
ENABLE-HUP(8) HNIX Programmer's Manual ENABLE-HUP(8)

NAME
enable disable dialin dialout — control login lines

SYNOPSIS
/etc/enable [-deio] terminal
/etc/disable [-deio] terminal

u /etc/dialin [-deio] terminal
/etc/dialout [-deiorw] terminal

DESCRIPTION
The enable family of programs is used to change the contents of

{J15 /etc/ttys and tell init(8) about it in a controlled way. The operation
' can be governed both by switches and by the program name. .

disable (or -d) Disables a terminal for login. Can only be used by
the superuser.

Q enable (or -e) Enables a terminal for login. Can only be used by
the superuser.

dialout (or -0) Disables a terminal for login. Can be used by any-
body if the terminal is marked as public in
/etc/ttys. The ownership of the device is changed
to that of the user issuing the dialout command.
The protection on the device are by default set to
-rw - - - - - --, but the -r and -w switches can change
this. These switches determine if other users
should be allowed to read respectively write to the
device. An entry (users name in upper case) is also
made in the /etc/utmp file so that the who(l) com-
mand shows that the line is in use.

dialin (or -i) Enables a terminal for login. Can only be used by
the user who allocated the line with the dialout
command, or by the superuser.

,/*~ NOTES
> If a terminal both has a /dev/ttyXX and a /dev/cuaXX device then that

terminal is assumed to be a modem and that the tty device has a minor
number that is l28 higher than usual. The cua device is assumed to have
the standard minor number. enable will use the cua device when it must

4f'\ open the device without carrier present.

This version of enable is EXPERIMENTAL.
.EXAHPLES

dialout ttyO2
who
ls -1 /dev/tty02
kermit -1 /dev/cua02 -b 2hO0 -p
dialin tty02

FILES
/etc/ttys terminals and their flags
/etc/utnp notes to the world
/dev/* terminals
/dev/cua* dialers

Printed 3/13/89 24 February l989 Page l

.4/\
3 J

/"

h
5 1

F‘

F

ENABLE-HUP(8) HNIX Programmer's Manual ENABLE-HUP(8)

BUGS If the /etc/ttys file is changed while this program is running,
unpredictable things may happen. e

s1-:1; ALSO
1ogin(1), getty(8), ttys(5), who(l), init(8)

DIAGNOSTICS
Several diagnostics can be issued. You should (as usual :-)) have no
problems to understand them.

Printed 3/13/89 r24 February 1989 Page 2

LOGIN(l) HNIX Programmer's Manual LOGIN(l)

RAKE
login — log in to the system

SYNOPSIS
login [—p] [username]

DESCRIPTION
login signs username on to the system initially. 1ogin.may also be used
at any time to change from one userID to another.

When used with no argument, login requests a user name and password (if
r’\ appropriate). Echoing is turned off (if possible) while typing the

q‘ password. Note: the number of significant characters in a password is
8. (See passwd(1).) '

When successful, 1ogin.updates accounting files, prints the message of
./“* the day, informs you of the existence of any mail, and displays the time

you last logged in. If failed login attempts have been made since your
last login, a message about this will be printed. None of these mes-
sages are printed if there is a .hush1ogin file in your home directory;
this is mostly used to make life easier for nonhuman users, such as
uucp(l).

login.initializes the user and group IDs and the working directory, then
starts a command interpreter shell (usually either /bin/sh, /bin/ksh or
/bin/csh) according to specifications found in the file /etc/passwd.
Argument O of the command interpreter is the name of the command inter-
preter with a leading dash (‘—') prepended.

If the command interpreter is specified as “*", then login uses the
home directory specification as a new root. It changes to that direc-
tory and issues the chroot(2) system call. Note that all file specifi-
cations from now on refers to the new root. This new root should have“; an /etc directory with a new passwd file. 1ogin.uses this new passwd
file to locate the users real home directory and command interpreter.
The new root should also contain suitable programs in the new /bin
directory, especially the users command interpreter and application.

(,\ This feature can be used for security reasons to isolate certain users
from the rest of the system, for example accounts without passwords that
run specific applications.

login also modifies the environment (environ(5)) with information speci-
fying home directory, command interpreter, your username, default search
path and mailbox. The —p argument preserves the remainder of the

environment, otherwise any previous environment is discarded.

If the file /etc/nologin exists, login.prints its contents on the user's
terminal and exits. This is used by shutdown(8) to stop logins when the
system is about to go down.

The login command, recognized by sh(l), ksh(l) and csh(l), is executed
directly (without forking), and terminates that shell. To resume

Printed 3/13/89 19 February 1989 Page l

LOGIN(l) HNIX Programmer's Manual LOGIN(l)

working, you must log in again.

login times out and exits if its prompt for input is not answered within
a reasonable time.

When the Bourne shell (sh) and the Korn shell (ksh) starts up, it reads
a file called .profile from your home directory (that of the username
you use to log in). When the C shell (csh) starts up, it reads a file
called .cshrc from your home directory, and then reads a file called
.1ogin.

/~\ NOTE
4§ If the /usr/adm/lastlog file does not exist, no information about the

last login will be printed. This file can be created by the superuser'
with the command “touch /usr/adm/lastlog".

/~ OPTIONS
—p Preserve any existing environment variables and their values; oth-

erwise the previous environment is discarded.

FILES
/etc/utnp accounting
/usr/adn/wtnp accounting
/usr/adm/lastlog time of last login and login failure counters
/etc/gettydef terminal parameters and prompts
/usr/spool/nail/* the post office

/etc/notd message-of-the-day
/etc/passwd password file
/etc/nologin stop login, print message
/bin/sh antique command interpreter
/bin/ksh excellent command interpreter
/bin/csh braindamaged command interpreter
~/.profile startup file for sh and ksh‘i‘ ~/.cshrc initialization file for csh
~/.login startup file for csh
~/.hushlogin makes login quieter

SEE ALSO
(N 511(1), ksh(l), ¢=h(1>, 1311(1), passwd(l), \1ucp(l), passwd(S),

environ(5), gettydef(5), utmp(5), init(8), getty(8), shutdown(8), mkget-
tydef(8), 1ast1ogins(8)

DIAGNOSTICS
No directory Login denied

Your home directory does not exist, contact the system administra-
tor .

Login incorrectIf the name or the password is bad (or mistyped).

number failures since last login
Contact your system administrator if you did not cause this.

Printed 3/13/89 19 February 1989 Page 2

LOGIN (1) mux Programmer '95 Manual LOGIN (1)

No shell
The command interpreter in the passwd file could not be started.
Contact your system administrator.

Timeout period expired
You are to slow.

Printed 3/13/89 19 February 1989 Page 3

TTYS(5) HNIX Programmer's Manual TTYS(5)

NAME
/etc/ttys - login terminals file

DESCRIPTION

The /etc/ttys file contains a list of the devices that are candidates
for logins. init(8) uses this file at startup to start login processes.

The file contains entries of the form

state public name

/To A name must be the filename of a device special file. The path isJ assumed to be /dev/ so that string should not be supplied. If state is“l", the device is enabled for logins; if "0", the device is dis- ‘

abled. If public is “P", the device is public and any user may allo-
cate it using the dialout command (see enab1e(8).) If public is “O",

/T the device belongs to the system.

EXAMPLES
The entry “l0tty0l" means that a login process should be started on
ttyOl. The entry “0Ptty02" means that the tty02 device should be free
for anybody to use.

FILES
/etc/ttys

SEE ALSO
enable(8), 1ogin(l), getty(8), ttys(S), init(8)

€

Printed 3/13/89 21 October 1988 Page 1

ENABLE(8) HNIX Programmer's Manual ENABLE(8)

RAKE
enable disable dialin dialout - control login lines

SYNOPSIS
/etc/enable [-deio] terminal
/etc/disable [—deio] terminal
/etc/dialin [-deio] terminal
/etc/dialout [-deiorw] terminal

DESCRIPTION
The enable family of programs is used to change the contents of

/T‘ /etc/ttys and tell init(8) about it in a controlled way. The operation
Iqi can be governed both by switches and by the program name.

disable (or -d) Disables a terminal for login. Can only be used by
the superuser.

f“‘ enable (or -e) Enables a terminal for login. Can only be used by
the superuser.

dialout (or -o) Disables a terminal for login. Can be used by any-
body if the terminal is marked as public in
/etc/ttys. The ownership of the device is changed
to that of the user issuing the dialout command.
The protection on the device are by default set to

'-rw - - - - - --, but the -r and —w switches can change
this. These switches determine if other users
should be allowed to read respectively write to the
device. An entry (users name in upper case) is also
made in the /etc/utmp file so that the who(l) com-
mand shows that the line is in use.

dia1in.(or —i) Enables a terminal for login. Can only be used by
 8 the user who allocated the line with the dialout

command, or by the superuser.
EXAMPLES

I
{Y dialout tty02

I who
ls -1 /dev/tty02
kermit -1 /dev/tt:y02 -b 2400 —p/\ dialin tty02

FILES
/etc/ttys terminals and their flags
/etc/utnp notes to the world
/dev/* terminals

BUGS If the /etc/ttys file is changed while this program is running,
unpredictable things may happen.

SEE ALSO
1ogin(l), getty(8), ttys(5), who(l), init(8)

DIAGNOSTICS
Several diagnostics can be issued. You should (as usual :-)) have no

Printed 3/13/89 21 October 1988 Page l

3
’¢""‘\

_»-=

L

/'\

ENABLE(8) HNIX Programmer's Manual ENABLE(8)

problems to understand them.

Printed 3/13/89 21 October 1988 Page 2

,__

'1!

f"§

riik

£

/\

GETTY(8) HNIX Programmer's Manual GETTY(8)

NAME
getty - adjust terminal line and start login

SYNOPSIS
getty tty

DESCRIPTION
getty waits for input on the tty device. When correct terminal parame-
ters have been determined, getty asks for a username and starts
1ogin(l). getty can be told to select between a set of speeds or to
automatically determine the speed from the users input. The behaviour
of getty can be changed with the lkgettydef(8) program. From the list
of customizable items some can be noted: heading, prompt and terminal
parameters. ‘

FILES
/etc/gettydef terminal parameters and prompts
/bin/login completes the login process

SEE ALSO
I 1ogin(1), init(8), nkgettydef(8)

DIAGNOSTICS
Timeout period.expired

You are to slow.

Printed 3/13/89 15 December 1988 Page l

INIT(8) HNIX Programmer's Manual INIT(8)

NAME
init - process control initializer

SYNOPSIS
/etc/init

DESCRIPTION
init is started by the kernel directly after boot. After start, init
checks the autoboot flag, and if it is set to NO , starts the default
command interpreter (/bin/sh) with the console as the controlling termi-
nal. This mode is called single user mode. When the system administra-

 tor exits this command interpreter, with “D, init begins to enter multin.

1’ user node. If the autoswitch is set to “YES" then multi user mode is
»

entered without going through single user mode. The actions needed to
a bring up multi user mode starts with the interpretation of the Run Com-

mand file (/etc/rc) by the standard command interpreter. After that,
/*‘ init looks through the /etc/ttys file and forks of an login process for

each terminal that is enabled. This is done by executing /etc/getty
with the terminal name as the first argument. Now init starts to sleep.
Each time a process associated with a terminal dies, init starts a new
login process.

init will also wake up if certain signals are received.

SIGINT can be used to tell init that a command has been placed in’
shared memory, the default beeing to force a re-examination of
the /etc/ttys file (in case it has been changed)

SIGHUP can be used to return to single user mode
SIGQUIT is used to suppress creations of login processes as users

loggs out
SIGTERH. halts the system

r\ FILES‘ /etc/ttys terminals and their flags
/bin/sh standard command interpreter used for single user

shell and Run Command file interpretation
/etc/getty waits for terminal activity, then executes

/~. /bin/login
/etc/rc Run Command file
/etc/utnp accounting
/usr/adn/wump accounting
/etc/ntab mounted file systems
/dev/console controlling terminal for single user mode
/dev/autosw flags autoboot or single user mode
/dev/* terminals
/usr/adm/messages diagnostics

BUGS
The signals used for various actions has different functions on all
other UNIX systems. This will probably change.

Printed 3/13/89 15 December 1988 Page 1

INIT(8) HNIX Programmer's Manual INIT(8)

SEE ALSO
1ogin(l), getty(8), stty(l), ttys(S),‘ki11(l),'ki11(2), shutdown(8),
enable(8)

DIAGNOSTICS -

Diagnostics are written to the system messages file by the log process.

INIT RECEIVED UNSOLICITED SIGNAL.number
some application is sending bogous signals to init

Lnit failed to execute ‘command’, sleeping
init could not start a login process

Printed 3/13/89 15 December 1988 Page 2

LASTLOGINS(8) HNIX Programmer's Manual LASTLOGINS(3)

RAKE
lastlogins — display times and failures for logins

SYNOPSIS
/etc/lastlogins

DESCRIPTION
lastlogins displays a list of usernames together with times and termi-
nals for the last login session. Also the failure counters are
displayed. The first failure figure is the total failures since the
/usr/adm/lastlog file was created, the second figure is the failures

i;“ since that user logged in last time.

FILES
/usr/adn/lastlog information source

/*‘ SEE ALSO
1ogin(l)

DIAGNOSTICS
can not open /usr/adm/lastlog

(
I/\.

Printed 3/13/89 21 October 1988 Page 1

U

p

€

MKgETTYDEF(3) HNIX Programmer's Manual MKGETTYDEF(8)

NAME
mkgettydef - create definition file for getty and login

SYNOPSI$
/etc/mkgettydef'gettydef.src

DESCRIPTION
nkgettydef is the compiler that compiles the file named as it's argument
into a definition file for getty and login. This file contains terminal
characteristics, prompt texts and baud rate detection strategy.

The structure of the source input contains one block for each device
used for login.

device name
definitions for device name

Device names are selected from default, network or a device name listed
in /etc/ttys. The default device is a pseudo device that supplies data
not given for other devices. The network device is used for logins over
the DNET network. “

The device definitions are built from the following keywords.

herald Takes a string as argument. This string is
displayed before getty(8) issues the first login
prompt. Default value is an empty string.

loginprompt Takes a string as argument. This string is the
login prompt issued by login(l). Default value is
"login: "

gettypromptl Takes a string as argument. This string is the
login prompt issued by getty. Default value is
"login: "

gettyprompt2 Takes a string as argument. This string is the
login prompt issued by 1ogin.when called from getty.
Default value is "login: "

passwdprompt Takes a string as argument. This string is the
password prompt issued by login. Default value is
"passwordz" 9

timeout Takes an integer as argument. This integer is the
timeout time in seconds before getty or login ter-
minates. Default value is 60 seconds.

stty Takes a string as argument. The string contains
stty(l) commands describing the terminal charac-
teristics. Default is all stty flags off.

strategy This keyword determines how the speed should be
selected. The argument is one of the keywords nor-
mal, autobaud or rotate. Normal strategy takes
speed from the stty entry. Autobaud determines the
baud from the input. The user should enter carriage
returns until the prompt shows. The algorithm used
by getty can select between 300, 600, 1200, 2400,

Printed 3/13/89 9 January 1989 Page 1

MKGETTYDEF(8) HNIX Programmer's Manual MKGETTYDEF(8)

-
-:

A800 and 9600 baud. Rotate strategy takes up to
four more arguments. These arguments are speeds
that are selected in order each time the user hits
BREAK.

trigger This keyword is unique to the network device. The
argument should be a string that describes the
beginning of the network pseudo terminal. If, at
login time, getty finds that the input comes from a
trigger terminal then no terminal parameters should
be touched as they are sent over from the calling
machine. The stty keyword is illegal for the net-

/“‘ work device.
J

A source line beginning with “#" is taken as a comment. The normal '

escape notation used in “C" can be used. See example.

f~‘ EXAMPLE
#
definitions for getty and login

#
default values for all devices, may be overridden selectively below
#

device default

herald "\r\n ABCenix 5.18 (Hubert)\r\n\r\n"
loginprompt "Login: " 0

9 gettypromptl "Hubert login: "
gettyprompt2 "Hubert login: "
passwdprompt "Password: "

stty

/'\

,_ timeout 60
"-ignbrk brkint ignpar -parmrk -inpck istrip -inlcr
-igncr icrnl -iuclc ixon ixany -ixoff
opost -olcuc onlcr -ocrnl -onocr -onlret -ofill -ofdel
n10 cr0 tab3 bsO vt0 ffO
9600 cs7 -cstopb cread parenb -parodd hupcl clocal
isig icanon -xcase echo echoe echok -echonl -noflsh
intr '0?’ quit '“\\' erase ‘AH’ kill ‘AX’ eof '“D' eol ‘*-

strategy normal

#
unique definitions for device network
#

device network
trigger "/dev/pk"

herald "\r\n ABCenix 5.18 (Hubert) (network)\r\n\r\n"
strategy normal

Printed 3/l3/89 9 January 1989 Page 2

//////

MKGETTYDEF(8) HNIX Programmer's Manual MKGETTYDEF(8)

#
unique definitions for device console (workstation screen)
#

device console

herald "\r\n ABCenix 5.18 (Hubert) (console)\r\n\r\n"
strategy normal

#
unique definitions for device tty02 (dialin/dialout modem)/j

device tty02

herald "\r\n ABCenix 5.18 (Hubert) (tty02)\r\n\r\n"
stty "-clocal"
strategy autobaud

#
unique definitions for device tty03 (local terminal)
.

device tty03

herald "\r\n ABCenix 5.18 (Hubert) (tty03)\r\n\r\n"
strategy rotate 9600 4800 2400

FILES
gettydef result
gettydef.src standard source text
/etc/ttys terminals

SEE ALSO 9

1ogin(l), getty(8), stty(l), ttys(5)

DIAGNOSTICS
Error checking is excessive and the messages are intended to be self
explanatory (as they say :-))

Printed 3/13/89 9

9 January 1989 Page 3

»‘

I4

r\

f
4/'\

f\',

F“

6

f‘*

HNIX Init/Login replacement Link6ping‘890313

Jag hoppas att du blir nojd med dea programpaket.

Dessa program utvecklades ursprungligen for mi eget bruk da jag fann at’:

de medlevererade programmen inte uppfyllde de enkla krav som jag stallde pa

dem. Nagra av dessa krav var automatisk hastighetsanpassning vid inloggning,

en init som inte krashar systemet nar man startar och stoppar login med hjélp

av enable och disable, en login som inte sjalvsvanger och lastar ner terminal-

drivaren nér ett modem satter DCD hog, mm.

Nar andra personer ck reda pa vad jag gjort och uryckte onskemal om en

“distribution” sa framstallde jag dokumentation och snyggade upp lite bitar.

Jag forutsatter att du anser att vardet pa programmen overstiger det pris jag

begar for dem och att du darior inte uppmuntrar att kopior gors av programmen.

Jag kan naturligtvis inte forhindra att kopior gors, men om jag finner att

manga kopior blir gjorda tolkar jag detta som att programmen inte ar varda det

pris jag begar och darmed minskar chansen at’: jag produoerar fler programpaket

liknande dea.

Nog om detta, lycka till med installationen.

Goran

Hnix init / login replacement

Document: /usr/src/man/hnix;mm

Author: Goran.Larsson, HoH

Date: Harch 13, l989

3:rd Edition

Abstract

This document describes the configuration and installation of the
programs and files that together form the Hnix init/login replacement.

i 1

The programs described in this document are
Copyright 1988, 1989 by Goran Larsson.

None of the programs may be sold or included
in other software packages.

The programs are delivered as is, and no
guaranties regarding functionality or

performance are given. For your safety and.my
conscience, please make a.backup copy of your
hard disks before installing this software-

© Goran Larsson 1988, 1989 3:rd Edition March 13, 1989

/5
‘Au

/\

/\
\-

’”\

CONTENTS

Abstract .. l
l. Overview .. 2

2. Saving old files .. 3

3. Configuration .. 4

4. Installation .. 5

5. Ownerships and protections .. 6

6. Experimental SIGHUP Support .. 7

7. Versions .. 8

8. Initlib .. 9

9. FreeBees .. 10

10. Problems .. ll

9 Goran Larsson 1988, 1989 3:rd Edition March 13, 1989

Hnix init / login replacement Page 2

l. Overview

D This package contains replacaments for the following abcenix programs.

0 init
0 login

¢ enable

0 disable

The replacements provides more functionality compared with the old
programs. getty and login for example replaces the old login, and has
customizable prompts and supports automatic baudrate detection.
enable/disable when named dialin/dialout can be used by unprivileged
users on selected terminal lines. init is more stable and does not die
when it receives unwanted signals. init also uses an alternate method
for communications with enable/disable/dialin/dialout. This method
passes commands through shared memory and provides feedback so that the
calling program can detect when init has completed the command. The key
used by this mechanism is 0x49, so this key can not be used for other
purposes.

D Manual pages are provided for all programs.

D The package also provides additional programs.

9 Goran Larsson 1988, 1989 3:rd Edition March 13, 1989

f\».

Hnix init / login replacement Page 3

2. Saving old files

D Backup the following files.

0 /etc/init
0 /bin/login

0 /bin/enable

0 /bin/disable

v’ 0 /etc/ttys

f

/"K
\%r

/\
‘\

You can copy them into a save directory or copy (tar) them to floppy.

9 Goran Larsson 1988, 1989 3:rd Edition March 13, 1989

f\

/"‘ .

K.

,P"\

aw) D
D

Hnix init / login replacement Page 4

3. Configuration

D Read the package into a scratch directory.

0 cd /usr

0 tar xvf /dev/mf2

0 cd /usr/hnix

You should have extracted the following files:

Install
Headers

D enable
D enable-HUP

/%\ D freebee/
U getty
U gettydef.src
U init
D initlib/
D lastlogins
D login
U mkgettydef
D shutdown
D sysname
U ttys

U Edit the ttys file to match your system. Refer to the ttys(5) manual
page.

D Read the nkgettydef(8) manual page and modify gettydef.src to taste.
You can leave out the network device if you do not run abcnet or dnet,
although it does not hurt to keep it.
U Read the boxed comment on the front page regarding guaranties and
backing up your disks.

9 Goran Larsson 1988, 1989 3:rd Edition March 13, 1989

Hnix init / login replacement Page 5

4. Installation

D Become superuser and complete the installation by executing the
install script named Install. Due to some unknown reason root has been
given the group 50 in the /etc/passwd file. This is not good since many

programs assume that root belongs to group zero. If you look in
/etc/group you will find that group zero is called root. Just change
the fragment ":0:5O:" to ":0:0:" in /etc/passwd. If this is not done,
then enable/disable will not work. You may want to change the Install
script if your executable files are owned by somebody other than bin,
for example sys. There might be other things you might like to change,

/~ but keep security in mind when changing permissions on the programs and
‘f datafiles.

0 ./Install

/~~ D Reboot and enjoy.

/~.
k

rot

9 Goran Larsson 1988, 1989 3:rd Edition March l3, 1989

Hnix init / login replacement Page 6

5. Ownerships and protections

The following table can be used to check that the files are owned by the
correct owner and have the right protection.

file owner group protection note

/etc/init bin bin 710
/etc/getty bin bin 710

/K‘ /bin/login root root 4711 set uid
M/ /etc/nkgettydef bin bin 710

/etc/enable root root 6711 set uid & gid
/etc/disable root root 6711 set uid & gid
/etc/dialtn root root 6711 set uid & gid

/“‘ /etc/dialout root root 6711 set uid & gid
/etc/lastlogins bin bin 710
/etc/sysnane bin bin 710
/etc/shutdown bin bin 710
/etc/ttys root root 664
/etc/gettydef.src root root 660
/etc/gettydef root root 664
/hsr/adn/lastlog root root 660

/~
L

/\

° Goran Larsson 1988, 1989 3:rd Edition March 13, 1989

Hnix init / login replacement Page 7

6. Experinantal SIGHUP Support

This version of the Hnix init/login replacement kit has an experimental
version of enable/disable/dialin/dialout that should be used if you want
the terminal driver to send SIGHUPs to login processes that users leave
running by hanging up the phone without logging out. The steps needed
to use this EXPERIMENTAL feature is

D Rename the modem device from tty02 to cua02.
U Create a new modem device with the command /etc/nknod /dev/tty02 c 1

130.
/‘* D Save the “old" enable and then copy enable-HUP to /etc/enable./.

/'\

/\
L

/\,
v

Check the links, owner, and protections.
D Make sure that the /etc/gettydef.src file specifies stty "-clocal"

for the tty02 device. If not, edit and recompile.

If you want to dial out using, say, kermit you should use the cua
device, otherwise kernit will be unable to open the device. The proper
sequence is

I /etc/dialout ttyO2

v kermit -1 /dev/cuaO2 -b 2400 -p e

0 /etc/dialin ttyO2

Once the modem has set DCD to true, you can use the tty device if you
like. Note that the modem must drop DCD when it looses the carrier,
otherwise all this will simply not work. The cable connecting the modem

to the port must have the proper wires, it should be a straight cable,
male in one end, female in the other, and pins 2 to 8 and 20 connected
and pin l connected to the screen. o

9 Goran Larsson 1988, 1989 3:rd Edition March 13, 1989

\

/1

/"\

/*~
K

/'\

Hnix init / login replacement Page 8

7. Versions

The files that together makes this edition has individual version
numbers. If you execute the command strings program | grep Header:
then a string like

$Header: init.c;v 1.13 89/03/13 00:55:53 root Exp $

appears. A complete list of these version numbers can be found in the
Headers file. No guaranties are given that other versions of these
programs may work together.

9 Goran Larsson 1988, 1989 3:rd Edition March 13, 1989

/\
/’

/-~

/'\
X

/-

Hnix init / login replacement Page 9

8. Initlib
The directory initlib contains sources for the interface to init. If
you want to write your own program that does things like shutdown or
enable, this is for you. Note that missuse of init can make your system
behave very strange. Be sure that you know what you are doing.

9 Goran Larsson 1988, 1989 3:rd Edition March 13, 1989

/\
Q}

f"\

f

Hnix init / login replacement Page 10

9. FreeBees

The directory freebee contains some programs that are totally unrelated
to this software package. A short description is all that you get,
except for the sources.

stat Sort of a doit yourself ls. It can display file
information in any way you want. A man-page is included.

graphmem A demonstration program that show how to access the
graphic memory from C.

wipe This program clears the screen graphically (all pixels)

cache A variation of graphmem that dumps the font cache on the
screen.

wipec This program clears the font cache. All fonts are
invisible after this!

unloadfont This program unloads a font from the fontcache. This is
needed if you have linked in a new font in the used
directory and the old font on that position is already
loaded. Run this program and then load the new font with
the appropriate escape sequence.

noclick This little goodie will keep you sane. It kills the
horrible keyboard click Luxor want's us to hear and hate.

9 Goran Larsson 1988, 1989 3:rd Edition March 13, 1989

/5

/5

/N
3'

\.

. K.

/\

Hnix init / login replacement Page 11

10. Problems

The only known problem at this time is that a warning message

Log info out of phase, info may be lost...

may be emitted by the log daemon when shutdown is used to take the
system down to single user mode and the system is then rebooted from
single user mode using “D. Log info is not lost, so for the time
beeing, just ignore the message.

9 Goran Larsson 1988, 1989 3:rd Edition March 13, 1989

$HUTDQwN(8) HNIX Programmer's Manual SHUTDOWN(8)

NAME
shutdown — allow superuser to bring the system down gracefully

SYNOPSIS
/etc/shutdown [-krhfn] shutdowntime [message]

DESCRIPTION
shutdown allows super users to tell users and remind users of iminent
shutdown of the unix system and shut it down automatically and even
reboot or halt the machine if they desire. The shutdowntime can be

given as either an absolute time in the hour:minute format, or a rela-
/*‘ tive time in the +minutes format. Immediate shutdown can be specified

J by the time specification “now".» After nagging all users for a while,
shutdown.will disable logins at most five minutes before actual halt. '

When halt time arrives, all processes are killed (SIGHUP followed by
 SIGKILL) and all filesystems are dismounted./\
OPTIONS

|
W‘

fake shutdown, make users think the system is going down

H1U'H

reboot
halt
fast boot

-n no sync before going down
Enters single user mode without -r or -h options.

EXAMPLES
/etc/shutdown 17:00 preventive maintenance
/etc/shutdown.—h.now
/etc/shutdown —k 10:00 backup of all disks

FILES
/etc/nologin created to cause login(l) to disable logins

/_ /fastboot created if -f option is given and can be used by
£ /etc/rc

f\
‘ DIAGNOSTICS

SEE ALSO
login(l), init(8)

Some messages may be given when problems shows up.

NOTE
As it is impossible to halt an unmodified ABC 1600 due to the watchdog,
the halt and reboot options both reboots. If the watchdog has been dis-
abled, both options halt the system. It is not sure whether the nosync
option works, it might be so that the filesystem handlers always syncs
before exiting. The fast boot option is of little use in abcenix as
fsck is invoked automatically, if needed. To simplify it: it is only
the fake shutdown (-k) and reboot (-r) options that are of interrest.

BUGS
S The warning message Log info out of phase, info may be lost... may be

Printed 3/l3/89 l2 Mars 1989 Page l

/‘;

f\

/\I
w

8»

/\

SHUTDOWN(8) HNIX Programmer's Manual SHUTDOWN(8)

emitted by the log daemon when shutdown is used to take the system down

to single user mode and the system is then rebooted from single user
mode using “D.

Printed 3/13/89 12 Mars 1939 Page 2

p

/\

{..

V/\
\

SYSNAME(8) HNIX Programmer's Manual SYSNAME(8)

RAHE
sysname — change systems node name

SYNOPSIS
/etc/sysnane name

DESCRIPTION
sysnane patches the kernel so that the umame(l) command returns the
correct name. sysname should be run from the /etc/rc file.

EXAMPLES
uame -a
/etc/sysname hubert
unane -a

FILES
/abcenix file used as namelist
/etc/kmam file used as core file (patched)

SEE ALSO
uname(l), unane(2)

DIAGNOSTICS
error opening /etc/kmem
error in /abcenix namelist
symbol not in /abcenix
error reading /etc/kmem
error writing /etc/kmem

Printed 3/13/89 21 October 1988 Page 1

SH(l) HNIX V SH(l)

NAME
sh, rsh - shell, the standard/restricted command programming language

SYNOPSIS
sh [—acefhikmnorstuvx] [-0 option] ... [arg ...]

rsh [—acefhikmnorstuvx] [—o option] ... [arg ...]

DESCRIPTION
Sh is a command programming language that executes commands read from a
terminal or a file. Rsh is a restricted version of the standard command
interpreter sh; it is used to set up login names and execution

,»\. environments whose capabilities are more controlled than those of the
I standard shell. See Invocation below for the meaning of arguments to the

shell.

Definitions.
,»\ A metacharacter is one of the following characters:

; & () I < > new-line space tab

A blank is a tab or a space. An identifier is a sequence of letters,
digits, or underscores starting with a letter or underscore. Identifiers
are used as names for aliases, functions, and named parameters. A word
is a sequence of characters separated by one or more non-quoted
metacharacters.

Commands.
A simple-command is a sequence of blank separated words which may be
preceded by a parameter assignment list. (See Environment below). The
first word specifies the name of the command to be executed. Except as
specified below, the remaining words are passed as arguments to the
invoked command. The command name is passed as argument O (see exec(2)).
The value of a simple-command is its exit status if it terminates

<r\, normally, or (octal) 200+status if it terminates abnormally (see
' signal(2) for a list of status values).

A pipeline is a sequence of one or more commands separated by I. The
standard output of each command but the last is connected by a pipe(2) to

f’f the standard input of the next command. Each command is run as a
I separate process; the shell waits for the last command to terminate. The

exit status of a pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by ;, &, &&, or
II, and optionally terminated by ;, &, or I&. Of these five symbols, ;,
&, and I& have equal precedence, which is lower than that of && and II.
The symbols && and II also have equal precedence. A semicolon (;) causes
sequential execution of the preceding pipeline; an ampersand (&) causes
asynchronous execution of the preceding pipeline (i.e., the shell does
not wait for that pipeline to finish). The symbol I& causes asynchronous
execution of the preceding command or pipeline with a two—way pipe
established to the parent shell. The standard input and output of the
spawned command can be written to and read from by the parent Shell using

Page l (printed 8/14/88)

______¢

/\

/i

/\\

/"‘\

SH(l) ‘ HNIX V SH(l)

the —p option of the special commands read and print described later.
Onl one such command can be active at any given time. The symbol &&
(I r) causes the list following it to be executed only if the preceding
pipeline returns a zero (non-zero) value. An arbitrary number of new-
lines may appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. Unless
otherwise stated, the value returned by a command is that of the last
simple-command executed in the command.

for identifier [in.word .. .] do list done
Each time a for command is executed, identifier is set to the next
word taken from the in.word list. If in.word ... is omitted, then
the for command executes the do list once for each positional
parameter that is set (see Parameter Substitution below). Execution
ends when there are no more words in the list.

select identifier [in.word .. .] do list done
A select command prints on standard error (file descriptor 2), the
set of words, each preceded by a number. If in.word ... is
omitted, then the positional parameters are used instead (see
Parameter Substitution below). The PS3 prompt is printed and a line
is read from the standard input. If this line consists of the
number of one of the listed words, then the value of the parameter
identifier is set to the word corresponding to this number. If this
line is empty the selection list is printed again. Otherwise the
value of the parameter identifier is set to null. The contents of
the line read from standard input is saved in the parameter REPLY.
The list is executed for each selection until a break or end-of-file
is encountered.

case word in [pattern [| pattern] ...) list ;;] ... esac
A A case command executes the list associated with the first pattern

that matches word. The form of the patterns is the same as that
used for file-name generation (see File Name Generation below).

if list then list [elif list then list] ... [else list] fi
The list following if is executed and, if it returns a zero exit
status, the list following the first then is executed. Otherwise,
the list following elif is executed and, if its value is zero, the
list following the next then is executed. Failing that, the else
list is executed. If no else list or then list is executed, then
the if command returns a zero exit status.

while list do list done
until list do list done

A while command repeatedly executes the while list and, if the exit
status of the last command in the list is zero, executes the do
list; otherwise the loop terminates. If no commands in the do list’
are executed, then the while command returns a zero exit status;
until may be used in place of while to negate the loop termination
test.

Page 2 (printed 8/14/88)

SH(l) HNIX V SH(l)

(list)
Execute list in a separate environment. Note, that if two adjacent
open parentheses are needed for nesting, a space must be inserted to
avoid arithmetic evaluation as described below.

{ list;}
list is simply executed. Note that { is a keyword and requires a
blank in order to be recognized.

function identifier { list ;}
identifier () { list ;}

7*‘ Define a function which is referenced by identifier. The body of
the function is the list of commands between { and }. (See
Functions below).

time pipeline/\ The pipeline is executed and the elapsed time as well as the user
and system time are printed on standard error.

The following keywords are only recognized as the first word of a command
and when not quoted:

if then else elif fi case esac for while until do done { } function
select time

Comments.
A word beginning with # causes that word and all the following characters
up to a new-line to be ignored.

Aliasing.
The first word of each command is replaced by the text of an alias if an
alias for this word has been defined. The first character of an alias
name can be any printable character, but the rest of the characters must

€:§ be the same as for a valid identifier. The replacement string can
contain any valid Shell script including the metacharacters listed above.
The first word of each command of the replaced text will not be tested
for additional aliases. If the last character of the alias value is a
blank then the word following the alias will also be checked for alias

’ substitution. Aliases can be used to redefine special builtin commands
but cannot be used to redefine the keywords listed above. Aliases can be
created, listed, and exported with the alias command and can be removed
with the unalias command. Exported aliases remain in effect for sub-
shells but must be reinitialized for separate invocations of the Shell
(See Invocation below).

Aliasing is performed when scripts are read, not while they are executed.
Therefore, for an alias to take effect the alias command has to be
executed before the command which references the alias is read.

Aliases are frequently used as a short hand for full path names. An
option to the aliasing facility allows the value of the alias to be
automatically set to the full pathname of the corresponding command.

Page 3 (printed 8/14/88)

SH(l) HNIX V SH(l)

These aliases are called tracked aliases. The value of a tracked alias
is defined the first time the identifier is read and becomes undefined
each time the PATH variable is reset. These aliases remain tracked so,
that the next subsequent reference will redefine the value. Several
tracked aliases are compiled into the shell. The 4h option of the set
command makes each command name which is an identifier into a tracked
alias.

The following exported aliases are compiled into the shell but can be
unset or redefined:

echo='print‘—'
/*\ fa1se='1et 0'

fhctions='typeset —f'
history='fc -1’
integer='typeset —i'
nohup'nohup '

/- pwd='print — $PWD'
r='fc —e —'
true=':'
type='whence-v'
hash='a1ias —t'

Tilde Substitution.
After alias substitution is performed, each word is checked to see if it
begins with an unquoted ~. If it does, then the word up to a / is
checked to see if it matches a user name in the /etc/passwd file. If a

match is found, the ~ and the matched login name is replaced by the login
directory of the matched user. This is called a tilde substitution. If
no match is found, the original text is left unchanged. A ~ by itself,
or in front of a /, is replaced by the value of the HOME parameter. A ~
followed by a + or - is replaced by the value of the parameter PWD and
OLDPWD respectively.

{Tl In addition, the value of each keyword parameter is checked to see if it
begins with a ~ or if a ~ appears after a :. In either of these cases a

tilde substitution is attempted.

Command Substitution.
The standard output from a command enclosed in a pair of grave accents
(“) may be used as part or all of a word; trailing new-lines are
removed. The command substitution ‘cat file‘ can be replaced by the
equivalent but faster ‘<fi1e‘. Command‘substitution of most special
commands that do not perform input/output redirection are carried out
without creating a separate process.

Parameter Substitution.
A parameter is an identifier, a digit, or any of the characters *, @, #,
?, —, $, and !. A named parameter (a parameter denoted by an identifier)
has a value and zero or more attributes. Named parameters can be
assigned values and attributes by using the typeset special command. The
attributes supported by the Shell are described later with the typeset
special command. Exported parameters pass values and attributes to sub-

Page 4 (printed 8/14/88)

SH(l) HNIX V SH(l)

shells but only values to the environment.

The shell supports a limited one-dimensional array facility. An element
of an array parameter is referenced by a subscript. A subscript is
denoted by a [, followed by an arithmetic expression (see Arithmetic
evaluation below) followed by a]. The value of all subscripts must bein the range of 0 through Sll. Arrays need not be declared. Any
reference to a named parameter with a valid subscript is legal and an
array will be created if necessary. Referencing an array without a
subscript is equivalent to referencing the first element.

/T‘ The value of a named parameter may also be assigned by writing:

name=value [name=va1ue] ...
If the integer attribute, —i, is set for name the value is subject to

/“~ arithmetic evaluation as described below.
Positional parameters, parameters denoted by a number, may be assigned
values with the set special command. Parameter $0 is set from argument
zero when the shell is invoked.
The character $ is used to introduce substitutable parameters.
${parameter}

The value, if any, of the parameter is substituted. The braces are
required when parameter is followed by a letter, digit, or
underscore that is not to be interpreted as part of its name or when
a named parameter is subscripted. If parameter is a digit then it
is a positional parameter. If parameter is * or @, then all the
positional parameters, starting with $1, are substituted (separated
by spaces). If an array identifier with subscript * or @ is used,
then the value for each of the elements is substituted (separated by
spaces).

${#parameter}
If parameter is not * the length of the value of the parameter is

€:\ substituted. Otherwise, the number of positional parameters is
 substituted.

${#identifier[*]}
The number of elements in the array identifier is substituted.

${parameter:—word}
If parameter is set and is non-null then substitute its value;
otherwise substitute word.

${parameter:=word}
If parameter is not set or is null then set it to word; the value of
the parameter is then substituted. Positional parameters may not be
assigned to in this way.

$(parameter:?word}
If parameter is set and is non-null then substitute its value;
otherwise, print word and exit from the shell. If word is omitted
then a standard message is printed.

${parameter:+word} If parameter is set and is non-null then substitute word; otherwise
substitute nothing.

Page 5 (printed 8/14/88)

SH(l) HNIX V SH(l)

${parameter#pattern}
${parameter##pattern}

If the Shell pattern matches the beginning of the value of
parameter, then the value of this substitution is the value of the
parameter with the matched portion deleted; otherwise the value of
this parameter is substituted. In the first form the smallest
matching pattern is deleted and in the latter form the largest
matching pattern is deleted.

${parameter%pattern}
${parameter%%pattern}

f“\ If the Shell pattern matches the end of the value of parameter, then
the value of parameter with the matched part deleted; otherwise
substitute the value of parameter. In the first form the smallest
matching pattern is deleted and in the latter form the largest
matching pattern is deleted./\

In the above, word is not evaluated unless it is to be used as the
substituted string, so that, in the following example, pwd is executed
only if d is not set or is null:

echo ${d:—‘pwd‘}

If the colon (:) is omitted from the above expressions, then the shell
only checks whether parameter is set or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.
— Flags supplied to the shell on invocation or by the set

command.
? The decimal value returned by the last executed command.
$ The process number of this shell.

The last argument of the previous command. This parameter isirl not set for commands which are asynchronous.
I. The process number of the last background command invoked.
PPID The process number of the parent of the shell.
PHD The present working directory set by the cd command.
OLDPWD

The previous working directory set by the cd command.
RANDOM

Each time this parameter is referenced, a random integer is
generated. The sequence of random numbers can be initialized
by assigning a numeric value to RANDOM.

REPLY
This parameter is set by the select statement and by the read
special command when no arguments are supplied.

The following parameters are used by the shell:
CDPATH

The search path for the cd command.
COLUMNS

If this variable is set, the value is used to define the width

Page 6 (printed 8/14/88)

f*\

/K

/\\

/"\

SH(l) HNIX V SH(l)

of the edit window for the shell edit modes and for printing
select lists.

EDITOR
If the value of this variable ends in emacs, gmacs, or vi and
the VISUAL variable is not set, then the corresponding option
(see Special Command set below) will be turned on.

ENV If this parameter is set, then parameter substitution is
performed on the value to generate the pathname of the script
that will be executed when the shell is invoked. (See
Invocation below.) This file is typically used for alias and
function definitions.

FCEDIT
The default editor name for the fc command.

IFS Internal field separators, normally space, tab, and new-line
that is used to separate command words which result from
command or parameter substitution and for separating words with
the special command read.

HISTFILE
If this parameter is set when the shell is invoked, then the
value is the pathname of the file that will be used to store
the command history. (See Command re-entry below.)

HISTSIZE
If this parameter is set when the shell is invoked, then the
number of previously entered commands that are accessible by
this shell will be greater than or equal to this number. The
default is 128.

HOME The default argument (home directory) for the cd command.
HAIL If this parameter is set to the name of a mail file and the

HAILRATH parameter is not set, then the shell informs the user
of arrival of mail in the specified file.

HAILCHECK
This variable specifies how often (in seconds) the shell will
check for changes in the modification time of any of the files
specified by the HAILPATH or HAIL parameters. The default
value is 600 seconds. If set to O, the shell will check before
each prompt.

HAILPATH
A colon (:) separated list of file names. If this parameter
is set then the shell informs the user of any modifications to
the specified files that have occurred within the last
HAILCHECK seconds. Each file name can be followed by a ? and a
message that will be printed. The message will undergo
parameter and command substitution with the parameter, $_
defined as the name of the file that has changed. The default
message is you have mail in $_.

PATH The search path for commands (see Execution below). The user
may not change PATH if executing under rsh (except in .profile
).

PS1 The value of this parameter is expanded for paramter
substitution to define the primary prompt string which by
default is “$ ". The character ! in the primary prompt
string is replaced by the command number (see Command Re-entry

Page 7 (printed 8/14/88)

SH(l) HNIX V SH(l)

below).
PS2 Secondary prompt string, by default “>"'.
PS3 Selection prompt string used within a select loop, by default\\#? II
SHELL

The pathname of the shell is kept in the environment. At
invocation, if the value of this variable contains an r in the
basename, then the shell becomes restricted.

THOUT
If set to a value greater than zero, the shell will terminateif a command is not entered within the prescribed number of

f“\ seconds. (Note that the shell can be compiled with a maximum
bound for this value which cannot be exceeded.)

VISUAL
If the value of this variable ends in emacs, gmacs, or vi then
the corresponding option (see Special Command set below) will/“ be turned on.

The shell gives default values to PATH, PS1, PS2, MAILCHECK, TMOUT and
IFS, while HOME, SHELL ENV and MAIL are not set at all by the shell
(although HOME is set by login(l)). On some systems MAIL and SHELL are
also set by login(l)).

Blank Interpretation.
After parameter and command substitution, the results of substitutions
are scanned for the field separator characters (those found in IFS) and
split into distinct arguments where such characters are found. Explicit
null arguments (" or ") are retained. Implicit null arguments (those
resulting from parameters that have no values) are removed.

File Name Generation.
Following substitution, each command word is scanned for the characters
*, ?, and.[unless the —f option has been set. If one of these

‘D characters appears then the word is regarded as a pattern. The word is
replaced with alphabetically sorted file names that match the pattern.If no file name is found that matches the pattern, then the word is left
unchanged. When a pattern is used for file name generation, the
character . at the start of a file name or immediately following a /, as
well as the character / itself, must be matched explicitly. In other
instances of pattern matching the / and . are not treated specially.

* Matches any string, including the null string.
? Matches any single character.[...]

Matches any one of the enclosed characters. A pair of
characters separated by — matches any character lexically
between the pair, inclusive. If the first character following
the opening "[" is a "! " then any character not enclosed is
matched. A — can be included in the character set by puttingit as the first or last character.

Page 8 (printed 8/14/88)

SH(l) HNIX V SH(l)

Quoting.
Each of the metacharacters listed above (See Definitions above). has a
special meaning to the shell and cause termination of a word unless
quoted. A character may be quoted (i.e., made to stand for itself) by
preceding it with a \. The pair \new-line is ignored. All characters
enclosed between a pair of single quote marks ("), except a single
quote, are quoted. Inside double quote marks ("), parameter and command
substitution occurs and \ quotes the characters \, ', ', and $. '$*' is
equivalent to ‘$1 $2 ...‘, whereas '$@' is equivalent to ‘$1’ "$2" ...
The special meaning of keywords can be removed by quoting any character
of the keyword. The recognition of special command names listed below
cannot be altered by quoting them.

Arithmetic Evaluation.
An ability to perform integer arithmetic is provided with the special
command let. Evaluations are performed using long arithmetic. Constants
are of the form [base#]n where base is a decimal number between two and
thirty-six representing the arithmetic base and n is a number in that
base. If base is omitted then base 10 is used.

An internal integer representation of a named parameter can be specified
with the —i option of the typeset special command. When this attribute
is selected the first assignment to the parameter determines the
arithmetic base to be used when parameter substitution occurs.

Since many of the arithmetic operators require quoting, an alternative
form of the let command is provided. For any command which begins with a
((, all the characters until a matching)) are treated as a quoted
expression. More precisely, ((...)) is equivalent to let ' ...‘

Prompting.
When used interactively, the shell prompts with the value of PS1 before
reading a command. If at any time a new—line is typed and further input
is needed to complete a command, then the secondary prompt (i.e., the
value of PS2) is issued.

Input/Output.
Before a command is executed, its input and output may be redirected
using a special notation interpreted by the shell. The following may
appear anywhere in a simple-command or may precede or follow a command
and are not passed on to the invoked command. Command and parameter
substitution occurs before word or digit is used except as noted below.
File name generation occurs only if the pattern matches a single file and
blank interpretation is not performed.

<word Use file word as standard input (file descriptor O).

>word Use file word as standard output (file descriptor 1). If
the file does not exist then it is created; otherwise, it
is truncated to zero length.

Page 9 (printed 8/14/88)

SH(1) HNIX V SH(1)

>>word Use file word as standard output. If the file exists then
output is appended to it (by first seeking to the end-of-
file); otherwise, the file is created.

<<[-]word The shell input is read up to a line that is the same as
word, or to an end-of-file. No parameter substitution,
command substitution or file name generation is performed
on word. The resulting document, called a here-document,
becomes the standard input. If any character of word is
quoted, then no interpretation is placed upon the
characters of the document; otherwise, parameter and
command substitution occurs, \new-line is ignored, and \
must be used to quote the characters \, $, ‘, and the first
character of word. If — is appended to <<, then all
leading tabs are stripped from word and from the document.

<&digit The standard input is duplicated from file descriptor digit
(see dup(2)). Similarly for the standard output using >&
digit.

<&— The standard input is closed. Similarly for the standard
output using >&—.

If one of the above is preceded by a digit, then the file descriptor
number referred to is that specified by the digit (instead of the default
O or l). For example:

... 2>&l

means file descriptor 2 is to be opened for writing as a duplicate of
file descriptor 1.

The order in which redirections are specified is significant. The shell
evaluates each redirection in terms of the (file descriptor, file)
association at the time of evaluation. For example:

... 1>fname 2>&l

first associates file descriptor 1 with file fname. It then associates
file descriptor 2 with the file associated with file descriptor l (i.e.
fname). If the order of redirections were reversed, file descriptor 2
would be associated with the terminal (assuming file descriptor l had
been) and then file descriptor 1 would be associated with file fname.

If a command is followed by & and job control is not active, then the
default standard input for the command is the empty file /dev/null.
Otherwise, the environment for the execution of a command contains the
file descriptors of the invoking shell as modified by input/output
specifications.

Environment.
The environment (see environ(7)) is a list of name-value pairs that is

Page 10 (printed 8/l4/88)

SH(l) HNIX V SH(l)

passed to an executed program in the same way as a normal argument list.
The names must be identifiers and the values are character strings. The
shell interacts with the environment in several ways. On invocation, the
shell scans the environment and creates a parameter for each name found,
giving it the corresponding value and marking it export . Executed
commands inherit the environment. If the user modifies the values of
these parameters or creates new ones, using the export or typeset —x

commands they become part of the environment. The environment seen by
any executed command is thus composed of any name-value pairs originally
inherited by the shell, whose values may be modified by the current
shell, plus any additions which must be noted in export or typeset —x

commands.

The environment for any simple-command or function may be augmented by
prefixing it with one or more parameter assignments. A parameter
assignment argument is a word of the form identifier=va1ue. Thus:

TERM=450 cmd args and
(export TERM; TERM=45O; cmd args)

are equivalent (as far as the above execution of cmd is concerned).

If the 4k flag is set, all parameter assignment arguments are placed in
the environment, even if they occur after the command name. The
following first prints a=b c and then c:

echo a=b c
set -k
echo a=b c

Functions.
The fhction keyword, described in the Commands section above, is used to
define shell functions. Shell functions are read in and stored/“‘internally. Alias names are resolved when the function is read.
Functions are executed like commands with the arguments passed as
positional parameters. (See Execution below).

Functions execute in the same process as the caller and share all files,
traps (other than EXIT and ERR) and present working directory with the
caller. A trap set on EXIT inside a function is executed after the
function completes. Ordinarily, variables are shared between the calling
program and the function. However, the typeset special command used
within a function defines local variables whose scope includes the
current function and all functions it calls.

The special command return is used to return from function calls. Errors
within functions return control to the caller.

Function identifiers can be listed with the —f option of the typeset
special command. The text of functions will also be listed. Function
can be undefined with the —f option of the unset special command.

Page ll (printed 8/14/88)

SH(l) HNIX V SH(l)

Ordinarily, functions are unset when the shell executes a shell script.
The —xf option of the typeset command allows a function to be exported to
scripts that are executed without a separate invocation of the shell.
Functions that need to be defined across separate invocations of the
shell should be placed in the ENV file.

Jobs.
If the monitor option of the set command is turned on, an interactive
shell associates a job with each pipeline. It keeps a table of current
jobs, printed by the jobs command, and assigns them small integer
numbers. When a job is started asynchronously with &, the shell prints a

r\\ line which looks like:

[1] 1234

indicating that the job which was started asynchronously was job number l
/\- and had one (top—level) process, whose process id was 1234.

This paragraph and the next require features that are not in all versions
of UNIX and may not apply. If you are running a job and wish to do
something else you may hit the key “Z (control-Z) which sends a STOP

signal to the current job. The shell will then normally indicate that
the job has been ‘Stopped’, and print another prompt. You can then
manipulate the state of this job, putting it in the background with the
bg command, or run some other commands and then eventually bring the job
back into the foreground with the foreground command fg. A “Z takes
effect immediately and is like an interrupt in that pending output and
unread input are discarded when it is typed.

A job being run in the background will stop if it tries to read from the
terminal. Background jobs are normally allowed to produce output, but
this can be disabled by giving the command “stty tostop". If you set
this tty option, then background jobs will stop when they try to produce

;r\ output like they do when they try to read input.

There are several ways to refer to jobs in the shell. The character %

introduces a job name. If you wish to refer to job number l, you can
name it as %l . Jobs can also be named by prefixes of the string typed in

 to kill or restart them. Thus, on systems that support job control, ‘fg
%ed' would normally restart a suspended ed(l) job, if there were a
suspended job whose name began with the string ‘ed’.

The shell maintains a notion of the current and previous jobs. In output
pertaining to jobs, the current job is marked with a + and the previous
job with a —. The abbreviation %+ refers to the current job and %—

refers to the previous job. %% is also a synonym for the current job.

This shell learns immediately whenever a process changes state. It
normally informs you whenever a job becomes blocked so that no further
progress is possible, but only just before it prints a prompt. This is
done so that it does not otherwise disturb your work.

Page l2 (printed 8/14/88)

SH(l) HNIX V SH(l)

When you try to leave the shell while jobs are running or stopped, you
will be warned that ‘You have stopped(running) jobs.’ You may use the
jobs command to see what they are. If you do this or immediately try to

 exit again, the shell will not warn you a second time, and the stopped
jobs will be terminated.

Signals.
The INT and QUIT signals for an invoked command are ignored if the
command is followed by & and job monitor option is not active.
Otherwise, signals have the values inherited by the shell from its
parent, with the exception of signal ll (but see also the trap command

/“\ below).

Execution.
Each time a command is executed, the above substitutions are carried out.

A
If the command name matches one of the Special Commands listed below, it

/*~ is executed within the current shell process. Next, the command name is
checked to see if it matches one of the user defined functions. If it
does, the positional parameters are saved and then reset to the arguments
of the function call. When the function completes or issues a return,
the positional parameter list is restored and any trap set on EXIT within
the function is executed. The value of a function is the value of the
last command executed. A function is also executed in the current shell
process. If a command name is not a special command or a user defined
function, a process is created and an attempt is made to execute the
command via exec(2).

The shell parameter PATH defines the search path for the directory
containing the command. Alternative directory names are separated by a
colon (:). The default path is :/bin:/usr/bin (specifying the current
directory, /bin, and /usr/bin, in that order). Note that the current
directory is specified by a null path name, which can appear immediately
after the equal sign, between colon delimiters, or at the end of the path

\ list. If the command name contains a / then the search path is not used.
Otherwise, each directory in the path is searched for an executable file.
If the file has execute permission but is not a directory or an a.out
file, it is assumed to be a file containing shell commands. A sub-shell
is spawned to read it. All non-exported aliases, functions, and named

,/“*parameters are removed in this case. A parenthesized command 1S also
executed in a sub-shell.

Command Re-entry.
The text of the last HISTSIZE (default 128) commands entered from a
terminal device is saved in a history file. The file $HOHE/.history is
used if the HISTFILE variable is not set or is not writable. A shell can
access the commands of all interactive shells which use the same named
HISTFILE. The special command fc is used to list or edit a portion this
file. The portion of the file to be edited or listed can be selected by
number or by giving the first character or characters of the command. A
single command or range of commands can be specified. If you do not
specify an editor program as an argument to fc then the value of the
parameter FCEDIT is used. If FCEDIT is not defined then /bin/ed is used.

Page l3 (printed 8/14/88)

/\ ,

SH(l) HNIX V SH(l)

The edited command(s) is printed and re-executed upon leaving the editor.
The editor name — is used to skip the editing phase and to re-execute the
command. In this case a substitution parameter of the form old=new can
be used to modify the command before execution. For example, if r is
aliased to 'fc —e —’ then typing ‘r bad=good c’ will re—execute the most
recent command which starts with the letter c, replacing the string bad
with the string good.

In-line Editing Options
Normally, each command line entered from a terminal device is simply
typed followed by a new-line (‘RETURN’ or ‘LINE FEED’). If either the
emacs, gmacs, or vi option is active, the user can edit the command line.
To be in either of these edit modes set the corresponding option. An
editing option is automatically selected each time the VISUAL or EDITOR
variable is assigned a value ending in either of these option names.

The editing features require that the user's terminal accept ‘RETURN’ as
carriage return without line feed and that a space (‘ ’ must overwrite
the current character on the screen. ADM terminal users should set the
"space - advance" switch to ‘space’. Hewlett-Packard series 2621
terminal users should set the straps to ‘bcGHxZ etX'.

The editing modes implement a concept where the user is looking through a
window at the current line. The window width is the value of COLUHNS if
it is defined, otherwise 80. If the line is longer than the window width
minus two, a mark is displayed at the end of the window to notify the
user. As the cursor moves and reaches the window boundaries the window
will be centered about the cursor. The mark is a >~(<, *) if the line
extends on the right (left, both) side(s) of the window.

Emacs Editing Mode
This mode is entered by enabling either the emacs or gmacs option. The
only difference between these two modes is the way they handle “T. To
edit, the user moves the cursor to the point needing correction and then
inserts or deletes characters or words as needed. All the editing
commands are control characters or escape sequences. The notation for
control characters is caret (“) followed by the character. For
example, “F is the notation for control F. This is entered by depressing
f’ while holding down the ‘CTRL' (control) key. The ‘SHIFT’ key is not

depressed. (The notation A? indicates the DEL (delete) key.)

The notation for escape sequences is Mk followed by a character. For
example, Hkf (pronounced Meta f) is entered by depressing ESC (ascii 033
) followed by ‘f’. (HkF'would be the notation for ESC followed by
‘SHIFT’ (capital) ‘F'.)

All edit commands operate from any place on the line (not just at the
beginning). Neither the "RETURN" nor the "LINE FEED" key is entered
after edit commands except when noted.

“F Move cursor forward (right) one character.

Page 14 (printed 8/14/88)

SH(l) HNIX V SH(l)

Hrf Move cursor forward one word. (The editor's idea of a word is
a string of characters consisting of only letters, digits and
underscores.)

“B Move cursor backward (left) one character.
Hkb Move cursor backward one word.
“A

E

A]

Move cursor to start of line.
Move cursor to end of line.

char Move cursor to character char on current line.
AA

A

Iililil

f'\

/~. D

>5‘>9-

“T

A

H1

C

K.

A

.H

‘W

-p Push the region from the cursor to the mark on the stack.

Interchange the cursor and mark.XMX
erase (User defined erase character as defined by the stty command,

usually “H or #.) Delete previous character.
Delete current character.
Delete current word.

H (Meta-backspace) Delete previous word.
Delete previous word.

? (Meta-DEL) Delete previous word (if your interrupt character is
“? (DEL, the default) then this command will not work).
Transpose current character with next character in emacs mode.
Transpose two previous characters in gmacs mode.
Capitalize current character.

-C Capitalize current word.
Kill from the cursor to the end of the line. If given a
parameter of zero then kill from the start of line to the
cursor.
Kill from the cursor to the mark.

kill (User defined kill character as defined by the stty command,

“Y

A

>3

A
J
H.

eof End-of-file character, normally “D, will terminate the shell if

usually “G or @.) Kill the entire current line. If two kill
characters are entered in succession, all kill characters from
then on cause a line feed (useful when using paper terminals).
Restore last item removed from line. (Yank item back to the
line.)
Line feed and print current line.L

{i\ “@ (Null character) Set mark.
- (Meta space) Set mark.

(New line) Execute the current line.
(Return) Execute the current line.

the current line is null.
“P Fetch previous command. Each time “P is entered the previous

.H

H.

“N

A

command back in time is accessed.
-< Fetch the least recent (oldest) history line.
->- Fetch the most recent (youngest) history line.

Fetch next command. Each time “N is entered the next command
forward in time is accessed.

Rstring Reverse search history for a previous command line containing

*0

string. If a parameter of zero is given the search is forward
String is terminated by a "RETURN" or "NEW LINE".
Operate - Execute the current line and fetch the next line
relative to current line from the history file.

Mkdigits (Escape) Define numeric parameter, the digits are taken as a

Page 15 (printed 8/14/88)

parameter to the next command. The commands that accept a

$H(1) HNIX V SH(l)

parameter are “F, “B, erase, “D, “K, “R, “P and “N.
H-letter Soft-key — Your alias list is searched for an alias by the name

letter and if an alias of this name is defined, its value will
be inserted on the line. The letter must not be one of the
above meta-functions.

.H5_ The last parameter of the previous command is inserted on the
line.

H-. The last parameter of the previous command is inserted on the
line.

H~* Attempt file name generation on the current word.
“U Multiply parameter of next command by 4.

r\ \ Escape next character. Editing characters, the user's erase,
kill and interrupt (normally “?) characters may be entered in
a command line or in a search string if preceded by a \. The \
removes the next character's editing features (if any).

“V Display version of the shell./\
Vi Editing Mode

There are two typing modes. Initially, when you enter a command you are
in the input mode. To edit, the user enters control mode by typing ESC (

033) and moves the cursor to the point needing correction and then
inserts or deletes characters or words as needed. Most control commands
accept an optional repeat count prior to the command.
When in vi mode on most systems, canonical processing is initially
enabled and the command will be echoed again if the speed is 1200 baud or
greater and it contains any control characters or less than one second

r has elapsed since the prompt was printed. The ESC character terminates
canonical processing for the remainder of the command and the user can
than modify the command line. This scheme has the advantages of
canonical processing with the type-ahead echoing of raw mode.
If the option viraw is also set, the terminal will always have canonical
processing disabled. This mode is implicit for systems that do not
support two alternate end of line delimiters, and may be helpful for

£_. certain terminals.

Input Edit Commands
By default the editor is in input mode.
erase (User defined erase character as defined by the stty

command, usually H or #.) Delete previous character.
“W' Delete the previous blank separated word.
“D Terminate the shell.
“V Escape next character. Editing characters, the user's

erase or kill characters may be entered in a command line
or in a search string if preceded by a “V. The “V removes
the next character's editing features (if any).\ Escape the next erase or kill character.

Motion Edit Commands
These commands will move the cursor.
[count]l Cursor forward (right) one character.
[count]w' Cursor forward one alpha-numeric word.
[count]U' Cursor to the beginning of the next word that follows a

blank.

Page 16 (printed 8/l4/88)

S1-1(1) HNIX v SH(1)

_count
Icount
Icount
Icount

U"U'll10

Cursor to end of word.
Cursor to end of the current blank delimited word.
Cursor backward (left) one character.
Cursor backward one word.

:count:B Cursor to preceding blank separated word.
:count:fc Find the next character c in the current line.
:count:Fb Find the previous character c in the current line.
:count:tc Equivalent to f followed by h.
:count:Tc Equivalent to F followed by 1.

Repeats the last single character find command, f, F, t,
or T.

r\~ , Reverses the last single character find command.
0
A

Cursor to start of line.
Cursor to first non-blank character in line.
Cursor to end of line.$

Search Edit Commands
/\- These commands access your command history.

Icountjk Fetch previous command. Each time k is entered the
previous command back in time is accessed.

:count:- Equivalent to k.
Icountjj Fetch next command. Each time j is entered the next

command forward in time is accessed.
:count:+ Equivalent to j.
:count:G The command number count is fetched. The default is the

least recent history command.
/string Search backward through history for a previous command

containing string. String is terminated by a "RETURN" or
"NEW LINE". If string is null the previous string will be
used.

?string Same as / except that search will be in the forward

I1

(“ N

direction.
Search for next match of the last pattern to / or ?

commands.
Search for next match of the last pattern to / or ?, but
in reverse direction. Search history for the string
entered by the previous / command.

Text Modification Edit Commands
These commands will modify the line.
a

A.

Enter input mode and enter text after the current
character.
Append text to the end of the line. Equivalent to $a.

[count]cmotion
c[count]motion

C

S

D

Delete current character through the character motion
moves the cursor to and enter input mode. If motion is c,
the entire line will be deleted and input mode entered.
Delete the current character through the end of line and
enter input mode. Equivalent to c$.
Equivalent to cc.
Delete the current character through the end of line.

[count]dmotion

Page l7 (printed 8/14/88)

514(1) HNIX v sH(1>

d[count]motion
Delete current character through the character motion
moves the cursor to. Equivalent to d$. If motion is d ,

the entire line will be deleted.i Enter input mode and insert text before the current
character.

I Insert text before the beginning of the line. Equivalent
to the two character sequence “i.

[count]P Place the previous text modification before the cursor.
[count]p Place the previous text modification after the cursor.
R. Enter input mode and replace characters on the screen with

r~\ characters you type overlay fashion.
rc Replace the current character with c.
[count]x Delete current character.
[count]X. Delete preceding character.
[count]. Repeat the previous text modification command.

/“~ ~ Invert the case of the current character and advance the
cursor.

[count]__ Causes the count word of the previous command to be
appended and input mode entered. The last word is used if
count is omitted.

* Causes an * to be appended to the current word and file
name generation attempted. If no match is found, it rings
the bell. Otherwise, the word is replaced by the matching
pattern and input mode is entered.

Other Edit Commands
Miscellaneous commands.
u Undo the last text modifying command.
U Undo all the text modifying commands performed on the

line.
[count]v" Returns the command fc —e ${VISUAL:—${EDITOR;—vi}} count

in the input buffer. If count is omitted, then the
current line is used.

(r\ “L Line feed and print current line. Has effect only in
control mode.

“J (New line) Execute the current line, regardless of mode.
“H. (Return) Execute the current line, regardless of mode.
Equivalent to I#<cr>. Useful for causing the current line/”‘to be inserted in the history without being executed.

Special Commands.
The following simple-commands are executed in the shell process.
Input/Output redirection is permitted. File descriptor 1 is the default
output location. Parameter assignment lists preceding the command do not
remain in effect when the command completes unless noted.

: [arg ...]

Parameter assignments remain in effect after the command completes.
The command only expands parameters. A zero exit code is returned.

. file [.arg . ..]
Parameter assignments remain in effect after the command completes.

Page 18 (printed 8/l4/88)

SH(l) HNIX v SH(l)

Read and execute commands from file and return. The commands are
executed in the current Shell environment. The search path
specified by PATH is used to find the directory containing file. If
any arguments arg are given, they become the positional parameters.
Otherwise the positional parameters are unchanged.

alias [—tx] [name[=value] ...]

Alias with no arguments prints the list of aliases in the form
name=value on standard output. An alias is defined for each name

whose value is given. A trailing space in value causes the next
word to be checked for alias substitution. The —t flag is used to

/*\ set and list tracked aliases. The value of a tracked alias is the
full pathname corresponding to the given name. The value becomes
undefined when the value of PATH is reset but the aliases remained
tracked. Without the —t flag, for each name in the argument list
for which no value is given, the name and value of the alias is

/‘\ printed. The —x flag is used to set or print exported aliases. An
exported alias is defined across sub-shell environments. Alias
returns true unless a name is given for which no alias has been
defined.

bg[%_job]
This command is only built-in on systems that support job control.
Puts the specified job into the background. The current job is put
in the background if job is not specified.

break [n]

Exit from the enclosing for while until or select loop, if any. If
n is specified then break n levels.

continue [n]

Resume the next iteration of the enclosing for while until or select
loop. If n is specified then resume at the n—th enclosing loop.

K. cd [arg]

cd old new
This command can be in either of two forms. In the first form it
changes the current directory to arg. If arg is — the directory is
changed to the previous directory. The shell parameter HOME is the
default arg. The parameter PUD is set to the current directory.
The shell parameter CDPATH defines the search path for the directory
containing arg. Alternative directory names are separated by a
colon (:). The default path is <null> (specifying the current
directory). Note that the current directory is specified by a null
path name, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list. If arg
begins with a / then the search path is not used. Otherwise, each
directory in the path is searched for arg.
The second form of cd substitutes the string new for the string old
in the current directory name, PUD and tries to change to this new
directory.
The cd command may not be executed by rsh.

Page 19 (printed 8/14/88)

SH(l) HNIX v sH(l)

eval [arg ...]

The arguments are read as input to the shell and the resulting
command(s) executed.

exec [arg ...]

Parameter assignments remain in effect after the command completes.
If arg is given, the command specified by the arguments is executed
in place of this shell without creating a new process. Input/output
arguments may appear and affect the current process. If no
arguments are given the effect of this command is to modify file
descriptors as prescribed by the input/output redirection list. In
this case, any file descriptor numbers greater than 2 that are
opened with this mechanism are closed when invoking another program.

exit [n]

Causes the shell to exit with the exit status specified by n. If n
is omitted then the exit status is that of the last command
executed. An end-of-file will also cause the shell to exit except
for a shell which has the ignoreeof option (See set below) turned
on.

export [name ...]

The given names are marked for automatic export to the environment
of subsequently—executed commands.

fc [—e ename] [—n1r] [first] [last]

fc —e — [old=new] [command]

In the first form, a range of commands from first to last is
selected from the last HISTSIZE commands that were typed at the
terminal. The arguments first and last may be specified as a number
or as a string. A string is used to locate the most recent command
starting with the given string. A negative number is used as an
offset to the current command number. If the flag —1, is selected,
the commands are listed on standard output. Otherwise, the editor
program ename is invoked on a file containing these keyboard
commands. If ename is not supplied, then the value of the parameter
FCEDIT (default /bin/ed) is used as the editor. When editing is
complete, the edited command(s) is executed. last is not specified
then it will be set to first. If first is not specified the default
is the previous command for editing and -16 for listing. The flag
—r reverses the order of the commands and the flag —n suppresses
command numbers when listing. In the second form the command is
re-executed after the substitution o1d=new is performed.

fa [%jvb 1

This command is only built—in on systems that support job control.
If job is specified it brings it to the foreground. Otherwise, the
current job is brought into the foreground.

jobs [-1]

Lists the active jobs; given the -1 options lists process id's in
addition to the normal information.

Page 20 (printed 8/I4/88)

53(1) HNIX V 514(1)

kill [—sig] process . . .
Sends either the TERM (terminate) signal or the specified signal to
the specified jobs or processes. Signals are either given by number

or by names (as given in /usr/include/signa1.h, stripped of the
prefix “SIG"). The signal names are listed by kill -1’. There is
no default, saying just ‘kill’ does not send a signal to the current
job. If the signal being sent is TERM (terminate) or HUP (hangup),
then the job or process will be sent a CONT (continue) signal if it
is stopped. The argument process can be either a process id or a

job.

let arg ...
Each arg is an arithmetic expression to be evaluated. All
calculations are done as long integers and no check for overflow is
performed. Expressions consist of constants, named parameters, and
operators. The following set of operators, listed in order of
decreasing precedence, have been implemented:
— unary minus
! logical negation
=1-/g

multiplication, division, remainder
+ — addition, subtraction
<===>==<>

comparison

equality inequality
= arithmetic replacement

Sub-expressions in parentheses () are evaluated first and can be
used to override the above precedence rules. The evaluation within
a precedence group is from right to left for the = operator and from
left to right for the others.

A parameter name must be a valid identifier. When a parameter is
encountered, the value associated with the parameter name is
substituted and expression evaluation resumes. Up to nine levels of
recursion are permitted.

The return code is O if the value of the last expression is non-
zero, and l otherwise.

newgrp [arg ...]

Equivalent to exec newgrp arg ..

print [—Rnprsu[n]] [arg ...]

The shell output mechanism. With no flags or with flag —, the
arguments are printed on standard output as described by echo(l).
In raw mode, —R.or —r, the escape conventions of echo are ignored.
The +R option will print all subsequent arguments and options other
than —n" The —p option causes the arguments to be written onto the
pipe of the process spawned with |& instead of standard output. The
—s option causes the arguments to be written onto the history file

Page 21 (printed 8/14/88)

gH(1) HNIX V 3H(1)

instead of standard output. The —u flag can be used to specify a

one digit file descriptor unit number n on which the output will be

placed. The default is l. If the flag —n is used, no new-line is
added to the output.

read [-prsu[n]] [name?prompt] [name ...]

The shell input mechanism. One line is read and is broken up into
words using the characters in IFS as separators. In raw mode, —r, a

\ at the end of a line does not signify line continuation. The

first word is assigned to the first name, the second word to the
second name, etc., with leftover words assigned to the last name.

The —p option causes the input line to be taken from the input pipe
of a process spawned by the shell using |&. If the —s fag is
present, the input will be saved as a command in the history file.
The flag —u can be used to specify a one digit file descriptor unit
to read from. The file descriptor can be opened with the exec
special command. The default value of n is O. If name is omitted
then REPLY is used as the default name. The return code is 0 unless
an end-of-file is encountered. An end-of-file with the —p option
causes cleanup for this process so that another can be spawned. If
the first argument contains a ?, the remainder of this word is used
as a prompt when the shell is interactive. If the given file
descriptor is open for writing and is a terminal device then the
prompt is placed on this unit. Otherwise the prompt is issued on
file descriptor 2. The return code is O unless an end-of-file is
encountered.

readonly [name ...]

The given names are marked readonly and these names cannot be
changed by subsequent assignment.

return [n]

Causes a shell function to return to the invoking script with the
return status specified by n. If n is omitted then the return
status is that of the last command executed. If return is invoked
while not in a function then it is the same as an exit.

set [—aefhknmostuvx] [-0 option .. .] [arg ...]

The flags for this command have meaning as follows:
—a All subsequent parameters that are defined are automatically

exported.
-e If the shell is non-interactive and if a command fails,

execute the ERR trap, if set, and exit immediately. This
mode is disabled while reading profiles.

—f Disables file name generation.
éh Each command whose name is an identifier becomes a tracked

alias when first encountered.
4k All parameter assignment arguments are placed in the

environment for a command, not just those that precede the
command name.

—n. Background jobs will run in a separate process group and a
line will print upon completion. The exit status of

Page 22 (printed 8/14/88)

SH(1) HNIX v SH(1)

background jobs is reported in a completion message. On

systems with job control, this flag is turned on
automatically for interactive shells.

—n Read commands but do not execute them.
-o

N4énm

The following argument can be one of the following option
names:
allexport

Same as —a. ‘

errexit Same as —e.

emacs Puts you in an emacs style in—line editor for
command entry.

gnacs Puts you in a gmacs style in-line editor for command

entry.
ignoreeof

The shell will not exit on end-of-file. The command
exit must be used.

keyword Same as 4k.
markdirs

All directory names resulting from file name
generation have a trailing / appended.

monitor Same as —n.
noexec Same as —n.
noglob Same as -f.
nounset Same as —u.

verbose Same as —v.
trackall

Same as -h.
vi Puts you in insert mode of a vi style in-line editor

until you hit escape character 033. This puts you
in move mode. A return sends the line.

'viraw Each character is processed as it is typed in vi
mode.

xtrace Same as —x.
If no option name is supplied then the current option settings
are printed.

Sort the positional parameters.
Exit after reading and executing one command.
Treat unset parameters as an error when substituting.
Print shell input lines as they are read.
Print commands and their arguments as they are executed.
Turns off —x and —v flags and stops examining arguments for
flags.
Do not change any of the flags; useful in setting $1 to a
value beginning with —. If no arguments follow this flag
then the positional parameters are unset.

Using + rather than — causes these flags to be turned off. These
flags can also be used upon invocation of the shell. The current
set of flags may be found in $—. The remaining arguments are
positional parameters and are assigned, in order, to $1, $2,
If no arguments are given then the values of all names are printed

Page 23 (printed 8/14/88)

514(1) HNIX v SH(1)

on the standard output.

shift [n]

The positional parameters from $n+l ... are renamed $1 ... ,

default n is l. The parameter n can be any arithmetic expression
that evaluates to a non-negative number less than or equal to $#.

test [expr]

Evaluate conditional expression expr. See test(l) for usage and
description. The arithmetic comparison operators are not restricted
to integers. They allow any arithmetic expression. Four additional

/\~ primitive expressions are allowed:
—L.file

True if file is a symbolic link.
filel —nt file2

True if filel is newer than fi1e2.
/~\ filel —ot file2

True if filel is older than fi1e2.
filel —ef file2

True if filel has the same device and i-node number as file2.

tines
Print the accumulated user and system times for the shell and for
processes run from the shell.

trap [arg] [sig] ...
arg is a command to be read and executed when the shell receives
signal(s) sig. (Note that arg is scanned once when the trap is set
and once when the trap is taken.) Each sig can be given as a number
or as the name of the signal. Trap commands are executed in order
of signal number. Any attempt to set a trap on a signal that was
ignored on entry to the current shell is ineffective. An attempt to
trap on signal ll (memory fault) produces an error. If arg is

/~\ omitted or is —, then all trap(s) sig are reset to their original\ values. If arg is the null string then this signal is ignored by
the shell and by the commands it invokes. If sig is ERR.then arg
will be executed whenever a command has a non-zero exit code. This
trap is not inherited by functions. If sig is O or EXIT and the
trap statement is executed inside the body of a function, then the
command arg is executed after the function completes. If sig is O

or EXIT for a trap set outside any function then the command arg is
executed on exit from the shell. The trap command with no arguments
prints a list of commands associated with each signal number.

typeset [—FIRZefilprtwx[n] [name[=value]] ...]

Parameter assignments remain in effect after the command completes.
When invoked inside a function, a new instance of the parameter name
is created. The parameter value and type are restored when the
function completes. The following list of attributes may be
specified:
—F This flag provides UNIX to host-name file mapping on non-UNIX

machines.

Page 24 (printed 8/14/88)

53(1) HNIX V sH(1)

—L Left justify and remove leading blanks from value. If n is
non-zero it defines the width of the field, otherwise it is
determined by the width of the value of first assignment. When

the parameter is assigned to, it is filled on the right with
blanks or truncated, if necessary, to fit into the field.
Leading zeros are removed if the —Z flag is also set. The —R

flag is turned off.
+R Right justify and fill with leading blanks. If n is non-zero

it defines the width of the field, otherwise it is determined
by the width of the value of first assignment. The field is
left filled with blanks or truncated from the end if the

r\. parameter is reassigned. The L flag is turned off.
—Z Right justify and fill with leading zeros if the first non-

blank character is a digit and the —L flag has not been set.
If n is non-zero it defines the width of the field, otherwise
it is determined by the width of the value of first assignment.

/- —e Tag the parameter as having an error. This tag is currently
unused by the shell and can be set or cleared by the user.

—f The names refer to function names rather than parameter names.
No assignments can be made and the only other valid flag is —x.

—i Parameter is an integer. This makes arithmetic faster. If n
is non-zero it defines the output arithmetic base, otherwise
the first assignment determines the output base.

-1 All upper-case characters converted to lower-case. The upper-
case flag, —u is turned off.

—p, The output of this command, if any, is written onto the two-
way pipe

—r The given names are marked readonly and these names cannot be
changed by subsequent assignment.

—t Tags the named parameters. Tags are user definable and have no
special meaning to the shell.

—u All lower—case characters are converted to upper—case
characters. The lower—case flag, —l is turned off.

‘ —x The given names are marked for automatic export to the
environment of subsequently executed commands.

Using + rather than — causes these flags to be turned off. If no
name arguments are given but flags are specified, a list of names

fF\ (and optionally the values) of the parameters which have these
flags set is printed. (Using + rather than — keeps the values to be
printed.) If no names and flags are given, the names and attributes
of all parameters are printed.

ulinit [—cdfnpt] [n]

—c imposes a size limit of n blocks on the size of core dumps (BSD
only).

—d imposes a size limit of n blocks on the size of the data area
(BSD only).-f imposes a size limit of n blocks on files written by child
processes (files of any size may be read).

+n imposes a soft limit of n blocks on the size of physical memory
(BSD only).

Page 25 (printed 8/14/88)

514(1) HNIX V $H(1)

—p changes the pipe size to n (UNIX/RT only).
—t imposes a time limit of n seconds to be used by each process

(BSD only).

If no option is given, —f is assumed. If n is not given the current
limit is printed.

unask [nnn]

The user file-creation mask is set to nnn (see umask(2)). If nnn is
omitted, the current value of the mask is printed.

r\\ umalias name ...
The parameters given by the list of names are removed from the
alias list.

~ unset [—f] name ...
/*~ The parameters given by the list of names are unassigned, i. e.,

their values and attributes are erased. Readonly variables cannot
be unset. If the flag, —f, is set, then the names refer to function
Il&IIl€ S .

wait [n]

Wait for the specified process and report its termination status.
If n is not given then all currently active child processes are
waited for. The return code from this command is that of the
process waited for.

whence [—v] name
For each name, indicate how it would be interpreted if used as a

command name.
The flag, —v, produces a more verbose report.

Invocation.
€:\ If the shell is invoked by exec(2), and the first character of argument

zero ($0) is —, then the shell is assumed to be a login shell and
commands are read from /etc/profile and then from either .profile in the
current directory or $HOHE/.profi1e, if either file exists. Next,
commands are read from the file named by performing parameter

5 substitution on the value of the environment parameter ENV if the file
exists. Commands are then read as described below; the following flags
are interpreted by the shell when it is invoked:

—c string If the —c flag is present then commands are read from string.
—s If the —s flag is present or if no arguments remain then

commands are read from the standard input. Shell output,
except for the output of some of the Special commands listed
above, is written to file descriptor 2.

—i If the —i flag is present or if the shell input and output are
attached to a terminal (as told by gtty(2)) then this shell is
interactive. In this case TERMINATE is ignored (so that kill 0
does not kill an interactive shell) and INTERRUPT is caught and
ignored (so that wait is interruptible). In all cases, QUIT is

Page 26 (printed 8/14/88)

5H(1) HNIX v SH(1)

ignored by the shell.
—r If the -I flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command

above.

Rsh Only.
Rsh is used to set up login names and execution environments whose

capabilities are more controlled than those of the standard shell. The

actions of rsh are identical to those of sh, except that the following
are disallowed:

/\~ changing directory (see cd(l)),
 setting the value of SHELL or PATH,

specifying path or command names containing /,
redirecting output (> and >>).

/*~ The restrictions above are enforced after .profile and the ENV files are
interpreted.

When a command to be executed is found to be a shell procedure, rsh
invokes sh to execute it. Thus, it is possible to provide to the end-
user shell procedures that have access to the full power of the standard
shell, while imposing a limited menu of commands; this scheme assumes
that the end-user does not have write and execute permissions in the same

directory.

The net effect of these rules is that the writer of the .profile has
complete control over user actions, by performing guaranteed setup
actions and leaving the user in an appropriate directory (probably not
the login directory).

The system administrator often sets up a directory of commands (i.e.,
/usr/thin) that can be safely invoked by rsh. Some systems also provide

‘ix a restricted editor red.

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell to
return a non-zero exit status. If the shell is being used non-
interactively then execution of the shell file is abandoned. Otherwise,
the shell returns the exit status of the last command executed (see also
the exit command above).

FILES
/etc/passwd
/etc/profile
$HOME/.profile
/tmp/sh*
/dev/null

SEE ALSO
cat(l), cd(l), echo(l), emacs(l), env(l), gmacs(l), newgrp(l), test(l),
umask(l), vi(l), dup(2), exec(2), fork(2), gtty(2), pipe(2), signal(2),

Page 27 (printed 8/14/88)

SH(l) HNIX V SH(l)

umask(2), ulimit(2), wait(2), rand(3), a.out(5), profile(5), environ(7).

CAVEATS
If a command which is a tracked alias is executed, and then a command

with the same name is installed in a directory in the search path before
the directory where the original command was found, the shell will
continue to exec the original command. Use the -t option of the alias
command to correct this situation

If you move the current directory or one above it, pwd may not give the
correct response. Use the cd command with a full path name to correct
this situation.

Some very old shell scripts contain a “ as a synonym for the pipe
character I.

Page 28 (printed 8/14/as)

Aug 28 02:39 1988 ENHANCED Page 1

Ksh enhancements by Goran Larsson

E001 25-jun-1988
Single filename expansion in EMACS/GMACS mode.
ESC ESC will fill in as much as is possible of
the filename. A beep indicates incomplete filename.

E002 26-jun-1988
Runaway limit. Quick repeat of CR caused garbage
to appear due to switching raw/cooked. Fixed.

"‘o3 26-jun-1988
A

It is now possible to go below the last saved command
in the history list. In other words, you may go
back to the empty line that you had before you started
to climb the history list.

rm
E004 26-jun-1988

The option quiet. "set -o quiet" mutes the beep produced
during single filename expansion (E001). "set +0 quiet"
brings it back again.

E005 04-aug-1988
Builtin "exit" is illegal for login shell.
Builtin "logout" is used to logout from login shell.
Reversed for children.

E006 04-aug-1988
The builtin command "jobs" returns number of jobs
as it's exit status.

E007 04-aug-1988
/etc/ksh/profile and ~/.profile executed at login.‘:‘ /etc/ksh/unprofile and ~/.unprofile executed at logout.

E008 27-aug-1988
The builtin variable TTY is set to the terminal name
when the shell starts. The TTY variable is not the same

/“\ as the terminal name returned by ttyname() just after
\ logging in. The following example shows the difference

in a window system:

login tty = console TTY = wtty0l for first window
login tty = console TTY = wtty02 for second window
login tty = console TTY = wtty03 for third window

The history file name is now built by the following
algorithm:

if HISTFILE is undefined then
name := HOME + "/.hist_" + TTY

else
name := HISTFILE + TTY

Aug 28 o2;39 1988 ENHANCED Page 2

endif

This change prevents history files from being corrupted
when ksh is started from a window system or an user is
logging in on several terminals at the same time.

E009 27-aug-1988
Named parameters (variables) and functions that has a

name that starts with two underscores are not displayed
by the ‘set’ and ‘typeset’ builtins. This makes it
possible to have hidden global variables in shell
procedures.

/"~

/\

/\
k

r\

Sep 3 17:56 1988 KSH.1ist Page 1

KSH/
KSH/etc/
KSH/etc/ksh/
KSH/etc/ksh/dirstack
.KSH/etc/ksh/environment
KSH/etc/ksh/profile
KSH/etc/ksh/timezone
KSH/etc/ksh/unprofile
KSH/etc/sh/
KSH/etc/sh/profile
KSH/etc/sh/timezone
KSH/etc/csh/
KSH/etc/csh/login
KSH/etc/csh/logout
KSH/etc/csh/timezone
KSH/root/
Kf'\root/:.profile
KSu/root/:.environment
KSH/anybody/
KSH/anybody/:.environment
KSH/anybody/:.profile
K7'“bin/
KSn7bin/ksh

C

