
, ,..

‘h

E
"1

E.‘

an

FDRTRAN TILL ABC so

Versibn 1.0

copvaxsur DATAINDUSTRIER AB, swzneu

J

I

M?

\_

'_in~A.~_»_._‘_,‘._..A‘...4_=.,._..A..h_

|.. J

1

I
1

1

1

\

4

1

1

1

I

1

5

g 1

1

i

l

1

i



Version 1. May ‘BO

TABLE or contents

Paragraph  
Page

1.0 INTRODUCTION T0 ABC 80 FORTRAN

1.1 Sample ABC 80 FORTRAN Program

1.2 ABC 80 FORTRAN Statement Format  I

1.3 How to run the ABC 80 FORTRAN compiler

2.0 INTEGER OCNSTANTS, VARIABLES AND EXPRESSIONS

2.1 Integer Constants

2.23 Integer Variables

2.3 Integer Declarations
2.4 Integer Valued Arithmetic
2.5L Assignment Statements

2.6 Flags

<

3.0 LOGICAL OPERATORS

3.1 Logical Constants

3.2 3Logical Variables
3.3 Logical Operators

3.4 Relational Operator.

4.0  DIRECT INPUT/OUTPUT

5.0 CONTROL STATEMENTS  

5.1 Unconditional GO T0 Statement

5.2 Computed GO TO Statement

5.3 Logical IF Statement

5.4 1Arithmetic IF

5.5 STOP, END Statement  

6.0 THE DO AND CONTINUE STATEMENTS

6.1  Introduction
6.2 Rules Governing Use of the DO Statement

6.3 CONTINUE Statement

6.4 Nested DO Loops

F 1

-FiO0I\)1"\1

-a--I» _

--\CD00\lQ3U1U1

13

13

13 1

13

14

16

17

17

17

18

19

20

21

21 5

23

25

26



"”' "" 5’ “ ‘ ‘ " ,’ ‘“‘"' ""' - ?~—- ~— ~ ' ‘-— -— - ;~-V ~_». _,...._.

Paragraph  Page

7.0 SUBSCRIPTED VARIABLES 28

7.1 Introduction 28

7.2 Subscripts 29

7.3 Use of Arrays 29

8.0 SUBPROGRAMS 31

8.1 Introduction 31

8.2 Subroutine subprograms 31

8.3 Function Subprograms 36 I

8.4 Global Variables 38

.8.5 Global Subprograms 39

9.0 FLOATING POINT OPERATIONS 41

9.1 Single and double precision constants 41

9.2 Declarations 42

9.3 Floating Point Arithmetic 42

9.4 Floating Point I/0 43

9.5 Floating Point Format 44

10.0 FILE I/0 45

10.1 Introduction 45

10.2 The INCLUOEIO directive 45

10.3 The OPEN subroutine  46

10.4 The CLOSE subroutine 47

10.5 The GET and PUT subroutine 47

10.6 The WRITE Statement 1

49

10.7 User defined output devices 50

10.8 The READ Statement 50

10.9 User defined input devices 52

F 10.10 The FORMAT Statements 52

11.0 CHARACTER STRINGS 55

12.0 SPECIAL FEATURES 57

12.1 Inline Code 57

12.2 Accessing Compiler Directives 59

\



Appendix "A" - ABC 8O FORTRAN Keywords

Appendix "B" - ABC 80 FORTRAN Error Messages

Appendix "C" - ABC 80 FORTRAN Features not supported

by FORTRAN IV

Appendix "D" - FORTRAN IV Features not supported

by ABC 8O FORTRAN

Appendix "E" - Sample Program Run



-———~~-~»-- ~ -_ - » ~—- —— —— —~ -. ._ . A7 - __.-__’.-’- ~- v’_.,._,______..__.._. ...... _-F_.;_.,__ _ _._._._.-____ _._. i_ .__.___._ __ _____

FORTRAN 1
all

»~

PREFACE

This manual is not intended to teach the non-programmer FORTRAN, but  

rather it is intended to provide quick reference information for the

FORTRAN user. The novice programmer should refer first to a standard

FORTRAN text (see Bibliography) before reading this manual.

Q

l

1

1

1

I

I

3

I

I

1

l

1

i

l

1

I

l

5

1

l



FURTRAN 2

INTRQDUCTION T0 ABC 80 FORTRAN‘

Samnle ABC 80 FORTRAN Program

l A FORTRAN program consists of an ordered sequence of statements.

These statements may specify arithmetic operations, the input of

data from a console or input port, or the outputting of data to

a CRT or output port. Normally, statemnts are executed in the

order in which they are written. However, another group of  

statements allows the user to conditionally or unconditionally

alter the ‘program flow‘. Finally, a group of statements exist

which do not perform any action but rather provide information

concerning the nature of the procedure.  

A sample ABC 80 FORTRAN program is:
C SAMPLE PROGRAM

I = 0

5 I = I + l
J=I%I  

OUTPUT (l0) = J+I

IF (I.LT.l0) G0 T0 5

STOP

END

As we see above, each line may contain only one statement or may

‘be blank. Also since blanks have no significance in most state-
ments, we may rewrite the sample program as,

I = 0 Q

s 1 = 1 + 1 lfli

/__M¢-v-..r

Q

J = 1 it 1 e"*e
w‘

OUTPUT (10) = J+I

IF (luLT.lO) so T0 5

stop h\

sup \\i
1 5 Z

7V,i



F

a

FDRTRAN

—— — ——— * ~—~- — ~—~*~' --"—-——~~—»—~%-—-——-'

3

A5; 39 FORTRAN Keywords (see Appendix “A") and user defined

symbolic names should not contain any imbedded spacing.

However, judicious use of blanks and blank lines can greatly
imrove the readability of a program while facilitating a better
understanding of the algoritm employed.

ABC 80 FORTRAN Statement Format
r

ABC 80 FORTRAN statement record consists of up to 72 characters.
These are used in the following manner.

Column l A 'C' in this position indicates the statement

is to provide explanatory information and is only
listed at compile time.  

Column An optional integer statement number used to refe-
iélcse/g  rence a selected point in a program.

Column 6 A non—blank character indicates that the previous

statement is continued on the present line start-
ing at the following character. l

7 - 72

Column Ignored

73 +

i

x

Column Actual ABC 80 FORTRAN statement. E

\

w

1

i

NOTE: Comments may not be interspersed between continuation
statements. Thus, the following is not valid:

INTEGER I ATOP

C INITIALIZE A/D CONVERTER

*l/0FCH/

»

i



.. _. It V V ._. .. _ _.____,__ ___. _» __> _ _ ,_ __. ...c_-____ c_‘_,__~

FORTRAN 4

1.3 How to run the ABC 80 FORTRAN compiler

c\ The compiler is started by:

FORTRAN <opt> <source file>, <object file>9

P

<opt> is one or more of the following options

Cil-IC>f"‘

list program on printer
generate an object file
list generated code

display program on console

If no options are specified an object file and printer listing will
be generated. .

\

 <source file> is the name of the file containing the source program.

The default extension is '.FTN‘
O

<object file> is the name of the generated object file. If omitted the

object file will be named similar to the source file but with the ex-

tension '.ABS'.  i

Examples:

FORTRAN,D TEST

FORTRAN,LOI SORT.TXT, BINSORT.ABS

l7oil\'%w'0D KIM/LE: ‘FT N , . Alla‘;  

i

5

?

i

l

1

I

l

4

K

l

l

\

I

I
V

.

l

l

1

<

A

l
V

l
4



S1

Q

FORTRAN 5

INTEGER CONSTANTS, VARIABLES AND EXPRESSIONS

Integer Constants

ABC 80 FORTRAN supports two forms of integer constants,

single byte and double byte. An integer and its sign must there~

fore be converted into either an 8 or l6 bit number. Therefore,

single precision (8 bit) numbers are restricted to the range

-l28--+l27 while double precision (l6 bit) numers may range

from -32768--+32767. In either case the left (most significant)
bit is relegated to storing the sign of the integer. A '0' in

this bit means the number is positive, while a 'l‘ indicates

that it is negative.

In addition to decimal constants, ABC 80 FORTRAN also offers
the capability of working with binary, hexadecimal, and octal

constants. All hexadecimal (base l6) constants are suffixed by

the letter ‘H’. For example, llH is a hexadecimal constant equal

to decimal l7. However, care must be taken to ensure that a 

'Hex' constant is not confused with an identifier as in the case

FFH. In such cases, the hexadecimal number must be prefixed by

the numeral '0' to eliminate any possible confusion, i.e., OFFH.

Octal (base 8) constants may be specified in either of two ways.

The number may be suffixed by either the letter ‘Q’ or the

letter '0'. Thus, the follwing are equivalent representations of
the decimal number line: llQ, ll0. Binary numbers are similarly
suffixed by the letter 'B‘ and are thus written in the following
form: l0l00B (decimal 20). Decimal (base l0) constants do not

require any suffix to identify them.

The following are valid integer constants:

Hexadecimal: OFH lBH -3FH

Octal: 22Q A -152%. 47Q

 
<a¢

Floating point constants, variables and expressions are dis-
cussed in section 9.

l

l
l



V_'" ““'T"" _" "‘_’ “ ' " """'/ *7" " " ““" "' 4'

F

O

FORTRAN 6

Binary: TB 101010108 1llllB

Decimal: 20 +1 -16

The following are invalid integers:

1.5  (no decimal point allowed)

4,000 (no commas allowed)

FCAH (must have leading '0‘)

Integer Variables

while a constant has but one unalterable value, a variable is
able to take on one or many values during the course of a pro-

gram. An integer variable may take on any value that is speci-

fied in the range discussed in the previous section. Thus, a

single precision variable may vary-from -128 to +127 while a
0

double precision variable may vary from -32768 to +32767.

A symbolic name or identifier in ABC 80 FORTRAN may consist
of up to 31 symbols with the following restrictions, namely,

(a) the first symbol must be a letter (A-Z)

(b) the symbols must be a letter-(A-Z), digit, Z.‘ OP '?', an

(c) the symbolic name must not be a ABC 80 iFORTRAN

Keyword.

Thus the following symbols are valid:

I
: JKL

U

INPUT DATA

INPUT DATA FROM THE ATOD CONV

while these are not:
  

5M1 (first character not a letter)  

l$2 (invalid symbol $)

CARRY ( ABC 80 FORTRAN Keyword)



P

I

fw

Q

FORTRAN 7  

It should be noted that standard FORTRAN accepts only up to six
character variable names. The use of longer variable nams which

ABC 80 FORTRAN allows is recommended in that it tends to make

a program self—documnting.

Integer Declarations

Integer variables must start with a letter from I through N

unless an explicit declaration statement is used. The INTEGERi%l

or.INTEGER§é2 statement can be used to explicitly state the

attributes of any integer variables. For example,

INTEGER$lé2 A,B,C

states that the variable A,B,C are all two byte integer variables

Since implicit integer variables default to two—byte (double

precision) variables, the INTEGER statement is also useful for
defining byte variables. For example,

INTEGERil€l I,TEXAS

declares I and TEXAS to be single precision (l byte) integer
variables.

An additional feature of the INTEGER declaration is its ability
to initialize variables. An example of this facility is:

INTEGER%l A/l7H/,B

INTEGER9F2 C/-l762/

which will give the variables the following initial values:

A 23

B indeterminate
C - l762



' <— " ~ ———w' ->
_",_

is FORTRAN s 
3

As we will see later, the capability is even more useful for
initializing array variables. ,

The initialized values will be loaded into memory at the same

time the program is loaded. This means that if the prograer
_ should not expect the values to be re~initialized if a program

is executed and re—executed without reloading. Also any program

which will be contained in PROM should ensure that tables, etc.,
using data initialization on are also contained in PROM.

2.4 Integer Valued Arithmetic

ABC 80 FORTRAN provides five basic arithmetic operators; '

namely, +, —,%K, /, and unary -. These symbols represent ad-

dition, subtraction, multiplication, division and change of sign

respectively. Formulas or expressions are built up using any

combination of these operators with appropriate variables or
U

constants. As in ordinary algebra, the hierarchy of these,
e

. . . . . 1

operators, unless otherwise specified by parenthesis, is:
l

iii ,/ (equal priority)
then +,- (equal priority)

when no other rules apply, or in the case of equal priority
operations, all expressions are evaluated from left to»right.

In writing expressions, the following rules apply:

(l) Parenthesis must be used in order to force a

lower priority operation to occur ahead of one

of a higher priority;
_ Example: (X + Y)9ié(36/(l8+X))

when in doubt about the order in which an expres-

sion will be evaluated, parenthesis should be used.



I

l

I

w
~.

D

FORTRAN 9

Q

0

(2) Parentheses do n2t_imply multiplication, simply

groupings.

 Example: (A+B)(C+D) must be written as

(A+B)JK(C+D)

when the result of an expression exceeds the range of numbers

avai1ab1e in ‘A55 30 FORTRAN, an overflow is said to occur.

Care should be taken to avoid the possibility of overflows when—

ever possible. For examle,

l000i|00/20

should be written as l000§Kl00/20)

so that division occurs first and an overflow is avoided. In

ABC 80 FORTRAN, overflows will be ignored and execution will
continue with a potentially meaningsless value. No real time

error message is generated. V

Integer division may result in an answer which is not an integer

In such cases, the result is truncated and the fractional part
is ignored. For example, (5/2) would yield a result of 2.

Thus, when making a calculation such as (s/ayes a good idea

would be to try rearrange the expression to read 6/3¥5 thereby

providing the correct answer l0 rather than 6.

Finally, it should be noted that single byte arithmetic is mo-

dulo 256. This means that when counting the upper limit of the

range the following sequence occursi l26, l27, -I28, -127, -T26

etc. Thus we see that the addition of l25 and l0 will yield a

result of -l2l. Similary, double byte arithmetic is carried out

modulo 65535.

For efficiency, a programmer should ensure all the operands in

an expression are of similar type and precision. However, if an

operation is performed between a single and double byte operand,

then the single byte operand will be converted to a double byte

0



FORTRAN 10

operand and the result will be a double byte value. The only

exception to this rule is in the case of an '=' operator in

which the precision of the left hand operand takes priority and

the least significant byte of the right hand side is used.

Example: INTEGER¥2 X,Y

INTEGEH¥l Al,Bl
 C Bl is converted to double byte

X.= Y¥Bl

C X+Y is converted to single byte

Al = X+Y

Assignment Statement

The general form of an assignment statement is:

(variable)=(expression)

Such a statement gives instructions to perform the required

computation and assign the resulting value to the variable at
the left of the equals sign.  

In fact, the equals sign is not the same as that employed in
conventional mathematical notation. Rather, it states that the

value of the expression on the right is assigned to the variable
on the left. For this reason, it is known as the "assignment *“

operator". while the statement N=N+l is meaningless mathemati-

cally, it is interpreted by the compiler to mean assign to N the

old value of N incremnted by one. Such statements are very

useful, but it must be remembered that the previous value of N

is lost. Some examples of assignment statements are:



FORTRAN *
,1

aoa=a4

'  susAn=1nPui@PoAiA/34 aoa)

JACK=JACK+3

A unique FORTRAN extension available in ABC 80 FQRTRAN is its
ability to accept multiple assignment operators in an assignment

statement. A example of this is:

A=B+C=D+E

In this case, C is assigned to D + E and then A is assigned to B

+ C. Thus,.assignment operators are evaluated from right to

left.
Some examples of incorrect assignment statements are:

Z - 2 = X+Y (left side must be single variable)

_B = 4(A — C) (missing operator)

2.6 Flags A

~e Four reserved variables are available for examination after
every assignment statement. These are:  

CARRY -—.FALSE.if carry flip flop is clear

-—.TRUE.if carry flip flop is set  

PARITY -—.FALSE.if result has odd parity
--.TRUE.if result has even parity

SIGN --.FALSE. — positive number

--.TRUE. - negative number

- ZERO —-.FALSE.if result is non-zero

—-.TRUE.if result is zero.

"3

5

E

1

)
x

1

‘,

1

-..;._..c._,...._..M....._..-...._

k

.
1

E

s

i

§

3

I



FORTRAN ~
12

These flags may be used as any variable might be employed. For

example,

IF (CARRY) so TO s

0?‘

A = B + C

D = E +(CARRY.AND.l)

OT

A ='E - D

IF (ZERO) G0 T0 17

The complements of the four flags are also available, namely, *

CARRYOFF

SIGNOFF

PARITYOFF

ZEROOFF



___e.,__.___“ _ .. ._ O _ " V
FORTRAN 1 3

3.0 LOGICAL OPERATORS

3.l Logical Constants
.

A logical constant is a single byte number that has two possible

' values.

.FALSE. representing false .

.TRUE representing true

3.2 Logical Variables

These are in fact nothing more than single byte integer variables.

However, the user regards them as taking on only one of two

possible values, either .FALSE. or .TRUE.

ABE 30 FORTRAN dose not support an explicit LOGICAL type

variable.

3.3  Logical Operators

 There are four logical operators available for use in ABC 80  

FORTRAN. These are .AND., .OR., .XOR. and .NOT. The following
truth table summarizes the action of these operators.

X Y X.AND.Y X.OR.Y  X.XOR.Y .NOT.X  

"|'l'Tl-I--1

'11‘-‘l'11--I

"Tl--l--‘I--l

'|'l--I--|"'|'I

--I-i"|'l'|"I

S

WHERE T REPRESENTS A TRUE CONDITION

AND F REPRESENTS A FALSE CONDITION

Logical operators also serve another~function. They allow the

programer to mask, set or reset a bit or group of bits in a

variable. If we wish to clear the upper four bits of the byte  



FORTRAN 14

variable BOB then the following expression will accomplish this:

(BOB.AND.0FH)

The constant OFH is referred to as a mask.

Relational 0perator

There are six relational operators in ABC 80 FORTRAN. A list
of these follows. A  

.EQ. equal to

.LT. less than

.GT. greater than

.NE. not equal to

.LE.  less than or equal to
 .GE. greater than or equal to

These six binary (two operands) operators always result in a 

logical value; '00‘ if the relation is false and ‘FF’ if the

relation is true. By combining logical and relational operators,
 complex expressions may be easily written.

Example l:

 x =(A.LE.B) .AND. OFCH

if A48  then X = OFCH

‘if A78 then X = OOH

Example 2:

. x = .NOT. (A.XOR.B)

X equals exclusive NOR of a,b  



FORTRAN

NOTE:

l5

Due to the limitations of the Z80 and the use of signed arith-
metic, certain restrictions must be obeyed when using a relatio-
nal operator, either in an assignment statement or a logical IF

statemnt. These rules are: s

3,-

b,

The results of the two expressions (e1 and ez) which

are being compared must be  

-64ée], e2 Q 63 (single precision)
-l6384$e1, e2..<, l6383) (double precision)  

This insures that all relational operators will func-
tion correctly without any danger of overflow condi-
tions occurring.

If e] and/or e2 do not fall within the limits above,

then the programmer must insure that

e] - e2 5 l27 (single precision)  

e] e25 32767%(double precision)

Once again, by observing this rule, the relational
operators will consistently work.



 FORTRAN 16

DIRECT INPUT/OUTPUT

ABC 80 FORTRAN provides the user with an efficient method of acces-

sing the I/0-system at its most basic level. This is done by the

use of
T

INPUT (n) and OUTPUT (n)

where n,0$n$ 63, is the port number which must be a constant.
INPUT is used exactly as one would use an INTEGERikl function
call statement. Thus it returns a single 8 bit value which has

been sampled by port 'n' of the CPU. It may be used as part of
an expression.

Example:

 A =(INPUT (06) + INPUT (07) ) / 2

OUTPUT (n) must always appear on the left hand side of an assign-
ment statement. It transfers the eight bit result of the assign-
ment statement into port ‘n’ of the CPU. If the assignment

statement yields a double byte result, only the lower (least  

significant) byte is output. A sample of the OUTPUT statement is
shown below:  ‘  

OUTPUT (l6) = (A + C) / 2 + INPUT (l7)



FORTRAN 17

CONTROL STATEMENTS

5.1 Unconditional G0 TO Statement
L

This statement allos the user to unconditionally transfer con-

' trol to som other statement within his program. Although this
is a very straightforward statement, two rules must be followed

when using it; namely,

l, Control must only be transferred to executable

statements. Hence, control cannot be transferred to

FORMAT, DECLARATION, or END statements.

. 2,  The statement immediately following the G0 T0 state-
ment must have a statement number or it can never

be referenced.

5.2  Computed G0 T0 Statement

  This statement is similar in function to the unconditional G0 TO

except that it allows multi—way branching. This capability is
very useful whenever a different set of calculations is to be

performed depending upon the value of a single index variable or

expression.

The general form of the statement is

l

____a-..,.,»-_...._.

Y

1

G0 T0 (n1,n2,n3,...nm) , E

, where n ,n ,n ,...n are valid statement numbers,
l_ 2 3 m

' and E is a non-negative ABC 80_ FORTRAN expression.

It should be noted that unlike FORTRAN IV, .ABC 80 FORTRAN

allows expressions in place of the index variable. Thus the

_following computed GO T0 will execute the indicated jumps

depending upon the value of the expression (MUSSE+2).

\

l

§

e

5



Q’-Q’--—-*—~.j- <1 . _ _ .. ____ _._ ,_-~_.' »- »_'--__- -__ __ _ ‘_ ,____._ _,.. __ __ s ___. ..____ ___>_V

FORTRAN l8

so T0 (1o.2o,ao.4o), MUSSE+2

so CONTINUE

- BRANCH VALuE OF’ MUSSE+2

Q

U1-!>(.1)P9--"

CDCDCDCDC)

U1POJl\3---l

5.3 Logical IF Statement

The general form of the logical IF statement is given by either
by!

RIF (logical expression) G0 T0 n "

or IF (logical expression) RETURN

or IF (logical expression) ASSIGNMENT

or IF (logical expression) CALL subroutine

- where 'n' is any statement number.

nal operators or any of the four logical operators previously
mentioned. The action of the statement is to execute the G0 T0,

RETURN, ASSIGNMENT or CALL statement following the closing
parentheses if and only if the logical expression is true.
Otherwise control is passed to the next sequential statement. If
an expression is used, then the jump will be taken if the value

of the expression is negative.

Some examples of logical IF statements are:

IF (A.EQ.0) so T0 17

IF (A+B.GT.(CiKD)/(2+B) ) RETURN

IF ((A.GT.B).AND.(C.GT.D)) oo TO 25

IF (A.LT.72) I=4xA+2

IF (C.LT.2.AND.DOG.GE.7)CAT = HAT =.121

‘B

5

i

l
2

t
i

a _ l

The logical expression may use any of the six available relatio- F



FORTRAN 1 9

Arithmtis IF

The arithmetic IF statement takes the following form:

IF (expression) statement nber l, statement number 2, state-
ment number 3.

Each of the three statemnt numbers can be equal or different
from one another. The expression must be enclosed in brackets

and can be any valid ABC 80 FORTRAN expression. when this
statement is executed, the expression is evaluated and a jump is
then made to one of the statement numbers in the list.

If the expression is negative, then a jump is made to statement

number one. If the expression is zero, then a jump is made to

statement number 2. If the expression is non-zero and positive,
then a jump is made to statemnt number 3.

For example, consider the calculation of the function:~
I

A B2 + se-3 for s=o, 5, 10, l5, 20, 25

<8-5)  
'

B = 0.0

5 IF (B-5.0) 6,7,6
 6 A =(B¥B+5.0xB—3.0)/ (B—5.0)

WRITE (1,3) B,A

3 FORMAT (5X,F6.l,‘THE ANSWER‘, 520.7)

7 B = s+s.o  

IF (B-25.0)5,5,8
s STOP

END

In the example, the first arithmetic IF statement is used to

avoid a division by zero in the following statement. The other

arithmetic IF statement is used to exit from the program if B

becomes greater than 25.0. 7



FORTRAN r20

gglg; The logical IF statement should be used instead of an

arithmetic IF statement wherever it is practical to do so.

The logical IF usually makes the program more readable
and also produces code which is usually more efficient.

STOP, END Statements 
The STOP statement may be written wherever it is necessary to stop

executing statements in a program. It is known as "control" state-
ments because it controls the execution of the program. STOP does

not stop the computer but merely terminates execution of the pro-

gram and returns to the operating system. There normally is a STOP

at the end of every program when computation is over. However, there
are other uses. In order to check input data for consistency, STOP

statements may be incorporated to give the operator an indication
that something is wrong.

A STOP statement may appear anywhere in a program and there may be

more than one.

The END statement must be physically the last statement of every
program. It is also used to terminate the declaration of both
subroutine and function sub-programs. Optionally, a transfer ‘

address may be placed after the END statement as the following
example indicates:

END 3AFCH

-



FORTRAN 21

THE D0 AND CONTINUE STATEMENTS

Introduction _
The DO statement is one of the most powerful and widely used

statements available to the FORTRAN user. It allows the prograer
to execute a section of program repeatedly while automatically '

varying the value of an integer variable between repetitions.
Thus, a program loop may be easily written without the need of
an IF statement. The D0 statement takes on one of two general

forms, namely, e

D0 n i= m1, m2,

or D0 n i= m], m2, m3

where n  is the statement number of the termination state- A

ment of the DO statement (also known as the 'object‘),
i is an integer variable whose value is varied by

the D0 statement. It is commonly called the ‘index’.
m1 is an expression giving i its initial value.

m2 bis an expression stating i's upper bound.  

m3 is an expression yielding the increment which will
be added to 'i' at the end of each repetition of
the Do loop. If it is not present as in the first
general form, +l is used.  

The action of the DO statement is to repeatedly execute all
statements between the D0 statement itself and the object. This

block of statements is referred to as the scope or range of the

D0 loop. The first execution will have i=m], the second with
i=m] + m3 and each successive run will have i incremented by m3.

The repeated executions will continue until control is transferred
outside the scope of the DO loop.

There are two methods by which control can be transferred out-
side the range of a D0 loop. The normal exit occurs when the DO

loop upper bound has been exceeded, i.e. i7>m2.

‘l

I

1

._._.._..,.__......'a>.._.~

l

1

s

l

I

i

i

l



 FORTRAN B
22

This causes control to be transferred to the next executable

statement after the object. The second method utilizes a G0 T0,

IF or RETURN statement to carry control out of the D0 loop. Re-

gardless of the exit mechanism employed, the index variable i is
no longer available for use by the programmer.

However, the index variable i is available for use during the A

execution of the D0 loop as shown in the following example.

C Example 6.l --Cubes of even integers ten with
a D0 statement

INTEGER%2 CUBE (5)

D015 J=2, l0,2
l5 CUBE (J/2) = JtJ!U

CALL DISPLAY (CUBE)

STOP

END 5

By contrast, if we did not use a DO loop the following program

would result

C Example 6.2-- Cubes of even integers -4-ten without  

 a D0 statement

INTEGER*2 CUBE (5)  

J = 2

l5 CUBE (J/2) = J*U%U

J=J+2

IF (J.LE.l0) G0 T0 l5
CALL DISPLAY (CUBE)

STOP

END

The index variables need not be employed in any function other

than counting the number of.times a loop is executed. In this
regard, it is important that the range of the D0 is executed

precisely the required number of time. Many errors occur because



 -—%— - ~ - ‘_..___i.__ _ ___ ___ ______

I

‘I

I

FORTRAN

V ___

8

23

the D0 loop is executed once too many or once too few times. A

little consideration can save a lot of wasted effort. Some

examples follow:

D0 20 I=l, 9, 3 i

' D0 30 JACK=2, 9, 5

D0 40 KAL=Z, 9, ll
D0 50 MACK=l1, 1000, 37

in which the number of executions are 3, 2, l and 27 respectively.
Some examples of how expressions may be used in the parameters

of a D0 statement are shown below.

no 20 MY= -5, 7, 2

no as KITE= (A=B+C),(A+B+C)

no 71 xtxueou = 7, -B, M+N

i 6.2 Rules Governing Use of the D0 Statement

The D0 index must be either a single or double byte integer var-

iable while the remaining D0 parameters must be integer constants,

variables or arithmetic expressions. Real variables and constants

t

may not be used. If the increment parameter is not specified, it 1

is assumed to be +l.
I

Thus, the following D0 statements are valid:

D0 18 IBOB=IDAVE,IED

D0 69 ISUE=3,HEIDI,LAST

while these have violated the first rule:

DO 700 K=.0l7,X,-
D0 900 Z=7,,4

4



FORTRAN 24

The parameters of a D0 statemnt must not be modified within the
range of the D0 statement. Failure to observe this rule may

cause unexpected results. The following example illustrates a

violation of this rule.

K=7i

D0 100 IT=K,M,l7
X=(7¥IT)/14

M=X/17

12 Y(IT)=M+X

The range of the D0 is always performed at least once regardless

of the parameter values since the testing of the index value is
done following execution. Thus the following D0 loop will be  

executed once.

D0 l00 J=l,-l00

The object (or termination statement) must be an executable

statement with the following exception: (a) STOP (b) Another D0

(c) G0 T0.  

Once a D0 loop is exited, the value of the index variable shall
be considered to be undefined. Execution of the following program

will not guarantee K being equal to 7 as one might expect:

DO l0 J=l,l0
l0 IF  (J.EQ.7) G0 T0 20

20 K=J

STOP

END



FORTRAN 25

As shown in the previous example, it is possible to exit from a

D0 loop before the D0 statement is satisfied. However, it is not
permitted to enter the range of a D0 statement without entering
by mans of the D0 statement itself. An example of a violation
of this rule is

G0 T0 76

no 17 1=1o, 20,2

76 a=1xv

77 KIT (J)=Mae+79

CONTINUE Statement 
The CONTINUE statement has no effect on any variables in the

program. Rather, it is a dummy statement to enable the user to
terminate aeD0 loop properly. It also provides a point where

jumps within the range of the D0 loop may be made in order to
increment the index variable and begin executing the scope of
the D0 loop. An example of the CONTINUE statement is shown

below: f

no 100 a=1o, 20, 2

IF (A(J).EQ.l0) so T0 100

A(J)=A(J)+7

100 CONTINUE  

\-



FORTRAN 35

'1

Nested DO Loops

Do loops may be nested, i.e. one DO loop may contain another DO

loop which may contain yet another, etc. Nested DO loops must

adhere to the following three rules:

Separate index variables must be used.

3
i
4

F

<

A

L‘

V"I\I"KQ.~.I___,.._...__..s...-.,_.q.,.,_

r

2

l
5

i
|

I

l
I

T
(

l

Thus D0 100 J=1,l0 5

D0 200 K=l,l0 I

Y=J+K

ZOO CONTINUE

lOO CONTINUE

is valid, while

DO l0O K=l0,lOO

 DO ZOO K=L,lO

Z(K)=X+K+K

200 CONTINUE

lO0 CONTINUE

is invalid.

All the statements in the scope of an inner DO statemnt must be

also in the scope of the outer DO statement.

Therefore,

. DO 10 K=l,1O

D0 20 J=1,20

- D0 30 L=l,5
30 CONTINUE

20 CONTINUE

10 CONTINUE

—

£

l



FORTRAN 27

is valid, while

D0 10 K=l,Z0

D 20 J=l,5
10 CONTINUE

20 CONTINUE

is invalid.

Each D0 loop must have a unique object or termination statement

Thus, the following program segment is invalid:

D0 10 J=1s]0

D0 10 K=l,5
 l0 X=J+K

The programmer should have used the CONTINUE statement as the
object of the outer D0 loop.

D0 10 J=l,lO  

D0 20 K=l,5
Z0 X=J+K

10 CONTINUE



'-§,,,--__--__-_.-.»_<... _ _ __ _ __ *'~- @-

FORTRAN 33

7.0 SUBSCRIPTED VARIABLES

7.l Introduction

Subsricpted variables are used to relate a group of associated
' variables. Any ABC 80 FORTRAN variable may be subscripted.  

However, only single dimension array variables are permitted.
The following are examples of subscripted variables.

A(7)

cm (11.1)

SUSANNE (JACK-14K)

A subscripted variable may be declared by one of the following
statements:

DIMENSION variable name(size)

OR INTEGER variable nae(size)
INTEGERi'~l variable name(si ze)

INTEGER*2 variable name(size)

REAL variable name(size)

REAt*A variable name(Size)

REAL-1&8 variable name(size)

where variable name is any valid symbolic name, and size denotes

the number of variables reserved and is any positive non-zero

constanté32,767. It should be noted that the DIMENSION statement

 automatically declares the array variable to be double precision
. (2 byte for integer, 8 bytes for real). Per standard FORTRAN

conventions, any DIMENSIONed variables beginning with the letters
~ I-N are integer variables while all others are real.

Examples of valid declarations are:

(1) DIMENSION A(60),B(l0)
(2) INTEGER *1 cm" (91)

INTEGER~>lé2 DOG (917)

l

l



FORTRAN 29

(3) oxutnszon snm (79),PHASE (2) 
INTEGER *1 )<1m< (20)

R:-:m.~x4 BET (4)

REAL*8 MAX (14)

Examples of invalid declarations are:

(l) DIMENSION A(l0)  

INTEGER 2=lEA(l0) (attempt to redefine variable already
declared).

(2) INTEGER£l A(-7) (negative sign)

Subscripts

Subscripts may be any valid ABC 80 FORTRAN expression. The

expression may evaluate to either a single or double precision
result within the range l'to n, where n is the declared size of
the array. No run time checks are made on the range of the sub-

script, so the programmer should take care to stay within the

declared range.

The following are valid subscripts:

(x*g+a) i

 (Y=3¥INPUT(l7))

Use of Arrays

The use of subscription is shown in the two programs which

follow.

' (a) SUBROUTINE FTNDSMALLEST (X,N,SMALLEST)

INTEGERiH X(l00),N,SMALLEST

SMALLEST = x(1)
no 10 a=2,u

IF (X(J).GE.SMALLEST) so T0 10

SMALLEST = X(J)

10 CONTINUE   

RETURN

END

l

i

i

M...»-..~_..~.m__...._....,.%.....,.._..

s

5

1

3

i

?

§

i

)

-..._...~..._......_...._........,,-W.”

e

F

:

a

5



FORTRAN

(b) Vector Multiplication Subprogram

susaourxm-: ARRAYMULT (X,Y,Z)

xnrsezaxn x(1oo),v(1oo)
xnrzsamsz zuoo)
no 10 .1=1,1oo

10 Z(J)=X(J)i&Y(J)

RETURN

END 2

5

V

\n



.-» __-

8.1
-

0

1'

\¢

 FORTRAN 31

SUBPROGRAMS

Introduction

If a programmer finds that some coutation recurs throughout
his program, he may want to set up a function to carry out the
comutation. For such cases, the function and subroutine sub-
programs have been designed.

The main feature of these is that they are compiled independently
of the main program. The locally declared variable names are

completly independent of the variable names in the main program

and in other subprograms because subprograms may have their own

data and program sections. In other words, function and subroutine
subprograms can be completly independent, yet it is easy to set
up communication between the main program and the subprogram(s).
This allows a large program to be divided into smaller sections
that can be compiled independently. It also allows the subprogram

to be used with other main programs, as long as the main program

adheres to the conventions required by the subprogram. Also,
individual subprograms can be checked out and tested before they
are put together by the main program. However, their main ad-

vantage is that they prevent duplication of effort whenever a

group of statements is sumoned in several portions of one pro-
gram, or in many programs.

8 2 Subroutine subprograms

We will first write a main program and then convert it to a sub-

program to illustrate how it may be used in conjunction with a-
nother main program. The following example inputs a string of
N( 50) numbers from port (FE) and outputs the maximum of these

to port OOH.

oxnsnsxou A(50)

N = INPUT (OFEH)

no 2, 1=1,u

>

I

»

i

§

2

l
1

i
l

R.

l

1

l

5

i

5

I

E

E

i

E

>

l

4
.

..u._..-..-»-.__...,..

i

l



‘D’

Y

no

-

FORTRAN 32

2 A(I) = INPUT (orsn)
mx=Mn
IF (N.EQ.l) so TO 7

' D0 6 I = 2,N

IF (A(I).LE.MAX) GO TO 6

MAX = A(I)
6 CONTINUE

7 OUTPUT (OOH) = MAX

STOP

END

The program can be expressed simply as follows: Input N and A, 
do appropriate computations, and output max.  

This program is now converted into a "subroutine subprogram :

SUBROUTINE F INDMAX (N,A,MAX)

- DIMENSION A(50)   

MAX = A(l)
IF (N.EQ.l) RETURN

00 6 1=2,n  

IF (A(I).LE.MAX) GOTO 6

MAX = A(I)
6 CONTINUE

RETURN

END

Note that the input and output statements are no longer present

and that a return statement has been added. The input/output
function has been assumed by the subroutine statement.

' SUBROUTINE FINDMAX (N,A,MAX) identifies the program as a sub-

routine subprogram. The name FINDMAX is followed by a list of
"input—output parameters“ enclosed in parentheses and separated

by commas. There is no explicit designation as to which para-
meters are responsible for input and which for output. Since the

1| ;

I

I

a
I

I

T

E

l

l

I
I

I
3

I

F

i

I
i

E

4,

a

I

5

I

I

s

k

1

t
c

....w.s_..WH_.W.

I

I
!

Y

§
I

l

1

¥

......_.....__.-_~....._._.._._....._....~...

I
t

3

2

_.4...._.__W

.

i
I
1'

Q

3

l



.___-.._. .._.s_. . -. .. . . ~_.-__».__i_ _._--s-__s--.__ ___ . ___ a we _ ., ___%__.___?_ ~__.... » __

FORTRAN 33

subprogram obviously requires values for A and N before it can

function, they are designated as input parameters. On the other
hand, the subprogram creates an assignment to the variable MAX,  

hence it is implicity assumed as an output parameter.

A RETURN statement is employed in a subprogram whenever a STOP

would occur in the main program. The subprogram will be executed

*-—q;t

and when the RETURN statement is encountered, control is trans- T

ferred back to the first statement following the CALL statement
in the main program. This is illustrated in the trivial main

program which utilizes the previous subprogram:

DIMENSION A(50)

N = INPUT (OFEH)

no 2, 1 = l,N
2 A(I) = INPUT(0FCH)

v  CALL FINDMAX (N,A,MAX)

OUTPUT(00)=MAX  

stop

END

The CALL statement causes control to transfer to the first exe-

cutable statement in the subprogram FINDMAX . It also defines
the input-output parameters using an "argument list" in the 

subprogram. when the return is encountered on completion of the  

subroutine, control is transferred back to the main program and

the output statement, 0UTPUT(00H)=MAX, is the next statement
executed. "   

The naes of the entries in the CALL statement argument list
need not be the same as those of the subroutine parameter list.
They merely have to correspond exactly in number and type. Thus,

a valid statement which would be used to call the FIND MAX

subprogram could read  

CALL FINDMAX (Q,R,LARGE)

I

i

l
l

i

l



‘i

D

@-

FORTRAN 34

The parameters in the subroutine statement are "formal para-
meters" which are replaced by the respective values when the
CALL statement is executed. Thus in the statement above, N takes
on the value of Q, A is the same array as R, and finally LARGE

will take on the value produced by MAX in the subprogram. How— 1

ever, it is necessary that the arrays declared in the subprogram
have the same dimension as those in the main program.

All variable names in the subprogram are specified only in that
subprogram; they are unknown outside the subprogram. Thus in our
example, MAX may be used in the main program, or another sub-
program, without any confusion. The same holds true with state-
ment numers in subprograms. They can be identical with state-
ment numbers in the main program or other subprograms and no

conflicts result.

Note that a subroutine always has an END statement as its final
statement. All the subroutines required by the main program must

be placed before the main program, or any other subprogram which
they are referenced. Each of the subroutines as well as the main

program is known as a "program segment". Remember that each

"job" has only one main program but may have as many subroutines
as required.

 e

It is worthy to note that the arguments in the list for the CALL

need not be simple variables. They can be any expressions which
when evaluated, yield an expression of the proper type. The type
is determined according to the type of the corresponding dumy
variable in the parameter list of the subroutine. Thus an accept-
able CALL statement may look like:

F 1

i

i

i
E

i

l

f

l

E

E

F

5

1
§

I FINDMAX (N-1+1,A,MAX)

as long as N-l+l yields an integer value corresponding in type
to the integer N in the subroutine. The second argument in the
call must be an array nae, since the corresponding entry in

>

i

i

i

F

e

é

,,,..,,.....__,.-.._,./\'K'V)§\‘\'W-v

Q

a



FORTRAN 35

the subroutine parameter list is also an array name. It would be

invalid to use an expression here, since an expression cannot 
yield an array name as its value.

It is also important to note that a subroutine may call a second

subroutine. The second subroutine can call a third subroutine
etc. as long as the subroutine does not call itself, either
directly or indirectly.  

In conclusion, we may state the following rules governing opera-

tion of subroutines, namely:  

(l) The general form of the subroutine statement is

SUBROUTINE Subroutine Name (Formal Parameter List)
or

SUBROUTINE Subroutine Name

The name can be any valid ABC 80 FORTRAN name. No 

formal parameter list is required if there is no inter-
change of values between the main program and subprogram.

(2) Each Subroutine subprogram begins with a Subroutine

statement and finishes with an END.

(3) The subroutine subprogram is referenced by the CALL

statement which has the general form

A CALL Subroutine Name (Argument List)
,, Of‘

CALL Subroutine Name

(4) when the subprogram uses one of its dummy variables, it
is actually using the value of the corresponding variable

Tor expression in the calling argument list. Thus the ar-
gument and parameter lists provide a two—way means of
communication between the calling program and the called
subprogram. when an expression or subscripted variable
is used, the value is passed but not returned.

l

1
E

i

,....-»._\--e.-w~

E

%

i
x

E

1

i
@

E

...¢___._....._.»-._¢...~..a._..

i

z.
,
l
2

5

i
I

2

l

l

é

E

E

a

%

§

1

s

R

E

5

i
1

5
\

l

i

l

5

1%

E

i



_.--u-»_..___ ..._ W é

FORTRAN 36

(5) A RETURN transfers control back to the calling program.

(6) All variable names and statement numbers in a subroutine
' are local to that subprogram unless they are declared

‘ global. T

I

 (7) A subroutine subprogram can call other subprograms

except itself. Thus no recursion is permitted.

8.3 Function Subprograms

These are very similar to subroutine subprograms. The general

form of the declaration is:

Function Type FUNCTION Function Name (Parameter List)
or

Function Type FUNCTION Function Name

The function type can be INTEGER¥l, INTEGER¥2, REAbe4 or REAL*8.

If its declaration is omitted, then it is assumed to be of type

INTEGER¥2. The function name may be any valid ABC 80 FORTRAN

variable name. The parameter list is identical to that described
in the previous section on subroutines, although a parameter

list may be omitted as previously discussed.

In fact, function subprograms are quite similar to subroutine
subprograms. The following example will point out the differences

FUNCTIDN SUM(N,X)

. INTEGER¥2 X(5O)

SUM = O

: D0 6,1 = l,N
6 SUM=SUM+X(I)

RETURN

END

T
4

5

f

I

i

2

l

I

E

g.

i
I
i

..<-_._....,..
~.._..,..-....-.--,......,...._..._...

x

E

§

l

l

§

Z

2,

l

,,,(,,.,,..,,,,,,,.....-..-....c»..M-K.’



<

FORTRAN 37

The one major difference between this and a subroutine is that
the name of the subprogram, SUM, appears as a variable within
the subprogram and is assigned a value. This is always the case

with function subprograms but never with subroutine subprograms.

The other major difference is the way in which the function sub-

routine is called. The CALL statemnt is never used here, but
always used in subroutine subprograms. Instead, it is called
simply by writing the name of the function in an expression,
along with an appropriate argument list. The following is a main

program which calls SUM: L

 INTEGER¥2 A(50),B(50)

N=INPUT(lCH)  

M=INPUT(27)

oo 2 I=l,N
2 A(I)=INPUT(29)  

no s I=l,M
3TB(I)=INPUT(30)  

 AVG=(SUM(N,A)+SUM(M,B))/(M+N)

OUTPUT (oo) = AVG

stop
END

This program reads two vectors and computes their composite

average, AVG. As can be seen function subprograms are useful
when a single value is to be returned, since the call is included
as part of an expression rather than as a separate statement.

In order to define a single precision function, the function
declaration must include the appropriate type specification,
otherwise a double precision function is assumed. Thus, single
precision functions can be defined as: T

REAL%4 FUNCTION DSQRT(X)

INTEGER¥l FUNCTION SUM(N,X)

E

l
s

l

i

i

l

Z

E

€

§
|

i
i

i
S

I
5

F

a

8

€
l

--A-M-<--->._.-.-..~....._......_-......a,..._/an»-»@.<..,,._.,...--.-.,..~.,,_

I,I
x

E

,

I

i

i

5

i
,
K

»

f
8

.,_,_,.,,,,,.,,,.,,.»..-+..»-._..

E

—'r~\%§W»-<

!

4

t
x

1

i

E

l
E

l

i

E



.____-<..’ e_-_ -_-7

=

F

V

FORTRAN 33

The transfer of control from a function subroutine occurs after
the RETURN statement which returns control to the point in the

expression which contains the function name and argument list.
The name assumes the value assigned to it in the subprogram, and

computation of the expression is resumed.

Function subroutines normally return only one value to the

calling program. However, they may return several by assigning

values to the dummy variables, just as in the case in subroutine

subprograms.  

The function subprogram must be declared prior to its reference

in either the main program or other subprograms. within the body

of the function subprogram declaration, the function nae can be

used as a variable. However, after the declaration has been com-

pleted, the function name cannot be used on the left hand side

of an assignment statement.  

Global Variables“WW an  

Global variables refer to variables which are common to more

than one segmnt of a program, i.e. mainline, subroutines, and

functions. A variable may be declared global by placing its
declaration ahead of all other program segments in which it is 
to be referenced. The following example illustrates how the

array A may be declared as a 50 byte global array for the entire
program:

C PROGRAM START

c J_[DT-ZCl_AR£-Tl'\‘(5i): ,)] U,

C

, tINTEGER*l A(§o)

C

C SUBROUTINE PROGRAM SEGMENTS GO HERE

C

T “l

2

2

i
4

e

9

i
l

i
i

Z

,_.,e_,a_,.,........_......_.._..__q.____.K.,,....~....._c.

E

1

I



FORTRAN 39

C PUT MAINLINE PROGRAM HERE

STOP

END

Global Subprogram;

Just as a hierarchy of global variables exists, subprograms also

have a hierarchy. The following rule must be followed, namly, a
‘ in

subprogram segment must appear ahead of any reference to that
same subprogram. Thus, if a SQRT function is used in subroutine

MAGNITUDE, which in turn is used by subprogram THETA, then these

subprograms must be arranged in the sequence shown below in
order to be compiled correctly. ~

C PROGRAM START

INTEGER 2 FUNCTION SQRT (x)

END

c

SUBROUTINE MAGNITUDE (x,v)

z = soar ( x+v Y)

RETURN

END

» C

C

SUBROUTINE THETA (X,Y)
% I

4

E

l
é

%

§

€

s

i
§
e

§

i

we-Q‘-¢Q-¢-W»-e-»-w~.-»..,--"M-,»-»-<-~»-»

i

§
c
,.

5

E

2

l

l

l



_ .,_ _ _.__., . 4" _ - ¢.._'_.__ - V -- _<_ Vi-_v-— -— » —- -——- »~ ~ —~' --*- ~ i---Q-Q---——~'—""'" ~ -W _‘k ~ “’

\

FORTRAN 49 g

Q

CALL MAGNITUDE (X,Y)

I
O

RETURN

END

C

C MAINLINE PROGRAM

STOP

END

¥

1

1



FORTRAN 41

FLOATING POINT OPERATIONS

Single and Double Precision Constants

Two types of floating point constants are available in ABC 80

FORTRAN, namely, single and double precision. These numbers are

stored according to IBM 370 standard; namely, a signed exponent

followed by a 3 or a 7 byte mantissa. The dynamic range of both

is approximately

78 76 1

.s397ees x 1o'i to .7237oos X 10

Single precision constants provide 7 significant digits while

double precision provides l6 digits. Thus, the programer should  

select the type which provides the required precision while bea-

ring in mind the 2 to l difference in storage requirements.

O

An ‘E’ is used to indicate a floating point constant will be

single precision. A ‘D’ is used for all double precision constants

A single precision default is made if the exponent indicator is
not on the number.

Some valid floating point constants are:

l.269 - single precision
-.00l43lE02 - single precision
l0.2l03E-62 - single precision A

l0. — single precision
l2.45l23l98lS60llD0 - double precision

, l0.Dll - double precision

The following are invalid:

l  - no decimal point -

3llOE82 — exponent too large
-l.23E—82— exponent too small

i

a

i
l
l

F

E

§

i

1

K

s

l
1

I
I
i

T



3

FORTRAN 42

9.2 Declarations

Floating point variables may be declared by mans of two declara-

- tive (non—executable) statements.

' REALX4 variable list
REALXB variable list

The first statement is used for single precision (4 byte) vari-
ables, while the second may be used to declare double precision

variables. It should be noted that these variables may be simple

variables or single dimentional arrays.

ABC 30 FORTRAN follows the FORTRAN IV convention in that it
assumes symbolic names that do not begin with the letter I

through N are REAb%4 variables. Thus, the following would be

REAb%4 variables unless another declaration is present:

TOPOFSTACK

BOB A

SUE ‘

, I .
. 1; 5 .

, . '*'h_,.

 9.3 Floating Point Arithmetic

ABC 80 FORTRAN provides the same real operators as those it
provides for integer operations, namely, +, -, %, / and unary-.

These symbols represent addition, subtraction, multiplication,  

division and change of sign respectively. Formulae or expres- '

sions are built up using any combination of these operators with

_ appropriate variables or constants. Real arithmetic follows the

same priority rules as those of integer arithmetic. (see Section

3 2.4). '

Mixed mode arithmetic is not allowed. This means that real and

integer quantities cannot be mixed in an expression. Conversions

between types is done using the assignment operator.

l
I

i

4

4

T

l

i
5
i
1

Y

I

f

i

I
E.

E

i

K

‘s

V

I

Y



,_-___i ._.

2

C

I

0

FORTRAN

Example

INTEGER¥l

INTEGER*2

REAL*4

REAL¥8

UJ>C..|o--n

I = B+A&2.0 — converts real result to integer

B = I/J¥2 — converts integer result to real

It should be noted that calculations using both REAb¥4 and REAb¥8

types will be performed in REAL%8.

The user is cautioned not of used mixed mode expressions, i.e.

 X = A + M

or  

X = A + l

9 4 Floating Point I/0

Real numbers may be input using the READ statement just as in

the case of integer numbers. Once again, commas are used as 

delimiters between numbers.

The outputing of real numbers may be accomplished by means of
the formatted WRITE statement. Once again its operation is the 

same as in the case of integer I/O. However, E or F format must

be used in the FORMAT specification statement. Also, real con-

stants may be included in the parameter list of the WRITE state-
ment.

An example of floating point I/O is shown below:
>

READ (1) x. Y, z

Z = Xi‘-Y/Z

WRITE (T, lO)X, Y, Z, -2.5639E—O3
\

43 i

Tl



" "" ¢*--"‘_"‘__.._,,__-ow--._..»~<— _- ‘K. ~-. ,-1-~.1:"-pDIw»-av 1..-
"‘i

1

FORTRAN 44
~.‘ii

Floating Point Format

To format codes are available for use with the floating point
option.
These are:

Fw.d — total field width of ‘w’ with 'd' decimal positions
to the right of the decimal point. Note: No exponent

 is printed.  

Ew.d - total field width of 'w‘ with 'd' significant digits.
Note: Since exponent is printed, wrsd + 7.

Thus, when the magnitude of real numbers is small and well

defined, the F format should be used, while in all other cases

the E format should be employed.

The following program will generate the indicated line of output:

C DEMONSTRATE E and F formats

X = l725.683
Y = -l2.73l6
Z = -9293.69l43l84 E-O8

 WRITE (1. 10) x. Y, z

10 FORMAT (", F8.2, 2x, 510.3, 2x, 214.6) g

STOP  

END 

Outputted line
bl725.68bb-0.l27Eb02bb - 0.929369E—O8

It should be noted that if the field specification is too small

for the number involved (e.g.,256.l2 with F5.2 format) then f

asterisks will be printed. p

1

l

l
l

E

%

E



r_-1----¢—r — wt

i ‘ i“1

FORTRAN 45

l0.0 FILE I/O i
10.1 Introduction

Apart from the direct input/output access method using INPUT and

’ OUTPUT statements two other access modes are available to the

ABC 80 FORTRAN user - record I/O and formatted I/O.

The record I/O method allows access to a file in a random fashion,
i.e. the data can be accessed in any order.

The formatted I/O method is useful for sequential input or output

  of data such as integers, real numbers and strings.

10.2 The INCLUDEIO directive

I order to establish communication between a program and peripheral

devices the ABC 80 FORTRAN includes a set of system subroutines to

perform various input/output functions. These subroutines are made

available to the programmer via the ABC BO FORTRAN keyword INCLUDEIO

If the program is to perform I/O this directive should be included

in the program before any user defined subroutines or function but

' after any global variables as shown in this example

C FIRST DEFINE PROGRAM LOCATION

COMPILER(1)=O8000H  

A COMPILER(3)=OBFFFH

Q GLOBAL VARIABLES

INTEGER*1 FLAGl,FLAG2,GLOBE

C LOAD THE SYSTEM SUBROUTINES

INCLUDEIO

~ C USER WRITTEN SUBROUTINES

0

F

MAIN PROGRAM

The I/O subsystem consists of four user callable subroutines - OPEN,

CLOSE, GET and PUT.

K

<

I

2'

E

i

l

9

it

I

i

i

i

I
l

i

i

I

E

$1

I
a

E

lIE

a z

é
>-

E

i
>,

k
I



FORTRAN 46 i

10.3 The OPEN subroutine

This subroutine is called to enable access either to and existing file
. or to create a new file. The format is:

- CALL OPEN (LUN,FNAME,MODE,STATUS)

the parameters should be:

LUN Logical unit number in the range 1-8 by which all fur-
ther references to the file will be made.

FNAME  An INTEGER*1 array containing the name of the file or

MODE

device in ASCII terminated by either a blank or a null
byte.

Either 0 to open an already existing file or 1 to create

a new file similar to BASIC's ‘prepare’.  

STATUS. An INTEGER*1 variable which will be set to a return sta-
tus by the I/O subsystem. This will be 0 if the call was

succesful, or one of ABC 80's interral error codes in

case of an error.  

Once a file has been 0PEN:ed the program may perform formatted (READ,

WRITE) or record I/0 (GET,PUT) accesses to it.

To facilitate communication through the ABC 80 console the system ini-
tially opens this device as logical unit 4, thus removing the need of
explicitly calling the OPEN subroutine.

The OPEN subroutine requires a filename specification. The following

example shows a convenient way of defining the filename and how to

open files

“R

5

z

S

1

1

l

l

2

I

Q.”

E

i

i
E

E

4

..,,._....~_.

1

i

1%

3.

%

X

i



FORTRAN 47

C OPEN CONSOLE AND A DISC FILE

INTEGER*1 CON(G)/‘CON: '/
INTEGER*1 DATF(12)/'SAMPLE.DAT '/
INTEGER*1 STATUS T

O
0
O' 0 1

s CALL 0PEN(l,CON,9,STATUS)

CALL 0PEN(2,DATF,1,STATUS)

0.4 The CLOSE subroutine 
4-

This subroutine is used to close a file in a proper way when no more

accesses should be done. The format is

CALL CLOSE(LUN)

The parameter is

LUN Logical unit number of the file to be closed.

0.5 The GET and PUT subroutinei 
These subroutines may be used to perform unformatted random access to
ABC 80 files. The amount of data transferred upon calls to these rou-

tines is equal to the record length of the corresponding device. The

format is  

CALL GET(LUN,RNUM,BUFFER,STATUS)

CALL PUT(LUN,RNUM,BUFFER,STATUS) L

GET reads data form the file and PUT outputs data to the file. The

parameter should be

LUN Logical unit number of the file



FORTRAN

RNUM

48

An INTEGER*2 expression evaluating to the logical num-

ber of the record to be accessed. A value of -1 may be

, used to access the file in a sequential manner. If the

I

l

Q
l

2

BUFF

STAT

This exam

by record

19

29

file is not a random access file (like the console,

'CON:') this parameter is ignored and the access will
always be sequential.

ER An INTEGER*1 array to be used as data area for the re-
cord. The array must be large enough to hold the entire
record. For disc files the record siie is 253 bytes. For

 the console, 'CON:', the record size is 1 byte.

US An INTEGER*l variable which will be set to a nonzero  

return value if any errors occured during the access.

The value will then be one of ABC 80's internal I/0
error codes.  

ple shows the use of GET and PUT to copy a disc file record
.

O

INUM=¢

CALL GET(Fl,INUM,BUFFER,STATUS)

IF (STATUS.EQ.38) GOTO 29

CALL PUT(F2,INUM,BUFFER,STATUS)  

INUM=INUM+1

GOTO 10

CALL CLOSE(F1)

CALL CLOSE(F2)

,__'__-~/— . _- __ _. -

--....-.-;J

1»

1

T

E

Y

2

I

l

T

T

1

=

é

cl

‘E‘r

.»

1

I

E

i
¢

‘ 1

E

Q

i

lé.



‘WV

Q

1

P

FORTRAN 49

0,5 The WRITE Statement

This statement is used to output or 'write—out’ a sequence of

variable expressions and/or strings. Its general form is

WRITE (a,b) list

where ‘a’ is the output device number, ‘b’ is the number of the

FORMAT statement to be used in executing the WRITE statement.

and ‘list’ is a series of parameters (expressions or implied D0

loops) delimited by commas.  

NOTE: Only implied D0 loops may be enclosed by parentheses, i

although parentheses may be used within an expression.

Each item in the list is output according to the specified FOR-

MAT statement. It is worth noting the ability to place expressions

(including constants) in the list. This can further-reduce the

number of statements in a program. Some examples of valid WRITE

statements are:

WRITE (2.2) APPLE,SUE, BOB

WRITE (4,701) CAT = DOG +7. I = 1+1. 1s 

Arrays may be output by using an implied D0 loop in a WRITE

statement. These have the form:  

 WRITE (a,b) (Array(Index),Index=Init,Final,Incr)  

where Array is a one dimensional array variable;
Index is any valid symbolic name;

Init is the initial value of the index variable;' .

Final is the upper bound the Index may assume; .

Incr is the amount by which the index is incremented

on each pass;

gglg; Enclosing parentheses must be present.

Some examples follow:

WRITE (1.17) A, (B(J),J=l,l7),(C(J),J=l,l4) 1

WRITE (2.10) (LIST DATA(I),I=7,49,7)

i

‘Y

1

E

1



_._’_.-~¢~v-— -~ N.’ , _- _..t\

10.7

Q-

Q

10.8

‘C

I

FORTRAN 50

User defined out ut devices

In order to operate, the WRITE statement requires a character
oriented output routine. If the user wishes to use an output
routine that is not referenced by the unit numbers, an absolute
address or expression may be used in place of the unit number,

eagu, I-‘=3 é

WRITE(0E8lEH+I,l0)

would cause the output program to call the character oriented
device subroutine at address 0E82lH. The output program places
the character in the C register and assumes the H,L,D,E,B, re-
gisters are unchanged when control is returned.

The READ Statement 
Q

This statement allows the user to input a series of values from  Q

the console device. It has the general form:

READ (b,ERR = h) 115:

or READ (b) list

where b is the input device number;

n is the statement number of the error handler, and 

list is the series of variables to be input.

The execution of this statement causes an input subroutine to be

called which fills a buffer in memory. The user may type in the
values to be assigned to each of the variables in the list.
Commas are used as delimiters. The READ statement allows editing
capability on the input record by deleting and echoing back

rubbed out characters.

An example of a READ statement and the input data which may be

entered is shown below. '

READ (4,ERR=lO) A, PROCESS Z,TOP

(data typed on console) l7,l4l79,0 (carriage/cursor return)

i

"“‘\
l

9

é

§

l

I

l

E



As indicated above. a CR denotes the end of the input data se-
quence and causes the input buffer values to be assigned
to the corresponding variables.

-Q‘

An array of values may also be input using a READ statement and

» implied D loop.

- READ (4,ERR=l0XA(I),I=l .4)

(data typed on console) 15,2l,-37,-l26(CR)

Character arrays may be input without leading blanks by using

the supplied function STRING in conjunction with a READ statement

Its two parameters specify the array name and the length of the

 string to be input. This function automatically ignores leading

blanks and pads with trailing blanks. An example follows:

5 = blank T

 

READ (4,ERR=2O)STRING(A,5)

(data typed on console) 55EDb(CR)

- will result in the array A containing

E9555

If the string is longer than the specified size, then it is
truncated. Also, since the input buffer is only 80 characters,

the string function second operand should be a single byte

expression. If it is not, it is truncated.

Commas are normlly delimiters on input; thus inputting a comma

as an element of a string as a special case. This is handled by

3 enclosing the string in quotes. In this case all leading and

trailing blanks, plus embedded commas enclosed in quotes are

included as part of the string.

Consider the previous example with "bE,D¢"(CR) typed on the con-

sole. The array will contain:  

5E,D5

FORTRAN 5,
i
s

1

1

E

i

2

§

l

1

5

i

l

t

i

5

J

l
l

§

E

v

E

‘.

i

l

l
i
.

2

.

T

l
1

€

C

E

f
s

V-M

‘T



FORTRAN s2  

10.9 User defined input devices

(a) Console device

The user can access a device by providing the address of the
service routine. The read statemnt will allow line editing on

an "interactive" device. In order to support this feature, the
“  routine must be able to echo characters. The following conditions

must be servicedby the character oriented routine.

(l) when the routine is called and the CARRY flag is set,
 then the routine should output the character in the C

register to the device.

(2) when the routine is called and the CARRY flag is reset,
then the routine should input a character from the device

and place it in the A register. A

(3) All registers should be unchanged except for the PSN.

- NOTE: -  a rubout (7FH) will cause the previous character to be

echoed and removed from the input buffer.

- a carriage return (ODH) will indicate an end of input
can cause a carriage return to be echoed back.

- a line feed will be echoed at the beginning of the READ.

10.10 The FORMAT Statements

* i

The general form of this statement is:

n FORMAT(Sv ,5 , .. .S )l 2 m

where n is the statement number (must be present), and

S],S2. . . . .Sm are format codes.

.
k

!

l

I

;
i

2

;

E

§

2

e

i
$

ii

>-»<~.~»-w

i

§

E

l

f



F¢__--..»-—~——~ _' i -- ~- <.

If

FORTRAN 53

The following format codes are available in .ABC 80 ‘ FORTRAN:

wHxx. . . - string field of width W

‘string’ - hollerith
- nX - "n" spaces

 / — skip to next line
» Iw - integer field of width w

Aw - alphanueric field of width w

Zw - hexadecimal field of width w  

Fw.d - floating point field of width ‘w’ with
'd' decimal positions to the right of the

 exponent is printed.
4.

Ew.d - floating point field of width 'w' with 'd'
 significant digits.

Note: Since exponent is printed, Nzd + 7. i

l

Any combination of these may be used in a FORMAT statement. .

These are some examples:

10 FORMAT (10X,'A='.12.5x,'B=',1e) ‘

225 FORMAT (l0X,A3,l2,5X,A3,l6)
 l6 FORMAT (lX,Z4,/,lX,Z4)

A format code may be repeated using a field count, e.g.

l0 FORMAT (3l2,2A3)

If any values remain after all format codes have been scanned,

 then it will repeat the FORMAT statement until all the data has

been output.

Q

If the first element of an output line is a hollerith string,
. then the first character will be interpreted as a carriage

control, otherwise single spacing is assumed.

“W

-W-.._...,,...,_,

5

1

I

F

l

s

5

I

2

z

1

E

l

»

‘E

ii

,...~IH»W‘,

E

l

E

2

4

v

i

l
a ¥

:

1

I
5
\
l

>



FORTRAN 54

The following characters may be used:

blank — single spacing
0 - double spacing
— — triple spacing

, l - skip to top of page (clear screen)
+ - carriage return, but do not advance

Any other character will be ignored and result in single spacing

NOTE: The first character of each formatted output line is a

print control character. For line buffered devices, a carriage
return will be needed to print the last line of output. This can

be accomplished by using slash format before the program exists.
For character oriented devices, the characters are printed as ~

they are received so slash format will not be required in this
case.

Example:

C OUTPUT TO A LINE BUFFERED PRINTER
a

I
c sup or PROGRAM - PRINT REMAIN  s CHARACTERS IN s

BUFFER ,,
wRITE(2,3) ’

3 FORMAT('+‘)<§L~

stop

END ‘



,...__._-___,.._._.‘.__,_._~é » - -_~ __ __. ____.-_.. _._.

i
5

 FORTRAN .

ll.0   CHARACTER STRINGS

So far, we have dealt strictly with numerical and logical com—

V putation. However, often alphabetic characters are used in
calculations. For example, to order the names BOB and BILL

alphabetically, the two alphabetic "strings" must be compared.

‘ABC 80 FORTRAN has some features which make such character
manipulation possible. Each byte in the computer mmory is
capable of storing one ASCll character. Hence, one character can

occupy the space used by a single precision integer variable. In

 fact, a comon way to store character strings is a values assigned

to integer variables, particularly arrays. Then the variable
name becomes the name of the character string. In the following
declaration

INTEGER¥l A/‘B'/,M/l8/

A and M are both declared to be integers. A is initialized to

represent the character B and M has the value l8. A character

 string must be enclosed bu quotes. If two successive quotes are

found, then a quote is inserted in the string at that point.

e.g. 'IT"S TRUE‘ *

Q ‘ ‘

I

i
S

§

ii

ss F

If the string required is longer than l character an array is
the easiest way to store it. For example, we can store the 

A phrase "the rain in Spain" in a subscripted variable of dimension

l7:

' INTEGER¥l A(l7)/‘THE RAIN IN SPAIN'/

’ The result of such a declaration is to assign the following i

characters to the variable:

 A(l) ='T'
A(2) ='H'

v

i

i
Y

i
5

Z

2
\
K

X

2

Z.

ll

A(3) ='E' i

ETC.
l



FORTRAN 56

If the variable A is then printed out using a l7Al format. then

the correct string will be printed.

' Declaration statements may be used to initialize character vari-

I‘

Q

ables prior to execution time. The following examples show how

this may be done:  ~

1NTEGER¥l A/'S'/
INTEGER¥2,A/'ST'/

However, it must be remembered that initializations done by
nu .

declaration statements (such as INTEGER) are done by the compiler

at compile time. These values should be loaded before execution

or else stored in PROM with the program.  

Character strings are valuable in printing titles or explanatory
notes when the results of a program are printed out, and they

are also useful in ‘comparing’ character strings, that is,
arranging them alphabetically. The following program illustrates
how N, two letter words, may be stored, assuming the words have

already been read in as elements of the double-precision array,

wORD(J).

 D0 5 I=l, N-l

D0 l0 J=I,N
IF(w0RD(J).LE.w0RD(J+l)) G0 T0 l0
K=NORD (J)

wORD(J) = w0RD(J + l)
w0RD(J + l) = K

10 CONTINUE

5 CONTINUE

’ i

4

l

I

l

i

E
,

E

F

l

l »

i E

l
l

E

i



FDRTRAN 57

12.0 SPECIAL FEATURESi 
l2.l Inline Code:— I

ABC 80‘i FORTRAN allows user to easily link machine code into
’ their FORTRAN source program. Although ABC so FORTRAN produces

reasonably efficient code, situations arise where machine

language coding is the only way to obtain the required level of
throughput.  

A special statement is available to facilitate use of the feature
Its general form is

INLINE /OOH byte string of machine code statements/

All statements begins with OOH. (III;
The machine code statements have each of their bytes separated

by a comma. For example, the following INLINE statemnt would

decimally adjust the contents of memory location 0FClH:

INLINE /00H,21H,0C1H,0FH,7EH,27H,77H/

and is equivalent to the assembly sequence

LXl li,DFClH

MOV A,M

DAA

MOV M,A

Very often, it is desirable to access variables, statement
. numbers or subroutines when using the INLINE code feature. This

is accomplished by the supplied function ADDRESS (parameter).
i The parameter of the function may be a symbolic name, subroutine

name or statement number. ADDRESS returns a two byte value which

corresponds to the actual memory location of the function argu-
ment. For example, suppose instead of location OFClH in the
previous example, we wish decimally to adjust the single preci-
sion integer variable SUE. The code for this routine might be

written as follows:

“F

_._._......-.................,..,,_,_,,..,,.,..J

>

F»

i

E

l

l

F

l

I

l

E

~,

i

i

nt

5if



V

<7 FORTRAN  58

INLINE /00H,2iH,ADDRESS(SUE),7EH,27H,77H/

which is equivalent to the assembler program

LXI  H,SUE

' MOV A,M

DAA

MOV M,A
O

The following example outputs 0HlH to port 7FH and jumps imme-

diately to statement number l20 in the sam program. l

igINLINE /00H,3EH,0ElH,0D3H,7FH,0C3H,ADDRESS(l20)/

The scope of the ADDRESS functionuis related to the program seg-

ment in which it occurs. Thus, an ADDRESS call in a subroutine

which has a statement number as its argument will return the
1

address of that statement number within the subroutine body.

Particular attention should be paid when using INLINE code in
lFUNCTION subprograms in that use of the function name as the

ADDRESS argument will yield the function location, not the func-

tion subprogram location.

\.



FORTRAN 59

. ;»

ax?

' 2-2?W
* tr
19?."
3“

:11

2.2 Accessing Compiler Directives

In order to allow the user to locate his program and variables

anywhere in the Z80 space memory, a special set of variables,
COMPILER (l) is provided. The general form of assigning such a

variable is

COMPILER (n) = CONSTANT

where (n) specifies which set of compiler is affected and the

CONSTANT is a double byte integer. The three possible choices

for 'n‘ have the following results: s  

n=l allows the user to set the start address of the

.ecode specified by constant. It initializes the

stack pointer and a jump to the start of the mainline
program; 

n=2 allows the user to set the start address where generated

 
T code is to be located. It is useful to skip over non-

existent memory blocks or reserved areas of memory. I

n=3 allows the user to set the top address of the RAM memory

space.  

 In order to return to the command interpreter upon encountering a stop-

T statement the program should be located so it does not modify locations

OCOOOH through 0C6FFH.  
.

 

¢ . -

The following program illustrates how the COMPILER feature is used:



FORTRAN

C

C

C

C.

C
TIC

C

l

I

SAMPLE PROGRAM wxrn COMPILER (I) FEATURES  

SET START OF PROGRAM AT SOOOH AND INITIALIZE STACK

POINTER  

'COMPILER (1) = OBOOOH

COMPILER (3) = OBFFFH

SUBROUTINE SEGMENTS WOULD GO HERE

NOW SET START OF CODE AREA

NON M/L PROGRAM STARTS

STOP

END 8000H



an

FORTRAN 61

-

__ 40

APPENQIX "A"

ABCBO FORTRAN

The foowinge lost of reserved words may not be used as symboc

names in a DATABOARD FORTRAN program.

ADDRESS FORMAT

CALL Fuucrxou READ

CARRY GO REAL

CARRYOFF GO TO RETURN

COMPILER IF SIGN

I INCLUDEIO

CONTINUE INLINE SIGNOFF

DIMENSION INPUT STOP

INTEGER  STRING

D0 SUBROUTINE

OUTPUT TO

END PARITY WRITE

. ERR PARITYOFF ZERO

ZEROOFF



FORTRAN 62

APPENDIX
ll ll

ERROR MESSAGES

Syntax

00 - undecodable statement

Ol -
02

03 -
04

05.
06 -
07 —

O8 -
09  

0A

QB -

0C

\

expecting constant; found none

- expecting constant; found none

expecting identifier or constant; found none

— expecting statement number; found none

-k expecting equal symbol; found none

expecting comma; found none

expecting right bracket; found none  

expecting end of statement; found another symbol

- expecting left bracket; found none

- invalid use of keyword

expecting slash; found none

- invalid use of equal operator

Card Format and Contents

l0

11

12

. l3

l4

l5

- columns l - 5 of a continuation card are not blank or invalid
characters found in statement number field.  

-. illegal character used in statement

- the first symbol of a statement is not an identifier

- invalid characters in columns l - 5; probable cause -—state-

ment is left of column 7

- statement record must be greater than 7 characters.
wk

- length of input record must not exceed 72 characters; use

continuation card instead.



_. .__ -_.

FORTRAN 63

l6 - input buffer overflow; use shorter symbols and avoid using

unnecessary blanks if this error occurs.

’ 5Ub*Qr0§F3m

C0 - missing subprogram (i.e. subroutine has not been declared).

Cl - expecting array name in parameter list.

C2 — too many arguments in subprogram reference.

 C3 -  subprogram previously defined first reference used.

C4 - illegal or blank subprogram name.

e.g. SUBROUTINE (A,B)

C5 - subroutine used as function

C6 - missing parameter list.

C7 ' - illegal use of array name in parameter list.

C8 - precision of arrays do not match.

 Input/Output

E0 - invalid expression for unit number in READ/WRITE

El - statement number in I/0 statement is not a FORMAT statement

number.

E2 — missing or invalid FORMAT statement number I/0 statement.

- E3 - invalid I/0 list.

E4 - expecting array name in implied D0.



FORTRAN 54

E5  — invalid implied D0 loop.

E6 — no input list for READ statement.

E7 - expecting array or variable name in string input function.

E8 - invalid string input function.

E9 - OUTPUT function must be followed by an equals operator;  

EA - INPUT function cannot be follwed by an equals operator.

EB - INPUT or OUTPUT operation must have a single fixed integer

constant for port number.

EC - -expressions or constants are not allowed in READ input list.

Constants:Q 
20 — integer constant has character out of range of base.

'  i.e. 10102010.  

22 — illegal use of decimal point.

23 — statement number greater than 99999 or otherwise invalid.

24  - null string found.

25 - no closing quote or next line not a continuation in string constant

26 — bad end of record found (i.e. expecting CR,LF).

27 - expecting exponent value.

28 - mixed mode arithmetic.

29 - logical operand is a Float variable.

2A — illegal use of Float variable.



__,__—A__i~ —_->—- » 1 - — r "j *1 -" A‘? > "" l 4 _ ‘ > ‘"_“_ — V

‘iv’ ‘V ‘vi’ —‘r*t‘_’

'
/

FORTRAN 55

Compiler Errors

30 - phase error; statement number has changed between passes.

3l - symbol table overflow (all variable memry used).

32 - internal stack overflow; either D0 loop nesting too deep or

expression too complex to analyze.

Declaration Statement

40 — length specification in declaration statement out of range

e.g. INTEGERX 4.

4l - expression not allowed in array size declaration

. e.g. DIMENSION A(5+6)  

42 — no dimension specified for variable in DIMENSION statement

e.g. DIMENSION A,B(5),C(5).
4

43 > - expecting integer constant for array size declaration
e.g. INTEGER*l A,B,C

DIMENSION Z(A)

44* - attempt to redefine variable previously declared.

e.g. INTEGER1<‘l A,B,C,A

D0 Loops

50 — object of D0 loop has already appeared

e.g. l0 A=B+C

.  DO l0 I=l,5

Sl - object of D0 loop must be unique

e.g. D0 l0 I=l,5
D0 l0 J=l,4

l0 A=B+C  



FORTRAN 66

Q
¢. ..

improperly nested D0 loop

DD l0 I=l,5
D0 5 J=l,4

l0 A = B + C

5 C = D + E

52 - invalid DD loop parameter list
e.g. DD l0 I=l
missing upper bound of loop.

53 - initial value of loop defined improperly.

e.g. D0 l0 I= (I+X)). 10

54 - upper value of loop defined improperly.

General Errors Iii__
60 - operand for the ADDRESS keyword must be either a number or a

 user defined symbol e.g. INLINE/0C3H, ADDRESS (A+5)/.

63 ~ constant out of range for compiler directive.
e.g. CDMPILER (4) = lOOOH

64 - expecting constant address for compiler directive.
e.g. COMPILER (3) = A+l

65 - missing end statment for subroutine or function
e.g. SUBRDUTINE AB C(X,Y,Z)

X+Y+Z

RETURN

FUNCTION TEST (A)

TEST = A l0
RETURN

END



FORTRAN 67

66 T .- return not valid in main program.

67 - multiply defined statemnt number.

68 - invalid data initialization statement.

69 - operand of address function must be previously declared if
not a statement number.

FORMAT statement 
70 - FORMAT statement syntax error.

7l - invalid field count or field specification.
e.g. lO FORMAT (lX,I5,5X,I) A

727 - no closing quote in string format.

73 -' “O3” value not allowed in quoted string of format.

74 . - no statement number on format.

75 — field count or field specification greater than l27.

76 - missing decimal point in F or E format.

77 — field width and decimal specification are incompatible.

IF Statement 
AO - statement imvalid after logical IF;

e.g. IF(A.GT.B) IF(C) so TO 10

Al - invalid expression in logical IF;

A2 - cannot use RETURN in logical IF in an interrupt subroutine



_~,_
i» b—

FORTRAN 68

A3 - inva1id statement list in arithmetic IF. s

A4 - arithmetic IF statement cannot be last statement in D loop
I

"A5 - statement number not found on the statement following

arithmetic IF.

3



FORTRAN

APPENDIX "C"

ABC 80 FDRTRAN FEATURES NOT SUPPORTED BY

FORTRAN IV

Additional Stateents/Functions

COMPILER (1)

COMPILER (2)

COMPILER (3)

INPUT (PORT)

 OUTPUT (PORT)

 ADDRESS .

INLINE

Symbolic Names - up to 31 characters iong.

Other Features - expressions may contain equais toperator



_ _ € .__' §}~— 7 ~— -~'—-'- - ""'_‘-**" ' " ' -
’__ ‘___ _-----— .,-My >'%

FORTRAN

APPENDIX "D"

FORTRAN IV FEATURES NOT SUPPORTED

BY ABC 80 FORTRAN

l.0 Statements and Functions

EQUIVALENCE A

COMMON

DATA

NEN

ENCODE

DECOOE

ENDFILE

BACKSPACE

RENIND

PRINT

 PUNCH

PAUSE

STATEMENT FUNCTION

2.0 Arrays — multiple dimensional arrays not supported

3.0 Data Types — maximum 2 byte for integer data type.

4.0 FORMAT - repeated format not allowed.
e.g. FORMAT (lX,5(l5,F6.l))

I



FORTRAN 71

APPENDIX "E"

SAMPLE PROGRAM

The fo11owing program shows an example of the capabilities of

ABC 80 FORTRAN and demonstrates the use of subprograms and direct

I/0.  



** ABC*B0 FORTRAN COHPILER V1.1 ** PAGE 0001

D000 C PROGRAM LOCATION DEFINITIONS
0000 C A

0000 COHPILER(1)=08000H
B006 COHPILER(33=0BFFFH
8006 C

8006 C PRINT ONE LINE ON UART

&QQ5 ******+*****+*****§***
B006
8006 SUBROUTINE OUTLlNE(LINE)
B006 C

8006 lNTEGER*1 L1NE(2)s1NDEXaSIZE
B006 C

B006 SlZE=LlNE(1)
B011 0UTPUT(1)=75Q
8015 DO 20 INQEX=215IZE+1,
S020 10 IF ((1NPUT(1).AND.2).EQ.2) GQTO 10

E029 0UTPUT(0)=LlNE(lNDEX¥
8036 20 CONTINUE  

8041 RETURN

5042 C

8042 END

(70

PROGRAM STORAGE= 0060  

VARIABLE 5TORAGE= 0005

SYMBOL TABLE

8020 10
S036 20
BFFC SIZE
BFFD INDEX
BFFE LINE

Q



_—--Q-,—-~—__M~,_..-—-<__-

\

7

\

L /

F

—~ —-' -— — .1.-» ~ V . ..__.. ___ ..._,.

»

** ABC*80 FORTRAN COHPILER V1.1 ** PAGE U952

B042 C L

5042 C SUBROUTINE TO READ A LINE
5342 Q *§********§***§**§&*§****
e042 c
5042 susnourzus 1NPLlNE(LINE)
8042 c
aeaz 1NTEGER*1 L1NE(2)a1NOEX18l2E=CHAR

 5042 c  

5042 0UTPUT(1)=75Q
5045 0UTPUT(2)=D
soaa SIZE=LlNE(1)
5055 no 20 INDEX=2»SIZE+1
B051 10 1? ((1NFUT(1).AHD.208G).EQ.2GDQ> ears 10

806A CHAR=1NPUT(O).AND.177Q  

aova 0UTPUT(0)=CHAR
save 0UTPUT(2)=D
aova LlNE(1NDEX)=CHAR
5088 %

IF (CHAR.EQ.15Q) GOTO 30
BUQB IF (CHAR.EQ.12Q) GOTO 30
B098 20 CONTINUE
BDAB 30 % LlNE(1)=lNDEX-1
BDBD RETURN
s0s1 c
5081 END

PRGGRAM STORAGE= 0111

VARIABLE STORAGE= ODD6

-

\

O

SYBOL TABLE

SOAB 30
8061 10

' 5098 20
BFFb CHAR
BFF7 SIZE



0c~a0 FORTRAN COHPILER v1.1 ** PAGE 0004

1 CHAR
12 CON
3D PUT

J28 GET
01F CLOSE

300A OPEN
8005 IOLINK

K. J



_ ._ _.____ V‘ . ‘-.__,_,_ . ,__._._._._.~ .._.- < »_..,___..._~.. _‘v.v ,,,._.“. __ _..,

** ABC—8O FORTRAN CQHPILER v1.1 **

BFF8 INDEX
BFF? LINE

I

Q

PAGE 0803

h 1



** ABC~8D FORTRAN COHPILER V1.1 **“ PAGE U004

BDB1
BOB1
BQB1
BDB1

MAIN PROGRAM
************

5881 lNTEGER§1 HED(i4}!13ai5Qs12Q=’UART-TEST’s15Qs12Q/
B081 R

INTEGER*1 ECHO(14)/13¢15Q»12Q»’THE ECHO:',15@¢12Q/
8081 1NTEGER+1 VECTOR£81)
5081 C

BDB1 10 CALL 0UTL1NE(HEAD>
BDBA VECTOR(1)=8D
BBBF CALL 1NPL1NE(vECTOR)
8DCb IF (vECTOR(2>.EQ.’*') GOTO 900
BUCF CALL OUTL1NE(ECHO)
B007 " CALL OUTLlNE(VECTOR)
BDED GOTO 10
5053 C

8023 900 STOP 
BDEb C

B056 END OBOOOH

PROGRAM STORAGE= UD53

QARIABLE STORAGE= B109

TOTAL PROGRAM STORAGE= U230

TOTAL VARIABLE STORAGE= D129

SYMBOL TABLE

8053 900
BDB1 10
BF88 VECTOR



** ABC~BO FORTRAN CONPILER V1.1 **

BFD9 ECHO%

BFE7 HEAD
8042 INPLINE
B606 OUTLINE

I A

PAGE ODDS

L I



.,,¢~-- ‘— --"'""*-— ""_---’-*3’ ——--——~— - ~~ ~ ~—~--_‘-- -- ~--_-. ..._..._ __.,_,‘________ _,

7
"‘ - —--- I ' __. __ __.___.._

I .
‘

Y‘EL

** ABC~8D FORTRAN CONPILER V1.1 ** PAGE D001

GOOD C

GOOD C PROGRAM FOR SHOWING

BOOB C CONTENTS OF A TEXT FILE
D000 C  USING BLOCKED ACCESSES.
DOUG C

, DUOO C  DEFINE PROGRAM LOCATION
" B000 C

DDOD CONPILER(1)=BDDOH  P

. 8006 C

B005 C DEFINE RAH TOP

8006 C

B006 COMPILER(3)=9DUDH
8006 INCLUDEIO
8052 INTEGER*1 CON(5)/‘CON! ’/
SD52 INTEGER*1 CHAR(1)sSTATUS
B052 INTEGER*1 FNAM(2D)
8852 ’ INTEGER*1 BUFFER(256)
SD52 INTEGER*2 RECNUH  

8052
B052
8052

(‘3("7t"7

OPEN CONSOLE

I BDSET CALL 0PEN(4sCONsDsSTATUS3
8071 C

GU71 20 WRITE (4s442)
807? 442 FORHAT(/a'+ENTER FILE NAME }’)
B079 READ(4sERR=25) STRING(FNAHs19)
BDBC GOTO ID
EDBF C

808F C BAD FILE NAME

BUBF C

BDBF 25 WRITE (4s4§53
SD97 445 ' FQRHAT(/9'+FlLE NOT FOUND E’)
88?? GOTO 20
809A ID FNAM(2O)=’ ’  

BOPF C

BO9F C OPEN INPUT FILE
8U9FNC
BDQF CALL OPEN(1sFNANsOsSTATUS)
6088 IF (STATUS.NE.O) GOTO 25

F

Q

k c I



>

T

\
A

K

»

E

Z

Q

X

P

1|

Y‘
8

K“ f’

** ABC-80 FORTRAN COHPILER V1.1 ** PAGE U002

BDCS RECNUH=B
BDCB C

BOCB C  READ A RECQRD
BDCB C

BDCB 60 CALL GET(1»RECNUM=BUFFER,STATUS)
BOF1 L IF (STATUS.NE.0) GOT0 900
BBF9 C \

80F? DO 70 1=1»253
SOFF CHAR(1)=BUFFER(l)
B100 IF (CHAR(1).NE.9) GOTO 90
8116 1=1+1
8120 C  

8120 C PROCESS COMPRESSED SPACES
8120 C

8120 65 IF (BUFFER(I).EQ.0) GOT0 70
B120 CHAR(1)=’ ’

8132 CALL PUT(4¢0,CHAR=STATUS)
B150 BUFFER(1)=BUFFER(1)-1
B164 GOT0 65
6157 C

8157 C IGNORE CHAR 1F <= CHR(8)
81h? C S

8157 90 IF (CHAR(1).LE.8) GOTO 88
5170 CALL PUT(4sDsCHARsSTATUS)
8185 IF (CHAR(1).NE.13) GOT0 70
8197 C

B197 C FOLLOM RETURN BY LINEFEEB
8197 C  

8197 SCHAR(1)=1O
B199 GQTO 9D
819C 78 CONTINUE
B1AC C '

81AC 80 RECNU=RECNUH+1
S186 GOTO 60  

B189
8189

(‘U570

5189 END WITH FINAL I/O STATUS
B189 C

B189 ?DD HRITE(4:44é) STATUS

UP



7”
F

§

Q

T r
Q

Q

."

~ '_'

w __.._. . _.__" .. ._..,_

** ABC*BD FORTRAN COMPILER V1.1 ** PAGE B003

B1C7 446 FORHAT(//s’+** END OF FILE ’s1l2s‘ **’)
81C? STOP
B1CA C

B1CA END BDODH

PROGRAM STORAGE= D458

VARIABLE STORAGE= 0257

TOTAL PROGRAM STORAGE= 2878

TOTAL VARIABLE STORAGE= D621 E

S?NBOL TABLE

a1Ac an
e120 as
8167 90
sees 1

519a 70
ease 900
sacs so -

809A 1cT
BDBF 25
aova 20
seaa RECNUH
ease BUFFER
BFBC FNAH
8FDO starve

T w

M31 ~».. __, M k':r.».¢';»/;*’§. ».;<;-.1,
T

T

"i

E

T
‘

'

T

i

1

1

Y1

A

1

i

T

A

T

12%

,4“,T‘_\_,,s2.

>1

~i
P»:1

4

4

|
1

1

Jji


