FORTH-79 definition of some FORTH
words. Before trying to use Brodie’s examples which
require CREATE, you should enter this definition, since
fig-FORTH's CREATE works differently than poly-FORTH s
CREATE. But do not enter this version of CREATE before
loading the assembler, since the assembler is built
around fig-FORTH"s CREATE!

I7

Copyright ARC—klubben

1
bl

—

i,

o

14,

e REFERERSL I ST e e

Eernztein, Mark 1982, The Computer Toolbox. — Brte, March 1782, KOG
CSEREDD instrumentation, contral fart?

Borden, DJd. 197%, GLOSEARY. - FD 574 p 44, FOD CSHEREODY e improved
HELF fart?

EBrodie, Leo 1981, Starting FORTH. - Frentice Hall. KOD (SaEREOD
general (book?

Eurfmn. M, 1982, The Game of Reversze. — FO 11175, KOD (SEkEOD:

Feverse y Qame

Burton, Michael 178 Increasing +ig-FORTH Disk mRcces
ITI-2. KOD CSEREQOD) r skew factor for sectran, CFAM

Butler, David 1782, & Video Version of Master Mind. - FD II11.73. FOD
CSERKODY : Master Mind, game fartl

Jaotn J. 1979, fig-FORTH for 5828 Ascsembly Source Listing
1.1. = Farth Interest Group. KOD (SEREODY : source code,
ZFSM Cman

ﬁaaaadV, John J. 1986, 26238 Assembler. — private, KOD (SaERKOD
azzembler, SB38 ipriuv)

ole, Barry &. 1981, A Stack Diagram Utility, - FO II1-1 p Z23. KO0
CSERKODY s stack diagram Cartd

Gariel, S.H. 1%21, The Forth, Inc., Line Editor. - FD 11172 p 28.
EOD (SERKODY: editor, poly—-FORTH {art?

. Fawm acd E. % Siéﬁ?i;;, Mithael E. 1788, Faﬁrth generation

uages. — International Laboratory, March 1788@. KOD CSEREDDD

ral

Fev, Edgar H. 1738, FEDIT. - FD I1/5 pldl. KOD (S&RKODY @ FEDIT,
editor, errata in FD 11154 and FO II1/5 (art)y, see WEDIT fart?

Frotzzon, Richard 1%81. Write Your Own FORTH Interpreter. -

Microcomputing, Feb. 1781. KOD (SERKODY: interpreter, mini—-FORTH
At

Fritzzon, Richard 1281, Write Your Own Pseudo-FORTH Compiler. -
Fiycrocomputing, March 1781, KOD ¢SERKOD): compiler, mini—-FORTH
aetD

2. Transfer of Forth Screens by Modem. - FD II11°2 p
k00?2 modem, transfer, communication (arts

. Eim {%88., FORTH Extenzibility, Or How to krite a2 Compiler in
] words or Less. - Brte, Aug. 1786. KOD (SERKODY : excellent
ro creating new detining words fart?

, Kim 1%21. Some Mew Editor Extensionz. — FD 1178 p 155, TANIK
FiODs s RMEW, UMDER Cartd

I -
T

“Mz.unn, Glen B. 1731, Elements of 2 FORTH Data Base Design. - FOO ITIAZ.
rOD CSERKODY r data base Carto

'8

t

(X
£

)
o

[]
o

P
-1

[N

(XX
0

Hogarn, Thom 1%32. Discowver FORTH. - Osborne McGraw-Hill. KObD
CSaREODY: general (hookd

Jame=z, John S. 1%88. What is FORTH? & Tutorial Introduction. - Brte,
Aug. 1788, EOD (SEREODY : general {art?

Laxen, Henr» [?82. ~ Technical Tutorial: Table Lookup Examples. - FO
IT1- 5. KOD (SEREDD): table lookup (art)

« Tany 1732, The 31 Game, - FO 11175, KOO (S&RKOD): 31, game

Loeliger. R.G. 1¥81. Threaded Interoretive Languages. - Exte
Books TcGraw-Hill, KOD (S&EREGODY: general, 288 (book?

Mites, William 0. 1781, Using ENCLOSE on 8628. - FD 11172, Kob
CSEREODY ¢ EMCLOSE for blocks »=258 (art)

Milier, A. Richard & Miller, Jill 1788, BREAKFORTH Into FORTH. - Brte,

Aug. 19388, KOD (SERKOD»: BREAKFORTH, game, MMSFORTH fart?

Fetersen, Joel V. 1731, Recursion and the é&ckermann Function. - FD
I3 p B7% KOD (S&ERKOD): recursion, MYSELF, aAckermann fart)

Fagsdale, William F. 1978, HELF . - FD 12 p 1%. KOD (S&RKOD)»: HELF
tart

Ragsdale, William F. 1558 Imztallation Manual., - Forth Interest Group.
KOD (S&RKODY: glossary, model, editor {(man?

FKeece, Peter 17382, & Disk Operating System for FORTH. - Brte, april,
1932 p 322. KOD (S&ARKOD): DOS, operating system (art)

Zelzer, Maior Robert &. 1788, VEDIT. - FD I1.-3. KOD (SaRKOD): VEDIT,

video editor; CASE {art)

. Svstems guide to fig-FORTH. - Mountain Yiew Press. Al
(SERKODY : general, inner workings (book)

van der Eidk, Paul 1981, Optimizing Dictionary Searches. - FD 1112 P
ST KOD (S&RKODY: link-field First fart)

van der Eidk, Paul 1%81. Tracing Colon Definitions. - FD 1112 p S8.
KOD CS&RKODY : TRACE Cart?

White, Art 1982, Forth for the MNovice, - Microcomputing, Feb. 1982,
KOD CS&SRKOD): How it works fart)

Williams, Gregg 1%388. Forth Glossary. - Byrte, Aug. 1928. Kob
CSERKODYr glossary, general {art)

19

fig~-FORTH INSTALLATION MANUAL

1.0 INTRODUCTION

2.0 DISTRIBUTION

3.0 MODEL ORGANIZATION
4.0 INSTALLATION

5.0 MEMORY MAP

6.0 .DOCUMENTATION SUMMARY

1.0 INTRODUCTION

The fig-FORTH implementation project occurrved
because a key group of Forth fanciers wished
to make this valuable tool available on a
personal computing level. In June of 1978,
we gathered a team of nine systems level
programmers, each with a particular target
computer. The charter of the group was to
translate a common model of Forth into assem-
bly language listings for each computer. It
was agreed that the group’s work would be
distributed in the public domain by FIG. This
publication series is the conclusion of the
wvork.

2.0 DISTRIBUTION

All publications of the Forth Interest Group
are public domain. They may be further
reproduced and distributed by inclusion

of this credit notice:

This publication has been made available
by the Forth Interest Group,

P. 0. Box 1105, San Carlos, Ca 94070

We intend that our primary recipients of the
Implementation Project be computer users
groups, libraries, and commercial vendors.

We expect that each will further customize for
particular computers and redistribute. No
restrictions are placed on cost, but we

expect faithfulness to the model. FIG does
not intend to distribute machine readable
versions, as that entails customization,
revision, and customer support better reserved
for commerical vendors.

Of course, another broad group of recipients
of the work is the community of personal
computer users. We hope that our publications
will aid in the use of Forth and increase

the user expectation of the performance of
high level computer languages.

3.0 MODEL ORGINIZATION

The £fig-FORTH model deviates a bit from the
usual loading method of Forth. Existing
systems load about 2k bytes in object form
and then self-compile the resident system

(6 to 8 k bytes). This technique allows
customization within the high level portion,
but is impractical for new implementors.

Our model has 4 to 5 k bytes written as assem-
bler listings. The remainder may be compiled
typing in the Forth high-level source, by

more assembly source, or by disc compilation.
This method enhances transportability,
although the larger portion in assembly code
entails more effort. About 8k bytes of memory
is used plus 2 to 8k for workspace.

3.1 MODEL OVER-VIEW

The model consists of 7 distinct areas. They
occur sequentially from lov memory to high.

Boot-up parameters

Machine code definitions

High level utility definitions
Installation dependent code
High level definitions

System tools (optional)

RAM memory workspace

FORTH INTEREST GROUP ----- PO. Box 1105 ---- San Carlos, Ca. 94070

3.2 MODEL DETAILS
Boot-up Parameters

This area consists of 34 bytes containing a
jump to the cold start, jump to the warm
re-start and initial values for user variables
and registers. These values are altered as
you make permanent extensions to your
installation.

Machine Code Definitions

This area consists of about 600 to 800 bytes
of machine executable code in the form of
Forth word defintions. 1Its purpose is to
convert your computer into a standard Forth
stack computer. Above this code, the balance
of Forth contains a pseudo-code compiled of
"execution-addresses"” which are sequences

of the machine address of the "code-fields"
of other Forth definitions. All execution
ultimately refers to the machine code
definitions.

High-level Utility Definitions

These are colon-definitions, user variables,
constants, and variables that aliew you to
control the "Porth stack computer”". They
comprise the bulk of the system, enabling

you to execute and compile from the terminal.
If disc storage (or a RAM simulation of dise)
is available, you may also execute snd coampile
from this facility. Changes in the high-level
area are infrequent. They may be made thru
the assembler source listings.

Installation Dependent Code

This area is the only portion that need
change between different installations of the
same computer cpu. There are four code
fragments:

(KEY) Push the next ascii value (7 bits) -
from the terminal keystroke to the
computation stack and execute NEXT.

High 9 bits are zero. Do not echo this
character, especially a control character.

(EMIT) Pop the computation stack

(16 bit value). Display the low 7 bite
on the terminal device, then execute
NEXT. Control characters have their
natural functions.

(?7TERMINAL) For terminals with a bdreak
key, wait till released and push to

the computation stack 0001 if it was
found depressed; otherwise 0000.

Execute NEXT. If no break key 1s avail-
able, sense any key depression as a
break (sense but don’t wait for a key).
If both the above are unavailabdle,
simply push 0000 and execute NEXT.

(CR) Execute a terminal carriage
return and line feed. Execute NEXT.

When each of these words is executed, the
intepreter vectors from the definition
header to these code sequences. On

specific implementations it may be necessary
to preseve certain registers and observe
operating system protocols. Understand the
implementors methods in the listing before
proceeding!

R/W This colon-definition is the
standard linkage to your disc. It
requests the read or write of a disc
sector. It usually requires supporting
code definitions. It may consist of
self-contained code or call ROM monitor
code. When R/W is assembled, its code
field address is inserted once in

BLOCK and once in BUFFER.

An alternate version of R/W is
included that simulates disc storage
in RAM. If you have over 16 k bytes
this is practical for startup and
limited operation with cassette.

High-level Definitions

The next section contains about 30 definit-
tdons involving user interaction: compiling
atide, finding, forgetting, listing, and
nuaber formating. These definitions are
placed above the installation dependent code
to facilitate modification. That is, once
your full system is iup, you may FORGET part
of the high-level and re-compile altered
definitions from disc.

Sytsem Tools

A text editor and machine code assembler are
normally resident. We are including a sample
aditor, end hope to provide Forth assemblers.
The editor is compiled from the terminal

the first time, and then used to place the
editor and assembler source code on disc.

It is essential that you regard the assembly
listing as just a way to get Porth installed
on your system. Additions and changes must
be planned and tested at the usual Forth high
level and then the assmbly routimes updated.
Porth work planned and executed only at an
assembly level tends to be non-portable, and
confusing.

RAM Workspace

For a single user system, at least 2k bytes
must be available above the compiled system
(the dictionary). A 16k byte total system

is most typical.

The RAM workspace contains the computation
and return stacks, user area, terminal input
buffer, disc buffer and compilation space
for the dictionary.

FORTH INTEREST GROUP ----- PO. Box 1105 ----- San Carlos, Ca. 94070

4.0 INSTALLATION

We see the following methods of getting a
functioning fig-FORTH system:

l. Buy loadable object code from
a vendor who has customized.

2. Obtain an assembly listing with
the installation dependent code
supplied by the vendor.

Assemble and execute.

3. Edit the FIG assembly listing
on your system, re-write the
1-0 routines, and assemble.

4., Load someone else’s object code
up to the installation dependent
code. Hand assemble equivalents
for your system and poke in with
your monitor. Begin execution
and type in (self-compile) the
rest of the system. This takes

about two hours once you under-
stand the structure of Forth (but
that will take much more time!).

Let us examine Step 3, above, in fuller

detail. TIf you wish to bring up Forth only"
from this model, here are the sequential
steps:

4.1 Familiarize yourself with the model
written in Forth, the glossary, and specific
assembly listings.

4.2 Edit the assembly listings into your
system. Set the boot-up parameters at origin
offset OA, OB (bytes) to 0000 (warning=00).

4.3 Alter the terminal support code

(KEY, EMIT, etc,) to match your system.
Observe register protocol specific to your
implementation!

4.4 Place a break to your monitor at the end
of NEXT, just before indirectly jumping via
register W to execution. W is the Forth name
for the register holding a code field address,
and may be differently referenced in your
listings.

4.5 Enter the cold start at the origin. Upon
the break, check that the interpretive pointer
IP points within ABORT and W points to SP!.

If COLD is a colon-definition, then the IP

has been initialized on the way to NEXT and
your testing will begin in COLD. The

purpose of COLD is to initialize IP, SP, RP,
UP, and some user variables from the start-up
parameters at the origin.

4.6 Continue execution one word at a time.
Clever individuals could write a simple trace
routine to print IP, W, SP, RP and the top of
the stacks. Run in this single step mode
until the greeting message is printed. Note
that the interpretation is several hundred
cycles to this stage!

4.7 Execution errbra may be localized by
observing the above pointers when a crash
occurs.

4.8 After the word QUIT 1is executed
(incrementally), and you can input a "return"
key and get OK printed, remove the break.

You may have some remaining errors, but a
reset and examination of the above registers
will again localize problems.

4.9
keyboard,

When the system is interpreting from the
execute EMPTY-BUFFERS to clear

the disc buffer area. You may test the disc
access by typing: O BLOCK 64 TYPE

This should bring sector zero from the disc

to a buffer and type the first 64 characters.
This sector usually contains ascii text of the
disc directory. If BLOCK (and R/W) doesn’t
function--happy hunting!

5.0 If your disc driver differs from the
assembly version, you must create your own
R/W. This word does a range check (with
error message), modulo math to derive sector,
track, and drive and passes values to a
sector-read and sector-write routine.

RAM DISC SIMULATION

If disc is not available, a simulation of
BLOCK and BUFFER may be made in RAM. The
following definitions setup high memory as
mass storage. Referenced “screens’ are then
brought to the ‘disc buffer’ area. This is
a good method to test the start-up program
even if disc may be available.

HEX
4000 CONSTANT LO (START OF BUFFER AREA)
6800 CONSTANT HI (10 SCREEN EQUIVALENT)
: R/W >R (save boolean)

B/BUF * LO + DUP

HI > 6 ?ERROR (range check)

R> IF (read) SWAP® ENDIF

B/BUF CMOVE ;

Insert the code field address of R/W into
BLOCK and BUFFER and proceed as if testing

disc. R/W simulates screens 0 thru 9 when
B/BUF is 128, in the memory area $4000 thru
$6BFF.

FORTH INTEREST GROUP ----- PO. Box 1105 ----- San Carlos, Ca. 94070

fig-FORTH VARIABLE NAME FIELD

A major FIG innovation in this model, is

the introduction of variable length defin-
ition names in compiled dictionary entries.
Previous methods only saved three letters and
the character count.

The user may select the letter count saved,
up to the full natural length. See the
glossary definition for WIDTH.

In this model, the following conventions
have been established.

l. The first byte of the name field has the
natural character count in the low 5 bits.
2. The sixth bit = 1 when smudged, and will
prevent a match by (FIND).
3. The seventh bit = 1 for IMMEDIATE defin-
itions; it is called the precedence bit.
4. The eighth or sign bit is always = 1.
5. The following bytes contain the names’
letters, up to the value in WIDTH.
6. In the byte containing the last letter
saved, the sign bit = 1.
7. In word addressing computer, a name may
be padded with a blank to a word boundary.

The above methods are implemented in CREATE.
Remember that -FIND uses BL WORD to bring
the next text to HERE with the count preceed-
ing. All that is necessary, is to limit by
WIDTH and toggle the proper delimiting bits.

5.0 MEMORY MAP

The following memory map is broadly used.
Specific installations may require alterations
but you may forfeit functions in future FIG
offerings.

The disc buffer area is at the upper bound of
RAM memory. It is comprised of an integral
number of buffers, each B/BUF+4 bytes.

B/BUF 18 the number of bytes read from the
disc, usually one sector. B/BUF must be a
pover of two (64, 128, 256, 512 or 1024).
The constant FIRST has the value of the
address of the start of the first buffer.
LIMIT has the value of the first address
beyond the top buffer. The distance between
FIRST and LIMIT must be N*(B/BUF+4) bytes.
This N must be two or more.

Constant B/SCR has the value of the number of
buffers per screen; 1.e. 1024 / B/BUF.

The user area must be at least 34 bytes; 48
is more appropriate. In a multi-user systenm,
each user has his own user area, for his copy
of system variables. This method allows re-
entrant use of the Forth vocabulary.

The terminal input buffer is decimal 80 bytes
(the hex 50 in QUERY) plus 2 at the end. If a
different value is desired, change the limit
in QUERY. A parameter in the boot=-up

literals locates the address of this area for
TIB. The backspace character is also in the
boot-up origin parameters. It is universally
expected that "rubout" is the backspace.

FORTH INTEREST GROUP

.+++ PO. Box

The return stack grows downward from the user
area toward the terminal buffer. Forty-eight
bytes are sufficient. The origin is in RO

(R-zero) and is loaded from a boot-up literal.

The computation stack grows downward from the
terminal buffer toward the dictionary, which
grows upward. The origin of the stack is

i8 in variable SO (S-zero) and is loaded from
a boot-up literal.

After a cold start, the user variables contain
the addresses of the avove memory assignments.
An advanced user may relocate while the

system is running. A newcomer should alter
the startup literals and execute COLD. The
word +ORIGIN is provided for this purpose.
+ORIGIN gives the address byte or word rel-
ative to the origin depending on the computer
addressing method. To change the backspace

to contol H type:

HEX 08 OE +ORIGIN | (byte addresses)

1105 -«--« San Carlos, Ca. 94070

ndd 40
WINIOd JOVIS Si 4
JISION X SI dS

gl
NI

NIOINO + §

avd

A

asn

0100% - 3600%
AdViS

M dl N dn

¥3ddne —

-

IVNIWRL - — A,

— = MOVIiS
N¥N13Y

-

-

STV¥3LN dN-1004

AYVYNOIDIa

¥343N9 «QYOMa

¥344N8 13l

VIV ¥3sn

s¥3ddng Osia

I9Vd-2Z

0010$
4y

44 —wm

00z$

bt

- an

1914

<— 1Wn

dYW AYOWIW H1304-8y

2059

NIOINO + O —>

avd

il >

T

AYd —>

sn —>

STV¥ILN dN-10018

AYYNOIDIA

¥334N8 wQYOM.

¥3d 4ne 1Al

ADVIS a,

7
w7
P
4<z_WsV
_ AIOVIS
- N¥N13Y

vy asn

S¥3ddng Osia

QYVANVIS

dVW AYOWIW HI¥304-8y3

da

ds

gs

'R

g

dn

1314

unwn

PO. Box 1105 -+--- San Carlos, Ca. 94070 -

FORTH INTEREST GROUP <----

f1g~-FORTH GLOSSARY

This glossary contains all of the word def-
initions in Release 1 of fig-FORTH. The

definitions are presented in the order of
their ascii sort.

The first line of each entry shows a symbolic
description of the action of the proceedure on
the parameter stack. The symbols indicate the
order in which input parameters have been
placed on the stack. Three dashes "=--"
indicate the execution point; any parameters
left on the stack are listed. 1In this
notation, the top of the stack is to the
right.

The symbols include:

addr memory address
b 8 bit byte (i.e. hi 8 bits zero)
c 7 bit ascii character (hi 9 bits zero)
d 32 bit signed double integer,
most significant portion with sign
on top of stack.
f boolean flag. O=false, non-zero=true
ff boolean false flag=0
n 16 bit signed integer number
u 16 bit unsigned integer
tf boolean true flag=non-zero

FORTH INTEREST GROUP ----- PO. Box 1105 ----+ San Carlos, Ca. 94070 /

The capital letters on the right show defin-
ition characteristics:

c May only be used within a colon defin-
ition. A digit indicates number

of memory addresses used, if other
than one.

E Intended for execution only.

LO Level Zero definition of FPORTH-78

L1 Level One definition of FORTH=-78

P Has precedence bit set. Will execute

even when compiling.
U A user variable.

Unless otherwise noted, all references to
numbers are for 16 bit signed integers. On

8 bit data bus computers, the high byte of

a number is on top of the stack, with the sign
in the leftmost bit. For 32 bit signed double
numbers, the most significant part (with the
sign) is on top.

All arithemetic is implicitly 16 bit signed
integer math, with error and under-flow
indicstion unspecified.

1CSP

#s

")

(;CODE)

FORTH INTEREST GROUP ----- PO. Box 1105 :---- San Carlos, Ca. 94070 -

n addr =e=- LO
Store 16 bits of n at address.
Pronounced "store".

Save the stack position in CSP. Used

as part of the compiler security.

dl --- d2 Lo
Cenerate frow a double number dl, the
next ascii character which is placed
in an output string. Result d2 is
the quotient after division by BASE,
and is maintained for further pro-

cessing. Used between <# and #>.
See #S.
d «=-- addr count LO

Terminates numeric output conversion
by dropping d, leaving the text
address and character count suitable
for TYPE.

dl --- d2 LO
Generates ascii text in the text out-
put buffer, by the use of #, until
a zero double number n2 results.

Used betwveen <# and #>.

addr
Used in the form:
‘ nannn
Leaves the parameter field address
of dictionary word nnnn. As a comp-
iler directive, executes in a colon-
definition to compile the address
as a literal. If the word is not
found after a search of CONTEXT and
CURRENT, an appropriate error mess-
age is given. Pronounced "tick".

P,LO

P,LO

Used in the form:
(cecce)

Ignore a comment that will be
delimited by a right parenthesis
on the same line. May occur during
execution or in a colon-definition.
A blank after the leading parenthesis
is required.

Cc+
The run-time proceedure, compiled by
«" which transmits the following
in-line text to the selected output
device. See ."

Cc
The run-time proceedure, compiled by
$CODE, that rewrites the code field
of the most recently defined word to
point to the following machine code
sequence. See ;CODE.

(+LOOP)

(ABORT)

(DO)

(FIND)

(LINE)

(LOoOP)

(NUMBER)

*/

* /MOD

n === c2
The run-time proceedure compiled
by +LOOP, which increments the loop
index by n and tests for loop comple-
tion. See +LOOP.

Executes after an error when WARNING
is =1. This word normally executes

ABORT, but may be altered (with care)
to a user’s alternative proceedure.

- C
The run-time proceedure compiled by
DO which moves the loop control para-
meters to the return stack. See DO.

addrl addr2 =--- pfa b tf (ok)

addrl addr2 --- ff (bad)
Searches the dictionary starting at
the name field address addr2, match-
ing to the text at addrl. Returns
parameter field address, length
byte of name field and boolean true
for a good match. If no match is
found, only a boolean false is left.

nl n2 addr count
Convert the line number nl and the
screen n2 to the disc buffer address
containing the data. A count of 64
indicates the full line text length.

c2
The run-time proceedure compiled by
LOOP which increments the loop index
and tests for loop completion.
See LOOP.

dl addrl ~-- d2 addr2
Convert the ascii text beginning at
addrl+]l with regard to BASE. The new
value is accumulated into double
number dl, being left as d2. Addr2
is the address of the first uncon-
vertable digit. Used by NUMBER.

nl n2 prod LO
Leave the signed product of two
signed numbers.

al n2 n3 --- n4 LO
Leave the ratio né = nl#*n2/n3
where all are signed numbers. Ret-
ention of an intermediate 31 bit
product permits greater accuracy than
would be available with the sequence:
nl n2 * n3

nl n2 n3 «-- n4 S LO
Leave the quotient n5 and remainder

n4 of the operation nl#*n2/n3
A 31 bit intermediate product is

used as for */.

+!

+BUF

+LOOP

+ORIGIN

nl n2 --- sum L0 -DUP nl -- nl (1f zero)
Leave the sum of nl+n2. nl == nl nl (non-zero) LO
Reproduce nl only if it 1s non-zero.
This is usually used to copy a value
n addr -=- LO just before IF, to eliminate the need
Add n to the value at the address. for an ELSE part to drop 1it.
Pronounced "plus-store”.
=FIND --- pfa b tf (found)
nl n2 === n3 -—— ff (not found)
Apply the sign of n2 to nl, which Accepts the next text word (delimited
is left as n3. by blanks) in the input strean to
HERE, and searches the CONTEXT and
then CURRENT vocabularies for a
addl ~--- addr2 f matching entry. If found, the
Advance the disc buffer address addrl dictionary entry’s parameter field
to the address of the next buffer address, its length byte, and a
addr2. Boolean f is false when addr2 bosolean true is left. Otherwise,
is the buffer presently pointed to only a boolean false is left.
by variable PREV.
-TRAILING addr nl .-=-- addr n2
nl === (run) Adjusts the character count nl of a
addr n2 =--- (compile) P,C2,LO text string beginning address to
Used in a colon~definition in the suppress the output of trailing
form: blanks. 1i.e. the characters at
DO «.. nl +LOOP addr+nl to addr+n2 are blanks.
At run-time, +LOOP selectively
controls branching back to the cor-
responding DO based on nl, the loop . n . e-- LO
index and the loop limit. The signed Print a number from a signed 16 bit
increment nl is added to the index two’s complement value, converted
and the total compared to the limit. according to the numeric BASE.
The branch back to DO occurs until A trailing blanks follows.
the new index is equal to or greater Pronounced "dot".
than the limit (nl1>0), or until the
new index is equal to or less than
the limit (nl<0). Upon exiting the oM P,LO
loop, the parameters are discarded Used in the form:
and execution continues ahead. " ccec"
Compiles an in-line string cccc
(delimited by the trailing ") with an
At compile time, +LOOP compiles execution proceedure to transmit the
the run-time word (+LOOP) and the text to the selected output device.
branch offset computed from HERE to If executed outside a definitiom, ."
the address left on the stack by will immediately print the text until
DO. n2 is used for compile time the final ". The maximum number of
error checking. characters may be an installation
dependent value. See (.").
n -=-- addr
Leave the memory address relative -«LINE line scr ===
by n to the origin parameter area. Print on the terminal device, a line
n is the minimum address unit, either of text from the disc by its line and
byte or word. This definition is used screen number. Trailing blanks are
to access or modify the boot-up suppressed.
parameters at the origin area.
R nl n2 ---
Print the number nl right aligned in
n =—- Lo a field whose width is n2. No
Store n into the next available dict- following blank is printed.
ionary memory cell, advancing the
dictionary pointer. (comma)
/ nl n2 --- quot LO
Leave the signed quotient of nl/n2.
nl n2 --- diff LO
Leave the difference of nl-n2.
/MOD nl n2 --- rem quot LO

P,LO
Continue interpretation with the
next disc screen. (pronounced
next-screen).

Leave the remainder and signed
quotient of nl/n2. The remainder has
the sign of the dividend.

FORTH INTEREST GROUP ----- PO. Box 1105 :-+-- San Carlos, Ca. 94070

-an e n
These small numbers are used so often
that is 18 attractive to define them
by name in the dictionary as const-
ants.

0123

0< n --~ f LO
Leave a true flag if the number is
less than zero (negative), otherwise

leave a false flag.

0= n --- f LO
Leave a true flag is the number is
equal to zero, otherwise leave a
false flag.

OBRANCH f === c2
The run-time proceedure to condition-
ally branch. 1If f is false (zero),
the following in-line parameter is
added to the interpretive pointer to
branch ahead or back. Compiled by
IF, UNTIL, and WHILE.

1+ al === n2 L1
Increment nl by 1.

2+ nl === n2
Leave nl incremented by 2.

P,E,LO
Used in the form called a colon-
definition:

: ccce ees H

Creates a dictionary entry defining
cccc as equivalent to the following
sequence of Forth word definitions
‘ess’ until the next °;° or ‘;CODE’.
The compiling process is done by
the text interpreter as long as
STATE is non-zero. Other details
are that the CONTEXT vocabulary is
set to the CURRENT vocabulary and
that words with the precedence bit
set (P) are executed rather than
being compiled.

P,C,LO
Terminate a colon-definition and
stop further compilation. Compiles
the run-time ;S.

;CODE P,C,LO
Used in the form:

¢ cccce ;CODE

assembly mnemonics

Stop compilation and terminate a new
defining word cccc by compiling
(;CODE). Set the CONTEXT vocabulary
to ASSEMBER, assembling to machine
code the following mnemonics.

When cccc later executes in the form:
cece nnan

the word nnnn will be created with
its execution proceedure given by

by the machine code following cccc.
That is, when nnnn is executed, it
does so by jumping to the code after
annn. An existing defining word
must exist in cccc prior to ;CODE.

<#

<BUILDS

>R

rCcoMP

7Cc8P

P,LO
Stop interpretation of a screen.
3S is also the run-time word compiled
at the end of & colon-definition
which returns execution to the
calling proceedure.

al n2 --- ¢ Lo
Leave a true flag if nl is less than
n2; otherwise leave a false flag.

Lo
Setup for pictured numeric output
formatting using the words:
<¢ + #s SIGN #>
The conversion is done on a double
number producing text at PAD.

c,LO

Used within a colon-definition:

t cccc <BUILDS ...

DOES> ces ;
Each time cccc is executed, <BUILDS
defines a new word with a high-level
execution proceedure. Executing ccecc
in the form:
cccc nnnn

uses <BUILDS to create a dictionary
entry for nnnon with a call to the
DOES> part for nnnn. When nannn is
later executed, it has the address of
its parameter area on the stack and
executes the words after DOES> in
cccc.e <BUILDS and DOES> allow run-
time proceedures to written in high-
level rather than in assembler code
(as required by ;CODE).

nl n2 --- f LO
Leave a true flag if nl=n2; other-
wise leave a false flag.

nl n2 --- f Lo
Leave a true flag if nl is greater
than n2; otherwise a false flag.

c,LO
Remove a number from the computation
stack and place as the most access-
able on the return stack. Use should
be balanced with R> in the same
definition.

addr -~ Lo
Print the value contained at the
address in free format according to
the current base.

Issue error message if not comwpiling.

Issue error message if stack position
differs from value saved in CSP.

FORTH INTEREST GROUP ----- PO. Box 1105 ----- San Carlos, Ca. 94070

?7ERROR

TEXEC

?LOADING

?PAIRS

?STACK

?7TERMINAL

ABORT

ABS

AGAIN

ALLOT

ARD

f o ===
Issue an error message number n, if
the boolean flag is true.

Issue an error nessage if not exec-
uting.

Issue an error message if not loading

nl n2
Issue an error message if nl does not
equal n2. The message indicates that
compiled conditionals do not match.

Issue an error message is the stack
is out of bounds. This definition
may be installation dependent.

~—- f
Perform a test of the terminal key-
board for actuation of the break key.

A true flag indicates actuation.
This definition 4is 1installation
dependent.

addr === 1 LO

Leave the 16 bit contents of address.

Lo
Clear the stacks and enter the exec-
ution state. Return control to the
operators terminal, printing a mess-
age appropriate to the installation.

N === u L0
Leave the absolute value of n as u.

addr n ~-- (compiling) P,C2,L0
Used in a colon~definion in the form:

BEGIN ... AGAIN
At run-time, AGAIN forces execution
to return to corresponding BEGIN.
There is no effect on the stack.
Execution cannot leave this loop
(unless R> DROP 4s executed one
level below).

At compile time, AGAIN compiles
BRANCH with an offset from HERE to
addr. n is used for compile-time
error checking.

n --- Lo
Add the signed number to the diction~-
ary pointer DP. May be used to
reserve dictionary space or re-origin
memory. n is with regard to computer
address type (byte or word).

nl n2 ===« n2 LO
Leave the bitwise logical and of nl
and n2 as n3.

B/BOY

B/SCR

BACK

BASE

BEGIN

BL

BLANKS

BLK

BLOCK

== 0

This constant leaves the number of
bytes per disc buffer, the byte count
read from disc by BLOCK.

-== 1

This constant leaves the number of
blocks per editing screen. By con-
vention, an editing screen is 1024
bytes organized as 16 lines of 64
characters each.

addr
Calculate the backward branch offset
from HERE to addr and compile into
the next available dictionary memory
address.

addr u,LO
A user variable contaning the current
number base used for input and out-
put conversion.

-=-- addr n (compiling) P,LO
Occurs in a colon-definition in form:
BEGIN ... UNTIL
BEGIN ... AGAIN
BEGIN ... WHILE ... REPEAT
At run-time, BEGIN marks the start

of a sequence that may be repetitive-
ly executed. It serves as a return
point from the correspoinding UNTIL,
AGAIN or REPEAT. When executing
UNTIL, a return to BEGIN will occur
1f the top of the stack is false;

for AGAIN and REPEAT & returm to
BEGIN always occurs.

At compile time BEGIN leaves its ret-
urn address and n for compiler error
checking.

-——- C
A constant that leaves the ascit
value for "blank".

addr count
P11l an area of memory begining at
addr with-blanks.

addr U,LO
A user variable containing the block
number being interpreted. If zero,
input is being taken from the term-
inal input buffer.

addr , Lo
Leave the memory address of the block
buffer containing block n. If the
block is not already in memory, it is
transferred from disc to which ever
buffer was least recently written.

If the block occupying that buffer
has been marked as updated, it is re-
written to disc before block n 1is
read into the buffer. See also
BUPFER, R/W UPDATE FLUSH

FORTH INTEREST GROUP .- PO. Box 1105 ----- San Carlos, Ca. 94070

COMPILE c2

BLOCK~-READ
BLOCK-WRITE These are the preferred names

BRANCH

BUFFER

c!

c,

ce

CFA

CMOVE

COLD

FORTH

for the installation dependent code
to read and write one block to the
disc.

c2,L0
The run-time proceedure to uncondit-
ionally branch. An in-line offset

When the word containing COMPILE
executes, the execution address of
the word following COMPILE is copied
(compiled) into the dictionary.

This allows specific compilation
situations to be handled in additon
to simply compling an execution
address (which the interpreter
already does).

is added to the interpretive pointer CONSTANT n --- LO

IP to branch ahead or back. BRANCH
is compiled by ELSE, AGAIN, REPEAT.

n --- addr
Obtain the next memory buffer, ass-
igning it to block n. If the con-
tents of the buffer is marked as up-

A defining word used in the form:

n CONSTANT cccc
to create word cccc, with its para-
meter field containing n. When ccce
is later executed, it will push
the valye of n to the stack.

dated, 1t is written to the disc CONTEXT -=- addr U,LO

The block 1is not read from the disc.
The address left is the first cell
within the buffer for data storage.

A user variable containing a pointer
to the vocabulary within which dict-
ionary searches will first begin.

b addr --- COUNT addrl --- addr2 n LO

Store 8 bits at address. On word
addressing computers, further spec-
ification is necessary regarding byte
addressing.

b ==
Store 8 bits of b into the next

available dictionary byte, advancing

the dictionary pointer. This is only CR
available on byte addressing comp-

uters, and should be used with

caution on byte addressing mini-
computers.

Leave the byte address addr2 and byte
count n of a message text beginning
at address addrl. It is presumed
that the first byte at addrl contains
the text byte count and the actual
text starts with the second byte.
Typically COUNT is followed by TYPE.

LO
Transmit a carriage return and line
feed to the selected output device.

CREATE
A defining word used in the form:
addr =--=- b CREATE cccc :
Leave the 8 bit contents of memory by such words as CODE and CONSTANT
address. On word addressing comput- to create a dictionary header for
ers, further specification is needed a Forth definition. The code field
regarding byte addressing. contains the address of the words
parameter field. The new word is
created in the CURRENT vocablary.
pfa =--- cfa
Convert the parameter field address
of a definition to its code field cSsP -=== addr u

address.

from to count ===
Move the specified quantity of bytes
beginning at address from to address D+
to. The contents of address from
is moved first proceeding toward high
memory. Further specification 1is
necessary on word addressing comp-

uters. D+~

The cold start proceedure to adjust

the dictionary pointer to the min- D.
imum standard and restart via ABORT.

May be called from the terminal to

remove application programs and

restart.

INTEREST GROUP ----- PO. Box

A user variable temporarily storing
the stack pointer position, for
compilation error checking.

dl d2 --- dsum
Leave the double number sum of two
double numbers.

dl n === d2
Apply the sign of n to the double
number dl, leaving it as d2.

d === Ll
Print a signed double number from a
32 bit tvo’s complement value. The
high-order 16 bits are most access-
able on the stack. Conversion is
performed according to the current
BASE. A bdlank follows. Pronounced
D-dot.

1105 +---+ San Carlos, Ca. 94070 //

DABS

DECIMAL

d n
Print a signed double number 4 right
aligned in a field n characters wide.

d =--- ud
Leave the absolute value ud of a
double number.

LO
Set the numeric conversion BASE for
decimal input-output.

DEFINITIONS Ll

DIGIT

DLIST

DLITERAL

DMINUS

Used in the form:

cecc DEFINITIONS
Set the CURRENT vocabulary to the
CONTEXT vocabulary. 1In the example,
executing vocabulary name cccc made
it the CONTEXT vocabulary and exec~
uting DEFINITIONS made both specify
voeabulary cccc.

¢ nl «== n2 tf (ok)

¢ nl --- ff (bad)
Converts the ascii charscter c (using
base nl) to its binary equivalent n2,
accompanied by a true flag. If the
conversion is invalid, leaves only
a false flag.

List the names of the dictionary
entries in the CONTEXT vocabulary.

d === d

P —

(executing)
(compiling) P
If compiling, compile a stack double
number into a literal. Later execut-
ion of the definition containing the
literal will push 1t to the stack. If
executing, the number will remain on
the stack.

dl ~-- d2
Convert dl to its double number two’s
complement.

DO

DOES>

DP

DrL

DRO
DRl

nl n2 =-- (execute)

addr n --- (compile) P,C2,LO0
Occurs in a colon-definition in form:

DO ... LOOP

DO +.. +LOOP

At run time, DO begins a sequence
with repetitive execution controlled
by a loop limit nl and an index with
initial value n2. DO rewmoves these
from the stack. Upon reaching LOOP
the index is incremented by one.
Until the new index equals or exceeds
the limit, execution loops back to
Just after DO; otherwise the loop
parameters are discarded and execut-
ion continues ahead. Both nl and n2
are determined at run~time and may be
the result of other operations.
Within a loop ‘I’ will copy the

urrent value of the index to the
stack. See I, LOOP, +LOOP, LEAVE.

When compiling within the colon-
definition, DO compiles (DO), leaves
the following address addr and n for
later error checking.

LO
A word which defines the run-time
action within a high-level defining
word. DOES> alters the code field
and first parameter of the new word
to execute the sequence of compiled
word addresses following DOES>. Used
in combination with <BUILDS. When the
DOES> part executes it begins with
the address of the first parameter
of the new word on the stack. This
allows interpretation using this
area or its contents. Typical uses
include the Forth assembler, multi-

diminsional arrays, and compiler
generation.

—=== addr u,L
A user variable, the dictionary
pointer, which contains the address

of the next free memory above the
dictionary. The value may be read by
HERE and altered by ALLOT.

addr U,LO
A user variable containing the number
of digits to the right of the decimal
on double integer input. It may also
be used hold output column location
of a decimal point, in user generated
formating. The default value on
single number input 1is =-1.

Installation dependent commands to
select disc drives, by preseting
OPFSET. The contents of OFFSET is
added to the block number im BLOCK
to allow for this selection. Offset
is supressed for error text so that
is may always originate from drive 0.

FORTH INTEREST GROUP --..- PO. Box 1105 ----- San Carlos, Ca. 94070

12

DROP

DUMP

1) 4

ELSE

EMIT

n === LO
Drop the number from the stack.

addr n === LO
Print the contents of n memory
locations beginning at addr. Both
addresses and contents are shown in
the current numeric base.

M === n n Lo
Duplicate the value on the stack.

addr2 n2
(compiling) pP,C2,L0
Occurs within a colon-definition
in the form:
IF ...

addrl nl

ELSE ... ENDIF

At run-time, ELSE executes after the
true part following IF. ELSE forces
execution to skip over the following
false part and resumes execution
after the ENDIF. It has no stack
effect.

At compile~time ELSE emplaces BRANCH
reserving a branch offset, leaves
the address addr2 and n2 for error
testing. ELSE also resolves the
pending forward branch from IF by
calculating the offset from addr! to
HERE and storing at addrl.

C === L0
Transait ascii character ¢ to the
selected output device. OUT is
incremented for each character
output.

EMPTY-BUFFERS Lo

ENCLOSE

Mark all block-buffers as empty, not

necessarily affecting the contents.

Updated blocks are not writtea to the

disc. This is also an initialization

::occodure before first use of the
sc.

addrl ¢
ddrl nl n2 a3

The text scanning primitive used by
WORD. From the text address addrl
and an asciti delimiting character c,
is determined the byte offset to the
first non-delimiter character nl,
the offset to the first delimiter
after the text n2, and the offset
to the first character not included.
This proceedure will not process past
an ascii ‘null’, treating it as an
unconditional delimiter.

P,C2,L0
This is an ‘alias’ or duplicate
definition for UNTIL.

ENDIP

ERASE

ERROR

EXECUTE

EXPECT

FENCE

FILL

FIRST

addr n (compile) P,CO,LO
Occurs in a colon-definition in form:

IP ... ENDIF

IF ... ELSE ENDIF
At run-time, ENDIF serves only as the
destination of a forward branch from
IF or ELSE. It marks the conclusion
of the conditional structure. THEN
is another name for ENDIF. Both
names are supported in fig-FORTH.
also IF and ELSE.

See

At compile-time, ENDIF computes the
forvard branch offset from addr to
HERE and stores it at addr. n 1is
used for error tests.

addr n
Clear a region of memory to zero from
addr over n addresses.

line <--= in blk
Execute error notification and re-
start of system. WARNING is first
examined. If 1, the text of line n,
relative to screen 4 of drive 0 is
printed. This line number may be
positive or negative, and beyond just
screen 4. If WARNING=0, n is just
printed as a message number (non disc
installation). If WARNING is -1,
the definition (ABORT) is executed,
vhich executes the system ABORT. The
user may cautiously modify this
execution by altering (ABORT).
f1g-FORTH saves the contents of IN
and BLK to assist in determining the
location of the error. Final action
is execution of QUIT.

addr -~
Execute the definition whose code
field address is on the stack. The
code field address is also called
the compilation address.

addr count === LO
Transfer characters from the terminal
to address, until a "return" or the
count of characters have been rec-
eived. One or more nulls are added
at the end of the text.

A user variable containing an
address below which FORGETting 1is
trapped. To forget below this point
the user must alter the contents of
FENCE.

addr quan b
Fill memory at the address with the
specified quantity of bytes b.

-== n
A constant that leaves the address
of the first (lowest) block buffer.

FORTH INTEREST GROUP ----- PO. Box 1105 +++-- San Carios, Ca. 94070

addr]

/3

FLD

FORGET

FORTH

HERE

HEX

HLD

HOLD

ID.

FORTH

=== addr U
A user variable for control of number
output field width. Presently un-
used in fig-FORTH.

E,LO

Executed in the form:
FORGET cccc

Deletes definition named cccc from
the dictionary with all entries
physically following it. 1In fig-
FORTH, an error message will occur i1if
the CURRENT and CONTEXT vocabularies
are not currently the same.

P,L1
The name of the primary vocabulary.
Execution makes FORTH the CONTEXT
vocabulary. Until additional user
vocabularies are defined, new user
definitions become a part of FORTH.
FORTH is immediate, so it will exec~
ute during the creation of a colon-
definition, to select this vocabulary
at compile time.

-=~ addr Lo
Leave the address of the next avail~-
able dictionary location.

Lo
Set the numeric conversion base to
sixteen (hexadecimal).
=== addr L0

A user variable that holds the addr-
ess of the latest character of text
during numeric output coanversion.

C === Lo
Used between <# and #> to insert

an ascii character into a pictured
numeric output string.

e.g. 2E HOLD wvill place a
decimal point.

n

Used within a DO-LOOP to copy the
loop index to the stack. Other
use is implementation dependent.
See R.

c,LO0

addr ---

Print a definition’s name from its
name field address.

INTEREST GROUP ----- PO.

ir

f --- (run-time)

~=~ addr n (cowpile) ?,C2,L0
Occurs is a colon-definitiee fn form:

IF (tp) ... ENDIY

IF (tp) ... ELSE (fp) ... ENDIF
At run-time, IF selects execution
based on a boolean flag. If f {s
true (non-zero), executiom continues
ahead thru the true part. 1If f is
false (zero), execution skips til1l
just after ELSE to execute the false
part. After either part, execution
resumes after ENDIF. ELSE and 1its
false part are optional.; if missing,
falee execution skips to just after
ENDIF.

At compile-time IF compiles OBRANCH
and reserves space for an offset

at addr. addr and n are used later
for resolution of the offset and

error testing.

IMMEDIATE

19 |

INDRX

INTERPRET

Mark the most resently made definit-
ion so that when encountered at
compile time, it will be executed
rather than being compiled. i.e. the
precedence bit in its header 1is set.
This method allows defimitiens to
handle unusual compiling situations,
rather than build them into the
fundamental compiler. The user may
force compilation of an immediate
definition dy preceeding it with
[COMPILE]}.

-== addr Lo
A user variable containing the byte
offset within the currest imput text
buffer (terminal or disc) from which
the next text will be accepted. WORD
uses and moves the value of IN.

from . tQ ===
Print the first line of each screen
over the range from, to. This is
used to viev the commeat limes of an
area of text on disc screems.

The outer text interpreter which
sequentially executes or cempiles
text from the input stresm (terminal
or disc) depending on STATE. If the
vord name cannot be found after

a search of CONTEXT and then CURRENT
it is converted to a number according
to the current base. That also fail-
ing, an error message echoiag the
name with a " ?" will be given.

Text input will be taken according to
the convention for WORD. If a decimal
point 1is found as part of e number,

a double number value will he left.
The decimal point has no other pur-
pose than to force this aection.

See NUMBER.

Box 1105 ----- San Carlos, Ca._94070

KEY

LATEST

LEAVE

LFA

LIMIT

LIST

LIT

LITERAL

LOAD

FORTH

-—= ¢ LO LOOP
Leave the ascii value of the next
terminal key struck.

-== addr
Leave the name field address of the
topmost word in the CURRENT vocabul-

ary.

c,LO
Force termination of a DO-LOOP at the
next opportunity by setting the loop
limit equal to the current value of
the index. The index itself remains
unchanged, and execution prodeeds
normally until LOOP or +LOOP is
encountered.

pfa --- ‘lfa
Convert the parameter field address
of a dictionary definition to 1its
link field address.
M/

--== 0
A constant leaving the address just
above the highest memory available
for a disc buffer. Usually this is
the highest system memory.

A —e- L0 M/MOD
Display the ascii text of screem n
on the selected output device. SCR
contains the screen number during and
after this process.

-—-- 0 c2,L0
Within a colon-definition, LIT 1s MAX
automatically compiled before each
16 bit literal number encountered in
input text. Later execution of LIT
causes the contents of the next
dictionary address to be pushed to
the stack.

n === (compiling) P,C2,L0
If compiling, then compile the stack
value n as a 16 bit literal. This
definition is immediate so that it
will execute during a colon defin-

ition. The intended use is:
: XXX [calculate] LITERAL MIN

Compilation is suspended for the

compile time calculation of a value.
Compilation is reusumed and LITERAL

compiles this value. MINUS
N e—- LO

Begin interpretation of screen n.

Loading will terminate at the end of MOD

the screen or at ;S. See ;S and ==>.

MON

INTEREST GROUP -:--+ PO. Box 1105 ----+ San Carlos, Ca. 94070 4~

MESSAGE

addr n -+~ (compiling) P,C2,LO0
Occurs in a colen-definition in form:

DO ..s oP ’
At run-time, LOOP selectively cont-
rols branching back to the correspon~-
ding DO based on the loop index and
limit. The loop index is incremented
by one and compared to the limit. The
branch back to DO occurs until the
index equals or exceeds the limit;
at that time, the parameters are
discarded and execution continues
ahead.

At compile-time, LOOP compiles (LOOP)
and uses addr to calculate an offset
to DO. 'mn is used for error testing.

al n2 --- d
A mixed magnitude math operation
which leaves the double number signed
product of two signed number.

d nl <=--n2 a3
A mixed magnitude math operator which
leaves the signed remainder n2 and
signed quotient n3, from a double
number dividend and divisor nl. The
remainder takes its sign from the
dividend.

udl u2 -=- u3l udé
An unsigned mixed magnitude math
operation which leaves a double
quotient udé and remainder u3, from
a double dividend udl and single
divisor u2.

nl n2 === m@ax . Lo
Leave the greater of two numbers.

n - - o
Print on the selected output device
the text of line n relative to screen
4 of drive 0. n may be positive or
negative. MESSAGE may be used to
print incidental text such as report
headers. If WARNING is zero, the
message vwill simply be printed as
a number (disc un-available).

nl n2 «-- ain LO
Leave the smaller of two numbers.

nal «=- n2 L0
Leave the twvo’s complement of a
numsber.

nl n2 --- mod LO
Leave the remainder of nl/n2, with
the same sign as nl.

Exit to the system monitor, leaving
a re-entry to Porth, 1if possible.

MOVE

NEXT

NFA

NUMBER

OFFSET

OR

ouT

OVER

addrl addr2 n ===
Move the contents of n memory cells
(16 bit contents) beginning at addrl
into n cells beginning at addr2.
The contents of addrl 1is moved first.
This definition is appropriate on
on word addressing computers.

This is the inner interpreter that
uses the interpretive pointer IP to
execute compiled Forth definitions.
It 1is not directly executed but 1is
the return point for all code pro-
ceedures. It acts by fetching the
address pointed by IP, storing this
value in register W. It then jumps
to the address pointed to by the
address pointed to by W. W points to
the code field of a definition which
contains the address of the code
which executes for that definition.
This usage of indirect threaded code
is a major contributor to the power,
portability, and extensibility of
Forth. Locations of IP and W are
computer specific.

pfa =--- nfa
Convert the parameter field address
of a definition to its name field.

addr --- d
Convert a character string left at
addr with a preceeding count, to
a signed double number, using the
current numeric base. If a decimal
point is encountered in the text, its
position will be given in DPL, but

no other effect occurs. If numeric
conversion is not possible, an error
message will be given.

--=- addr U

A user variable which may contain

a block offset to disc drives. The
contents of OFFSET is added to the
stack number by BLOCK. Messages

by MESSAGE are independent of OFFSET.
See BLOCK, DRO, DRl1, MESSAGE.

nl n2 -~ or Lo
Leave the bit-wise logical or of two
16 bit values.

--- addr U
A user variable that contains a value

incremented by EMIT. The user may
alter and examine OUT to control
display formating.

nl n2 «=- nl n2 nl Lo

Copy the second stack value, placing
it as the new top.

PAD

PFA

POP

PREV

PUSH

PUT

QUERY

QUIT

R#

-=~ addr LO
Leave the address of the text output
buffer, which is a fixed offset above
HERE.

nfa --- pfa
Convert the name field address of
a compiled definition to its para-
meter field address.

The code sequence to remove a stack
value and return to NEXT. POP is
not directly executable, but is a
Forth re-entry point after machine
code.

-=== .addr

A variable containing the address of
the disc buffer most recently ref-
erenced. The UPDATE command marks
this buffer to be later written to

disc.

This code sequence pushes machine
registers to the computation stack
and returns to NEXT. It is not
directly executable, but is a Forth
re-entry point after machine code.

This code sequence stores machine
register contents over the topmost
computation stack value and returns
to NEXT. It is not directly exec-
utable, but is a Forth re-entry point
after machine code.

Input 80 characters of text (or until
a "return") from the operators
terminal. Text is positioned at the
address contained in TIB with IN

set to zero.

Ll
Clear the return stack, stop compil~-
ation, and return control to the
operators terminal. No message
is given.

n
Copy the top of the return stack to
the computation stack.

-== addr [}
A user variable which may contain
the location of an editing cursor,
or other file related function.

FORTH INTEREST GROUP -.... PO. Box 1105 --:-- San Carlos, Ca. 94070

/6

R/W

RO

REPEAT

ROT

RP!

3=>D

S0

SCR

SIGN

addr blk f =---
The fig-FORTH standard disc read-
write linkage. addr specifies the
source or destination block buffer,
blk is the sequential number of

the referenced block; and f is a
flag for f=0 write and f=1 read.

R/W determines the location on mass
storage, performs the read-write and

performs any error checking.

LO
-=- n

Remove the top value from the return
gstack and leave it on the computation
stack. See >R and R.

addr u
A user variable containing the
initial location of the return stack.
Pronounced R-zero. See RP!

addr (compiling) P,C2
Used within a colon-definition in the
form:

BEGIN ... WHILE ... REPEAT
At run-time, REPEAT forces an
unconditional branch back to just
after the correspoinding BEGIN.

n -

At compile-time, REPEAT compiles
BRANCH and the offset from HERE to
addr. n is used for error testing.

nl n2 n3 =--- n2 n3 nl Lo
Rotate the top three values on the
stack, bringing the third to the top.

A computer dependent proceedure to
initialize the return stack pointer
from user variable RO.

n --=- d
Sign extend a single number to form
a double number.

addr i)
A user variable that contains the
initial value for the stack pointer.
Pronounced S-zero. See SP!

addr U
A user variable containing the screen
number most recently reference by
LIST.

n d ~--- d LO
Stores an ascii "-" sign just before
a converted numeric output string

in the text output buffer when n is
negative. n 1is discarded, but double
number d is maintained. Must be

used between <# and #>.

SMUDGE

sp@

SPACE

SPACES

STATE

SWAP

TASK

THEN

TIB

TOGGLE

TRAVERSE

Used during word definition to toggle
the "smudge bit" in a definitions”’
name field. This prevents an un-
completed definition from being found
during dictionary searches, until
compiling is completed without error.

A computer dependent proceedure to
initialize the stack pointer from
SO.

addr

A computer dependent proceedure to
return the address of the stack
position to the top of the stack,

as it was before SP@ was executed.
(eeg. 1 2 SP@ @ . . . would
type 2 2 1)

LO
Transmit an ascii blank to the output
device.

N e—— Lo
Transmit n ascii blanks to the output
device.

~== addr Lo,U
A user variable containg the compil-
ation state. A non-zero value
indicates compilation. The value
itself may be implementation depend-
ent.

nl n2 === n2 nl LO

Exchange the top two values on the
stack.

A no-operation word which can mark
the boundary between applications.
By forgetting TASK and re-compiling,
an application can be discarded in
its entirety.

P,CO,LO
An alias for ENDIF.

addr U
A user variable containing the addr-
ess of the terminal input buffer.

addr b
Complement the contents of addr by
the bit pattern b.

addrl addr2

Move across the name field of a
f1g-FORTH variable length name field.
addrl is the address of either the
length byte or the last letter.

If n=1, the motion is toward hi mem-
ory; 1f n=-1, the motion 1is toward
low memory. The addr2 resulting is
address of the other end of the name,

n -

FORTH INTEREST GROUP ----- PO. Box 1105 ----+ San Carlos, Ca. 94070

/7

TRIAD

TYPE

u/

UNTIL

UPDATE

USE

USER

FORTH

scr
Display on the selected output device
the three screens which include that
numbered scr, begining with a screen
evenly divisible by three. Output
is suitable for source text records,
and includes a reference line at the
bottom taken from line 15 of screené.

addr count === L0
Transmit count characters from addr

to the selected output device.

ul uv2 === ud

Leave the unsigned double number
product of two unsigned numbers.

ud ul === u2 ul
Leave the unsigned remainder u2 and
unsigned quotient u3 from the unsign-
ed double dividend ud and unsigned
divisor ul.

f === (run-time)

addr n (compile) P,C2,L0
Occurs within a colon-definition in
the form:

BEGIN ... UNTIL
At run-~time, UNTIL controls the cond-
itional branch back to the corres-
ponding BEGIN. If f is false, exec-
ution returns to just after BEGIN;
if true, execution continues ahead.

At compile-time, UNTIL compiles
(OBRANCH) and an offset from HERE
to addr. n is used for error tests.

LO
Marks the most recently referenced
block (pointed to by PREV) as
altered. The block will subsequently
be transferred automatically to disc
should its buffer be required for
storage of a different block.

addr

A variable containing the address of
the block buffer to use next, as the
least recently written.

n ——- LO
A defining word used in the form:

n USER cccc
which creates a user variable cccc.
The parameter field of cccc contains
n as a fixed offset relative to
the user pointer register UP for
this user variable. When cccc 1is
later executed, it places the sum of
its offset and the user area base
address on the stack as the storage
address of that particular variable.

INTEREST GROUP

VARIABLE

VOC~-LINK

VOCABULARY

VLIST

WARNING

WHILE

E,LU

A defining word used in the form:
n VARIABLE cccec

When VARIABLE is executed, it creates
the definition cccc with {ts para-
meter field initialized to n. When
cccc is later executed, the address
of its parameter field (containing n)
is left on the stack, so that a fetch
or store may access this location.

addr U
A user variable containing the addr-
ess of a field in the definition of
the most recently created vocabulary.
All vocabulary names are linked by
these fields to allow control for
FORGETting thru multiple vocabularys.

E,L
A defining word used in the form:
VOCABULARY cccec
to create a vocabulary definition
cccce Subsequent use of cccec will
make it the CONTEXT vocabulary which
is searched first by INTERPRET. The
sequence "cccc DEFINITIONS" will
also make cccc the CURRENT vocabulary
into which new definitions are
placed.

In fig-FORTH,
as to include

cccc will be so chained
all definitions of the
vocabulary. in which cccc is itself
defined. All vocabularys ulitmately
chain to Forth. By convention,
vocabulary names are to be declared
IMMEDIATE. See VOC-LINK.

List the names of the definitions in
the context vocabulary. "Break" will
terminate the listing.

addr U
A user variable containing a value
controlling messages. If = 1

disc is present, and screen 4 of
drive 0 is the base location for
messages. If = 0, no disc is present
and messages will be presented by
number. If = -1, execute (ABORT) for
a user specified proceedure.

See MESSAGE, ERROR.

f <-- (run-time)
adl nl --- adl nl ad2 n2 P,C2

Occurs in a colon-definition in the
form:

BEGIN ... WHILE (tp) REPEAT
At run-time, WHILE selects condition-
al execution based on boolean flag f.
If f i8 true (non-zero), WHILE cont-
intues execution of the true part
thru to REPEAT, which then branches
back to BEGIN. If £ 1is false (zero),
execution skips to just after REPEAT,
exiting the structure.

ee e

At compile time, WHILE emplaces
(OBRANCH) and leaves ad2 of the res-
erved offset. The stack values will
be resolved by REPEAT.

«++-» P0O. Box 1105 ----- San Carlos, Ca. 94070

/5

WIDTH -=-=- addr U
In fig~-FORTH, a user variable cont-
aining the maximum number of letters
saved in the compilation of a
definitions’ name. It must be 1 thru
31, with a default value of 31. The
name character count and its natural
characters are saved, up to the
value in WIDTH. The value may be
changed at any time within the above
limits.

WORD ¢ === LO
Read the next text characters from
the (nput stream being interpreted,
until a delimiter ¢ is found, storing
the packed character string begining
at the dictionary buffer HERE. WORD
leaves the character count in the
first byte, the characters, and ends
with two or more blanks. Leading
occurances of-c are ignored. If BLK
is zero, text is taken from the
terminal input buffer, otherwise from
the disc block stored inm BLK.

See BLK, IN.

This is pseudonym for the "null"

or dictionary entry for a name of

one character of ascii null. It

is the execution proceedure to term-
inate interpretation of a line of
text from the terminal or within

a disc buffer, as both buffers alvays
have a null at the end.

XOR nl n2 --- xor Ll
Leave the bitwise logical exclusive-
or of two values.

[P,L1

Used in a colon-definition in form:
: XXX [words) more

Suspend compilation. The words after
[are executed, not compiled. This
allows calculation or compilation
exceptions before resuming compil-
ation with J. See LITERAL, }.

PCOMPILE) P,C

Used in a colon-definition in form:
: xxx [COMPILE] FORTH ;

[COMPILE] will force the compilation
of an immediate defininition,
that would otherwise execute
during compilation. The above
example will select the FORTH
vocabulary when xxx executes, rather
than at compile time.

] L1
Resume compilation, to the completion
of a colon~definition. See [.

FORTH INTEREST GROUP ----- PO. Box 1105 ----- San Carlos, Ca. 94070 "

EDITOR USER MANUAL

by Bill Stoddart
of FIG, United Kingdom

FORTH organizes its mass storage into "screens" of 1024 characters.
If, for example, a diskette of 250k byte capacity is used entirely
for storing text, it will appear to the user as 250 screens
numbered O to 249.

Fach screen is organized as 16 lines with 64 characters per line.

The FORTH screens are merely an arrangement of virtual memory and

need not correspond exactly with the screen format of a particular
terminal.

Selecting a Screen and Input of Text

To start an editing session the user types EDITOR to invoke the
appropriate vocabulary.

The screen to be edited is then selected, using either:

n LIST (list screen n and select it for editing) OR
n CLEAR (clear screen n and select for editing ?

To input new test to screen n after LIST or CLEAR the P (put)
command is used.

Example:
O P THIS IS HOW

1 P TO INPUT TEXT
2 P TO LINES O, 1, AND 2 OF THE SELECTED SCREEN.

FORTH INTEREST GROUP NOVEMBER 1980

55

Line Editing

During this descirption of the editor, reference is made to PAD.
This is a text buffer which may hold a line of text used by or
saved with a line editing command, or a text string to be found or
deleted by a string editing command.

PAD can be used to transfer a line from one screen to another, as
well as to perform edit operations within a single screen.

Line Editor Commands

Hold line n at PAD (used by system more often than by user),

Delete line n but hold it in PAD. Line 15 becomes blank
as lines n+! to 15 move up 1 line.

Type line n and save it in PAD.
Replace line n with the text in PAD.

Insert the text from PAD at line n, moving the o0ld line n
and following lines down. Line 15 is lost.

Erase line n with blanks.

Spread at line n. n and subsequent lines move down 1
line. Line n becomes blank. Line 15 is lost.

FORTH INTEREST GROUP NOVEMBER 1980

50

Cursor Control and String Editing

The screen of text being edited resides in a buffer area of
storage. The editing cursor is a variable holding an offset into
this buffer area. Commands are provided for the user to position
the cursor, either directly or by searching for a string of buffer
text, and to insert or delete text at the cursor position.

Commands to Position the Cursor

TOP Position the cursor at the start of the screen.

NM Move the cursor by a signed amount n and print the cursor
line. The position of the cursor on its line is shown by
a __ (underline).

String Editing Commands

F text Search forward from the current cursor position until
string "text" is found. The cursor is left at the end
of the text string, and the cursor line is printed.

If the string is not found an error message is given
and the cursor is repositioned at the top of screen.

B Used after F to back up the cursor by the length of
the most recent text.

N Find the next occurrence of the string found by an F
command.

X text Find and delete the string "text."

C text Copy in text to the cursor line at the cursor position.

TILL text Delete on the cursor line from the cursor till the end
of the text string "text."

NOTE: Typing C with no text will copy a null into the text

at the cursor position. This will abruptly stop later
compiling! To delete this error type TOP X 'return'.

FORTH INTEREST GROUP NOVEMBER 1980
&7

Screen Editing Commands

n LIST List screen n and select it for editing
n CLEAR Clear screen n with blanks and select it for editing
n1 n2 COPY Copy screen n! to screen n2.

L List the current screen. The cursor line is relisted
after the screen listing, to show the cursor position.

FLUSH Used at the end of an editing session to ensure that
all entries and updates of text have been transferred
to disc.

FORTH INTEREST GROUP NOVEMBER 1980

5%

Editor Glossary

TEXT c -—-
Accept following text to pad. c¢ is text delimiter.

LINE n —-—— addr
Leave address of line n of current screen. This address will
be in the disc buffer area.

WHERE nl n2 —--- '
n2 is the block no., n! is offset into block. If an error is
found in the source when loading from disc, the recovery
routine ERROR leaves these values on the stack to help the user
locate the error. WHERE uses these to print the screen and
line nos. and a picture of where the error occurred.

R# ——= addr
A user variable which contains the offset of th editing cursor
from the start of the screen.

#LOCATE --- nl! n2
From the cursor position determine the line-no n2 and the
offset into the line nt.

#LEAD ——- line-address offset-to-cursor

#LAG --- cursor-address count-after-cursor-till-EQOL

-MOVE addr line-no —--
Move a line of text from addr to line of current screen.

H n ——-—
Hold numbered line at PAD.
E .n —_—
Erase line n with blanks.
S n —-—--
Spread. Lines n and following move down. n becomes blank.
D n ——-—
Delete line n, but hold in pad.
M n ——-
Move cursor by a signed amount and print its line.
T n —-—-—
Type line n and save in PAD.
L _—
List the current screen.
FORTH INTEREST GROUP NOVEMBER 1980

59

R n —---
Replace line n with the text in PAD.

N o——— .
Put the followng text on line n.

I n --—-
Spread at line n and insert text from PAD.

TOP —-—
Position editing cursor at top of screen.

CLEAR n --—-
Clear screen n, can be used to select screen n for editing.

FLUSH -—
Write all updated buffers to disc. This has been modified wo
cope with an error in the Miecropolis CPM disc drivers.

COPY nl n2 ——-
Copy screen nl to screen n2.

-TEXT Addr 1 count Addr 2 -- boolean
True if strings exactly match.

MATCH cursor-addr bytes-left-+till-EOL str-addr str-count
——— tf cursor-advance-till-end-of-matching-text
—-——- ff bytes-left-till-EOL
Match the string at str-addr with all strings on the cursor
line forward from the cursor. The arguments left allow the
cursor R# to be updated either to the end of the matching text
or to the start of the next line.

1LINE -—- f
Scan the cursor line for a match to PAD text. Return flag and
update the cursor R# to the end of matching text, or to the
start of the next line if no match is found.

FIND -
Search for a match to the string at PAD, from the cursor
position till the end of screen. If no match found issue an
error message and reposition the cursor at the top of screen.

DELETE n ——-
Delete n characters prior to the cursor.
N _—
Find next occurrence of PAD text.
P _—
Input following text to PAD and search for match from cursor
position till end of screen.
FORTH INTEREST GROUP NOVEMBER 1980

1%

B N
Backup cursor by text in PAD.

X _—
Delete next occurrence of following text.
TILL -—
Delete on cursor line from cursor to end of the following text.
C _—
Spread at cursor and copy the following text into the cursor
line.
NOVEMBER 1980
FORTH INTEREST GROUP ¢l

D —_

Aug 1982

Supplement till ABC-klubben rapport nr 2

THE FORTH ASSEMBLER — COMMENTS, CRITICISM and EXTEN-
SIONS

ABRSTRACT

The original version of the FORTH 8080 assembler is
described and a proposed "improved" version is
discussed. Extensions for the implementation of Z80
instructions (those not found in the B8080) are
suggested.

INTRODUCTION

The fig-FORTH implementation on the ABCBO is derived
from the BO8O version originally coded by John J.
Cassady. About two vyears ago Cassady wrote, in
FORTH, an assembler which interprets Intel 8080
mnemonics and lays out the appropriate machine code
directly. It is therefore a one pass assembler
which loads code directly. Program flow is control-
led by the FORTH structured control words BEGIN
WHILE UNTIL REFEAT IF ELSE and THEN. Cassady has
recently released a newer version of the assembler.

ORIGINAL VERSION

The assembler uses pure 8080 mnemonics but the order
of use is reversed, as is typical of the FORTH
method of operation. With a conventional assembler
the instruction order would be:

instruction destination, source (MOV A,L)

while the FORTH assembler requires

source destination instruction (L A MOV).

For ARCBO users, the question immediately arises,
"Ien"t there a Z80 assembler for FORTH that would
allow us to use Z80 mnemonics and those powerful

additional instructions which the 8080 doesn’t
have?". The answer is:

1 - vyes, there are ZI80 assemblers for FORTH,

2 - no, vyou can’t use pure Z80 mnemonics with
them, and

I - yes, vyou can use the additional- Z80

instructions with them.

Implementors of Z80 and 6502 assemblers (in FORTH)
usually put a comma at the end of the instruction
mnemonics to set off the source—-destination-instruc-
tion sequence from the following source-destination-
instruction sequence. That is a minor detail that
can easily be implemented in the 8080 assembler, if

vou prefer it. A more important change from the
conventional assembler to the equivalent FORTH ass-—
embler, is the description of source and destina-—
tion. The simple instruction LD can direct informa-
tion transfer between registers, to register pairs,
indirectly to the byte addressed by a register pair
and it can use immediate data or the contents of
registers or indirectly addressed bytes. This vari-
ety of addressing modes requires the use of flags to
indicate the addressing mode, while the 8080 mnemo-—
nics uses different mnemonic instructions for the
different addressing modes (MVI moves immediate data
to a ?egister, LXI loads immediate data into a
register pair, etc.) Therefore, the use of 8080
mnemonics simplifies the assembler construction,
while the use of Z80 mnemonics forces the introduc-—
tion of additional mnemonics to indicate addressing
mode.

A FORTH word is defined, in FORTH, by starting with
a colon, followed by the name of the new definition,
and then a list of FORTH words which define the
function, and concluded with a semicolon. I+ a word
is to be defined with assembler code, the definition
is started with the word CODE (instead of a colon),
then followed by the name of the new definition, and
then a list of assembler mnemonics. The definition
must end in a jump to the inner interpreter. The
address of the inner interpreter is found in the
constant NEXT. The final instructions of a defini-
tion would be

NEXT JMP Cj;

where the C; replaces the semicolon in a colon
definition.

Following the common practice in FORTH, information
is passed to and from routines on the stack. A CODE
routine could then begin

CODE TEST H POP D POP ...

The word TEST may be expected to return a value. If
this value is found in the HL register pair at the
conclusion of the routine, the end of TEST would be

«»« H PUSH NEXT JMF Cj

If we take a closer look at the source code for the
inner interpreter, we will find:

DPUSH: PUSH DE
HPUSH: FUSH HL
NEXT: LD A, (RC) , etc.

M

1f we wish to push the HL register pair and then
continue through the inner interpreter, we can Jjump
directly to the instruction preceeding NEXT. We can
therefore add to Cassady’s assembler the following
constants:

NEXT 1 - CONSTANT HPUSH
NEXT 2 - CONSTANT DPUSH

Now we can conclude a CODE definition with
HEUSH JMP Cj;

or two values may be put on the stack (from the DE
and HL register pairs) with

DPUSH JMP Cg
NEW VERSION

Cassady released a new version of the 8080 assembler
in FORTH DIMENSIONS IIIl/é6. This version does not
include conditional call, conditional jump nor con-
ditional return instructions since these operations
are handled automatically by the FORTH structured
program flow operators (BEGIN, WHILE, UNTIL, REPEAT,
IF, ELSE, THEN), and he has removed AGAIN, since it
is not included in FORTH-79, and is generally quite

usel ess. However, he has also removed compiler
security (error checking) because it interferred
with more advanced assembler techniques. If you

write, for example

(condition) IF 1 H LXI
ELSE O H LXI
HPUSH Cj

then the original assembler version will complain
"CONDITIONALS NOT PAIRED" (you forgot to write THEN)
but the newer version will not detect the error.
Another change introduced in the newer version is a

new definition of NEXT. In this version, NEXT is
not the address of the inner interpreter, but a jump
to the inner interpreter! A routine would conclude
with

... NEXT Cg

and PSH1 is a jump to HPUSH and PSH2, a jump to
DPUSH.

My personal opinion is

1 - The conditional calls, jumps and retwns
should be removed from the assembler

%

vacabul ary ‘

2= I would like to retain error checking

' until I become more expert in FORTH assem—
bler programming

3 - The new definition of NEXT is not consis-
tant with other FORTH assemblers I have
seen, nor is it consistant with the source
code, so I find it an unnecessary confu-
sion.

EXTENSIONS

Several assemblers I have seen have replaced the old
concluding word C; with the FORTH-79 word END-CODE.

: END-CODE /COMPILE/ Cj 3

The above definition will allow you to use END-CODE
or Cs; as you prefer. Notice that, since C; is an
immediate word, it must be preceeded by /COMPILE/ in
this definition. ‘

In order to use the more powerful Z80 instructions
not found in the 8080 mnemonics, I would like to
define the following words. I will use Z80 mnemo-
nics and my assembler will be a hybrid.

ASSEMBLER DEFINITIONS HEX
D? 1IMI EXX

: BITAD <BUILDS C, DOES> CB C, C& SWAP 8% + + C, 3
40 RITAD BIT
80 BITAD RES
CO BITAD SET

These instructions are used in the form:

A 7 BIT (test bit 7 in the accumulator)

M O SET (set bit O of the byte pointed to by the)
(contents of the HL register pair)

’

: 2BYTE <BUILDS C, DOES> ED C, C& C, 3
67 2BRYTE RRD &F 2BYTE RLD A0 2BYTE LDI
Al 2BYTE CPII A2 ZBYTE INI A3 2BYTE OUTI
A8 2BYTE LDD A9 2BYTE CPD AA 2BYTE IND
AE ZBYTE OUTD RO ZRYTE LDIR B1 2BYTE CPIR
B2 2BYTE INIR B3 2BYTE OTIR B8 2BYTE LDDR
B9 2BYTE CPDR BA 2BYTE INDR BB 2BYTE OTDR
FORTH DEFINITIONS DECIMAL

Put the above definitions onto a free screen on the
system diskette, and add the number of the screen
plus the instruction LOAD to the loading screen for
the assembler (probably screen 42). Note that z280°s
CFI has been called CPII in order to avoid conflict
with 8080%s CPI.

EXAMPLES

CODE ODD.PARITY.SEND (ascii-char --—)
(assuming a 7 bit ASCII character on the stack)
(set the 8th bit, if necessary, so that the 8 bit)
(character will have odd parity, then send it)
D POP (get char. in E register)
E A MOV A ANA (set flags)
PE IF E 7 SET
THEN TXD CALL NEXT JMP
END-CODE

CODE ODD.PARITY.RECEIVE (—— char-2, flag-1)
(receive an ASCII character and check its parity)
return the character plus a flag.)
flag=2 if reception was interrupted by pressing)
a key)
flag=1 if parity is odd)
flag=0 if parity is even)
RXD CALL (char. in E)
2 H LXI
65013 LDA A 7 BIT O= (key pressed ?)
IF (no key pressed) H DCX
E A MOV A ANA (set flags)
PE IF H DCX THEN
THEN DPUSH .JMP
END-CODE

P s)

Uppsala, 1982.07.28
Eob

[¥y]
(]
eal

U R o N | I o T]

1@
i1
12
13
14
13
1&
17
1
1z

28

ABLCE

S D@ Wh -

[

—
[t

13
14
13
15
17
i8
19
29

#BCB@ SYSTEM-DISK

S)

i SESSEMELER S

SSSEMEBLER DEFIMITIONS HEX

MEXT 1 = COMNSTANT HPUSH

ME=T 2 - CONSTANT DPUSH
EMD-CODE SCOMPILES C3

0¥ 1MI EXx

: BITalD <BUILDS C, DOES:
SWaP 8% + +C, 3 ‘

4B BITaD BIT

g8 BITalD RES

Ce BITaAD SET

: ZBYTE <BUILD5 C, DDES>»
Cy 3

&7 ZBYTE RRD &F 2BYTE
AE ZBYTE LDI Al 2ZBYTE
42 ZBYTE INI A3 EZBYTE
AS ZEYTE LDD AP ZBYTE

@Gy 2BYTE IND AB ZBYTE
E@ ZEYTE LDIR Bl ZBYTE
FORTH DEFINITIONS DECIMAL
15

8 SYSTEM-DISK {1932.88

i ASSEMBLER &

ASSEMBLER DEFINITIONS HEX

Bz ZBYTE INIE - B2 ZBYTE

B3 2BYTE LDDR B? ZBYTE

B ZEYTE INDR BB zZBYTE

FORTH DEFINITIONS DECIMAL

]

CODE ODD.PARITY.SEND ¢ as
L POP ¢ char. in E r
E & MOV & ANA (set
FE IF E 7 SET

THEN
TKD CALL NEXT JMP
END-CODE
CODE ODD.PARITY.RECEIVE
{ —— ascii-2, flag-1 >

RXD CaLL ¢ char. in
2 H LxI 65813 LDA A

.
*

CB C, Cé

ED C,

RLD
CPII
ouUTI
CPD
aguTD
CPIR

B2

aTIR
CPDR
OTDR

cii-1
eq
f1ags

E >
7 BIT

IF HDCX E A MOV A ANa PE

IF H DCX THEN
THEN DPUSH JMP END-C

{1982.88

ODE

.82

6

CE

8

S

