
¢"\ -

Q["15g=—;s*:\|;_~.:\F14|‘1?*1-:-1I1151‘‘*[41

\§"""CD\OCC"\lCF\c-"'a"CrJr\3'”*C:J”~O\I\“Jcr"C)1'&'¢4*JP\§*"

*4¢~+'C3Z

Ll-

23

24

25

26

27

Jul 29 09:27 1985 win_cwds.doc Page 1

This file contains descriptions of the window utility commands.

l. wopen

This connand creates a new window with the status of a teruinal and

executes the connand given as argunent in it (if no cownand is

specified, a shell is executed).

The syntax is:

wopen [~nctbwz] (~c <n>] [—r (n>l f-h <n>] [—w <n)] [-x <n)]

[-y <n>] [-f (cl) [—s <n>] [-e (n>) [(connand>]

Explanation of the options;
b

w

>-<€I::1""“*r."'>

- Black window.

- White window (this is the default).
- No window border.
— Single (one) line window border.

~ Double (two) lines window border (this is the default).
- Zoon box shall be present in the border.

- Number of character columns in the window (default 80).

- Nunber of character rows in the window (default 24).

- height of window in pixels.
- width of window in pixels.
— x coordinate of the lower left corner of the window (default 24

in portrait node and 152 in landscape node).

28 y ~ y coordinate of the lower left corner of the window (default 344

29 in portrait node and 216 in landscape node).

30 f
31 s

32

33 e

34

35

36

37 2.

so"“ 39

to
41

42

43A 44

45

r" 46 1

47

48

49

50

Si

- The default font to be used (default ’A’).
- Signal to be used to signal that the window has moved, etc.

(default 0).
- Signal to be sent when the close box is used. If not zero, a

close (exit) box will be present in the border (default 0).

Hhead
u-an-._—-u--pun-

This counand inserts a header in a window.

The syntax is:

whead [-i] [-t] [(header)]

Explanation of the options:

t
- invert the header.

- Invert the top header.

If no header is given, the present header will be removed.

52 3.

53

54

55

56

57

S9

60

61

62

Hicon

This connand sets up an icon in a window.

The syntax is:

58 wicon [-prielnqszt] [~x (n>] [-y (n>] [-w <n>] [-h (n)]
[(sequence>]

Explanation of the options:
b ~ Send icon sequence when left wouse button is pressed (default).

Jul 29 09:27 1985 win_cmds.doc Page 2

63

64

65

66

67

68

69

70 s

71 z

72 t - The coordinates and sizes are supposed to be given in character

73

.1213!--'r|:I-'-"~:

74 x

I

78 w

;-\ 79

80

Bl

B2

83

86

87

38 T

B9

90

91

92

93 5.

94

95

96

97

98

99

l==¢l<*—1P1I4‘)-Al""l|-4O--ll§-.4

herd»-.-r->Q;'"cs

POIr--*5:)‘-OCO\J

Y‘

:-

-

gag

O

113

ll4
T

1

D3

115

-16

B0

Bl

82

B4

Z5

I

l.l7
ll8
ll?
120

121

122 7. Htop

123

124

h

- Send icon sequence when left mouse button is released.

- Invert the icon when the mouse pointer points to it.
- Send the icon sequence when we enter the icon area.

* Send the icon sequence when we leave the icon area.

- Remove the icon after the icon sequence has been sent.

- Only send the icon sequence if there is a pending read request

on the window.

- Check if option e or l is fulfilled upon set up.

- Only send the icon sequence if it is the iewel zero window.

box units.
- The x coordinate of the lower left corner of the icon

default 0).75 (

76 v - The r coordinate of the lower left corner of the icon

77 '(default 0).
- The width of the icon (default 100).

- The height of the icon (default 100).

(sequence> is the icon sequence to be sent when the icon is chosen.

r'~\ 34 4.

85

Rnicons

This conmand removes all icons in a window.

he syntax is;

rmicons

wzoom

This command sets up a zoom list for a window.

The syntax is;

wzoom [<zoomlist)]

<zoomlist> is a string of capital letters indicating the fonts which

the zoon list shall consist of. If no (zoomlisti is specified, any

existing zoomlist is removed.

6 6. Hfont

This command changes the default font for a window.

The syntax is;

wfont [-x (n>] [-r (n>] [(font>]

Explanation of the options:
X

Y

- The x coordinate for the middle visible character (default 1).
- The y coordinate for the middle visible character (default 1).

(font) is a single capital letter specifying the nee font.
If no (font) is specified, the next font in the zoom list for the

window is used instead. s

-1 --e -""

Jul 29 09:27 1985 win_cmds.doc Page 3

125 This command noves a window to the top level.

126 The syntax is:
11‘)?-‘i-Li

128 wtop

129

130

131 8. Nb?

132 :=:
133 .

134 This command reads the file specified as argunent and uses the data to

135 set up a new background pattern for the window handler. It supposes

136 file descriptor 3 to he the window handler "super" channel.

137 The syntax is:
138

139 whg [-
140

141 where the ’-n’ option shall be used if no error messages shail be

142 displayed.
143 If ‘file’ is not specified, the standard input is read instead.

144

145

Z3

I---I

F’_"\

-'"‘\.

--n
5.4.

P-no-J

('13

‘awe’

I-Q-I

¢'~\ 146 9. Hush

h 163

-67A zae

147 ::::
148

149 This command reads the file specified as argument and uses the data to

150 set up new mouse substitute keys for the window handler. It supposes

151 file descriptor 3 to be the window handler "super" channel.

152 The syntax is:
153

154 wmsk [—n] [(file>]t
155

156 where the ’-n’ option shall he used if no error messages shall be

157 displayed.
158 If ’file’ is not specified, the standard input is read instead.
E59

l60
161 10. Hmp

L52 :::

164 This command reads the file specified as argument and uses the data to

£65 set up a new global mouse pointer for the window handler. It supposes

166 file descriptor 3 to be the window handler “super” channel.

1 The syntax is:
T

T
>

169 wmp [-n] [<file>]
1

-70

171 where the ’-n’ option shall he used if no error messages shall be

172 displayed.
173 If ‘file’ is not specified, the standard input is read instead.
£74

175

176 11. Nidtp
177 :::::
178

179 This command reads the file specified as argument and uses the data to
180 set up new initial driver and terminal parameters for the window

181 handler. It supposes file descriptor 3 to he the window handler

132 “super” channel.
183 The syntax is:
184

185 widtp [-n] [<file>]
136

¢—~\ 2t

/"\ Q

<--I

£23
;.....¢

PO

‘~43

C2)
343

1‘-J
5,4

9....

'~.,Q

C0

(J1

r
T

200

261

29

26

28

26

197
l98
99

U'~(;J1-82'»-¢_,.,1I‘\D

29

PQ1-P0pgl'\>pgP0I‘-J

n»)l“_‘lpg11*|———\1?‘Q4-1

in

qr-.cJ1.;;>.L»|r\>!--erg"-4‘.2r'II\23-._|

217

218 Explanation of the options:
219 p - first output a header parameter.

220 x — x pixel coordinate of the lower left corner of the rectangle to

221 read (default 9).
9

win_cnds.doc Page 4

187 where the ’-n’ option shall be used if no error messages shall be

l88
£89

E90

191

l92 l2. Hshdis

L93

194

195

196

displayed.
If ‘file’ is not specified, the standard input is read instead.

This connand is the reverse of the window shell preprocessor. It
produces a text file frou a file produced by wshpp which can be

modified and then processed by wshpp again.
The syntax is:

wshdis [<infile)) [—o <outfile>]

where ’infile’ is the input file (default ’.window’) and ’outfile’ is
the output file (default standard output).

13. Hpictrd

This conuand reads a rectangle of the picture nenory for a virtual
screen or the whole screen and writes an optional paraneter header

followed by the binary data to the standard output. The paraneter

header is the wpictblk structure (see the w_structs.h header file).
The syntax is:

wpictrd [-p] [-x (nil (-y <n>) [-w (n>] [-h <n)] [-c (n>]

[-o (file)]

- Y pixel coordinate of the lower left corner of the rectangle to222 7

223 read (default 0).
224 w H- idth in pixels of the rectangle (default 100).

225 h - Height in pixels of the rectangle (default 100).

226 c - The file descriptor (channel) to read the data through

227 '(default 0, i.e. standard input).
228 o - The nane of the output fiie. If not specified, the output is

23 l

229 written to the standard output.
30

232 14. Hdsize

233

234

235 This conoand sets up a new default size and location for a window. If
236 no argunents are specified, the current size and location of the

237 window will become the default one.

238 The syntax is:
239

240 wdsize [-t] (-x (n)] (-y <n)] [-u (n)] [-u <n)] [-w (n)]
241 ("h (n)]
242

243 Explanation of the options:
244 “t - The parameters are given in units of font boxes.

245 x - The lower left corner of the virtual screen (x coordinate).
246 Th

247

248

<'.§=~<

- e lower left corner of the virtual screen (Y coordinate).
- The lower left corner of the window (x coordinate).
- The lower left corner of the window (r coordinate).

--v
-’ "-

Jul 29 99:27 l9B5 win_cnds.doc Page 5

249 w - Hidth of the window.

250 h - Height of the window.

251

252

253 15. Hhelp

254

255

256

257

258

259

260

261

/'8

/"\

)*‘\

!'“\

This command changes the sequence sent when the help box is used

The syntax is:

uhelp-[<sequence>]

No sequence will be sent if (sequence) is not given.

r"\

Aug 5 19 12 1985 wh_escapes.doc Page 1

‘I

1 .ii
9

F

F

Q

-‘a

lib
J

1985-07-29

ABCIBUU WINDOW HANDLER ESCAPE SEUUENCES

This documentation briefly describes all the escape sequences

implemented in the window handler. There are two types: VT1C0

and/or Facit Twist compatible sequences and sequences private
to the ABC1600.

The sequences are, if possible, compatible with the ones used

in the ABCIBCO terminal emulator (the console).

1. VT100 and Facit Twist Compatible Escape Sequences
anon-n_—nn-pa-unn-Q-nun-——__—-0—__————au__—_—un——-o—nauo__-u____-nu;-an-Q-n-nu-¢___|n|-—_-n_nn-n-|-n-on--unaun--nun-‘--as--Q--u_|__nnu-an_—-nunq

fF"\ 17 .1.1 Cursor Up

18
-P.

J. 9

20

21

22

23

24

25

26

27 1.2 Cursor Donn

28

29

30

31

32

33

34

35

36

37 1.3 Cursor Forward

38

"'“‘ as

46

41

42

as

5‘ 44

45

46

47

48

49

50

51

52

53

54

S5

56

57 1.5 Cursor Position
58
Q0u .-"

60

61

62

-n—_-nu-———_u-anu---p--n-n

ESC[(Pn)A

Moves the text cursor (Po) lines up. The cursor stops at the top

margin. If (Pn> is zero or not present, the cursor is moved one line
upwards.

ESC[(PnlB

Moves the text cursor (Pn) lines down. The cursor stops at the

bottom margin. If (Pn> is zero or not present, the cursor is moved

one line down.

ESC[(Pn)C

Moves the text cursor (Po) positions to the right. The cursor stops

at the right margin. If (Po) is zero or not present, the cursor is
moved one position to the right.

1.4 Cursor Backward
-|———q|e-use-n—uu_cn-—-n
nur--on---1-un—¢n——a--n—

ESC[(Pn)D

Moves the text cursor <Pn> positions to the left. The cursor stops
at the left margin. If (Pn) is zero or not present, the cursor is
moved one position to the left.

___———u¢cn——n-suonncnancuuoqn-_—_———_-—

ESC[(Pn);(Pn)H or £SC[(Pn);(Pn)f

Moves the text cursor to the position specified by the parameters.

an

Aug 5 19:12 1985 uh_escapes.doc Page 2

63

64

65

F

I

Iii‘

Q

_

ff
1 1

F

an

IE

"~\ 106

107

138

109

66

67

The first parameter specifies the line position and the second the

column position. If a parameter is 0 or not specified, the cursor

is moved to the first line or column.

68 1.6 Set Top and Bottom Margins

69

70

71

72

73

74

75

76

77

78

/"\ 79

B0

Bl
32

33

r"\ 84

85

86

37

88

89

90

9l 0

92

93 1

94

95 2

96

97

98

99

1

.C0 l 8

7'-\ ‘C1

e~

CJ'l-b-C»~||"-D

1

115

116 This escape sequence does not change the current text cursor position
l7

118

119 1.9 Index

128

121

122

123

124

-sauna-naqnncuun-uoupnqnum-nun.-u-sauna-puns-nun
--on-u-nun-up_--n-nnqna-qancoaan-aqnq-——_qp—

ESC[(Pn>;(Pn>r

Sets the top and bottom margins for the scrolling region. The first
parameter is the line number of the first line in the scrolling
region and the second the line number of the bottom line. If no

parameters are specified, the scrolling region is set to the entire
virtual screen. The minimum size of the scrolling region is two

lines. The cursor is placed in the home position.

1.7 Erase in Display

ESC[(PS)J

Erase some part of or the entire virtual screen according to the

parameter.

Parameter Meaning

Erase from and including the current text cursor
position to the end of the scrolling region (default)
Erase from the start of the scrolling region to
and including the current text cursor position.
Erase the whole scrolling region.

This escape sequence does not change the current text cursor position

. Erase in Line

ESC[(P5>K

Erases some part of or the entire line where the text cursor is
positioned according to the parameter.

Parameter Meaning

Erase from and including the current text cursor- 0 0

111 position to the end of the line (default).
112 1 Erase from the start of the line to and including
113 the current text cursor position.
114 2 Erase the entire line.

1---n—_---na-

ESE D

Moves the text cursor one line downward mithout changing the column

~n_-

Aug 5 19:12 1985 wh_escapes.doc Page 3

125 position. If the cursor is at the bottom nargin, a scroll up is

126 performed.

127

128

129 1.10 Next Line
13g :::::::::
131

132 ESE E

133

134 Moves the text cursor to the first position on the next line downward.

135 If the cursor is at the botton nargin, a scroll up is perforned.
136

137

138 1.11 Reverse Index
139 :::::::::::::
7‘-48

;*~\ 141 ESC H

142

143 Moves the text cursor one line upward without changing the colunn

144 position. If the cursor is at the top margin, a scroll down is
145 performed.

4/"\ 1 6

{'77 168

147

148 1.12 Save Cursor
149 :::::::::::
150

151 ESC 7

152

153 Saves the current text cursor position, graphic cursor position,
154 graphic origin, character attributes, and character font.
155

156

157 1.13 Restore Cursor
158 ::::::::::::::
159

160 ESE 8

161

162 Restores all things saved by the Save Cursor sequence to the state
163 when the Save Cursor sequence was last used. If no Save Cursor

164 sequence has been sent to the window the text cursor, graphic cursor,
165 and graphic origin are set to their hone positions.
166

167

1.14 Reset to Initial State
159 ::::::::::::::::::::::
170

171 ESE c

172

173 On a V1100 teruinal this sequence resets it to its initial state.
174 To siuulate this in a window, the following things are performed

175 when this sequence is received;
176 - The text cursor is put at its houe position.
177 - The graphic cursor is put at its hone position.
178 - "he text cursor apperance is set to the default.
179 - *he Set Mode - Reset Mode flags are set to their default values.

180 - The character attributes are set to their default values.
181 — *he top and botton uargin of the scrolling region are set to the

182 the top and button line of the virtual screen.

183 - The graphic origin is set to the lower left corner of the virtual
184 screen.
185 - Tab stops are set to the default.
186 - The graphic pattern tables are set to their default values.

Aug 5 19 12 1985 uh_escapes.doc Page 4

T

T1

fr
fr

rt’

I

137

194

195

196

19

199

7
1

199

2G0

2C1

91"
L.

;F‘\ 20

20

20

PO

1

‘J-

F

1

1'»

PQPQPQPQIQPQPOPQPOPOPQPO

1|“‘\|.;JIii‘FM‘I“*@111C3Q; _

CI"-c,,n-l>-row--¢;;>~or.:o\;cr~<m-r=~c,~1r..>CA\.|

‘I

1

1‘- 8

219

220

22

222 ESC[<Ps>;(Ps>;....;<Ps>n
223

1

~ The current font is set to the default font for the window.

- The uhole virtual screen is cleared.-88

189 - All the LED’s on the keyboard are turned off.
120

191

192 1.15 Tabulation Backward

I93

ESClZ

Moves the text cursor left to the next tab stop. The cursor stops at
the left margin.

1.16 Horizontal Tabulation Set

ESC H

Set a horizontal tabulation stop at the current text cursor position

1.17 Tabulation Clear

ESC[(PS)g

If (Psl is 0 the horizontal tab stop at the current text cursor

position is cleared (default).
If (Ps) is 3 all horizontal tab stops are cleared.

1.18 Character Attributes

224 Set or reset character attributes according to the paraneter(s):
225

9

226 Parameter Meaning

227

228 0 Attributes off.
229 1 Bold or increased intensity. On the ABC1600 this has

230

231 4

232 5 Blink. On the ABC1600 this has the sane effect as the

the sane effect as the reverse character attribute.
Underscore.

233 reverse character attribute.
234 7 Reverse.

235

236

2

239

240

241

242 Request to get a report of the specified status. The status is

'7

I

237 1.19 Device Status Report

38

ESC[<Ps);(Ps);...;(Ps>n

243 deteruined by the paraueter(s).
244

245 Paraaeter Meaning

24a

247 6 Report the text cursor position. The report sequence

248 is ESC[<Pn);<Pn>R where the first parameter

A 2

Aug 5 19:12 1985 wh_escapes.doc Page 5

2&9 specifies the line and the second the colunn.

250 l
251 compatible with the Facit Twist terninal. The report

'2 Report Portrait/Landscape screen node. This is

252 sequence is ESC[?Pn for portrait node and ESC[?Ln

253

254

255

256

257

258

for landscape node.

1.20 Load LEDs

258 ESC[<Ps>;<Ps>;...;(Ps>q
260

261 Loads the eight programmable LEDs on the keyboard according to the

262 paraneter(s). ,

263

264

,-\ 265

266

267

268

269

/-\ 270

271

272

273

274

275

Parameter Meaning

0O~\|CI‘~¢;|-B-¢,4l‘-J»--€

Clear LEDs 1 through 8.

Light LED l.
Light LED 2.

Light LE8 3.

Light LED 4.

Light LE) 5.

Light LED 6.

Light LE8 7.

Light LED 8.

276 The default value of the parameter is 8.

277 Note that the status of the keyboard LEDs always reflects the LED

278 status for the top level window.

279

280

281 1.21 Set Mode

282

283

uuunouucqaop
_¢-~41-pupa.-on

284 E$C[(PS);(PS);...;(PS)h
285

286 Sets the nodes specified by the paraneterlsl. The different nodes

288

87 are:

289 Paraneter Meaning

290

291 20 Line feed new line node. when set causes the LF key

292 to imply wovenent to the first position of the

293 following line and causes the RETURN key to send both

294
Q "7
I

CR and LF.

Screen node. when set the window is inverted.2 5 5 -

296 26 Origin node. Hhen set the hone position for the

297 text cursor is at the upper—left position of the
298 scrolling region.
299 ?7 Auto wrap node. when set, the text cursor will advance

300 “
301 232

382

CA¢,~|¢.»l<;,q<.»l

*-lcr-.CJ'I.;>.C»l

368

309

310

to the next line when it reaches the right margin.
Page node, i.e. the window does not scroll. This is
conpatible with the Facit Twist terminal. 9

?33 Underline cursor. This is compatible with the Facit

?34

?35

Twist terminal.
Blinking cursor. This is compatible with the Facit
Twist terwinal.
Cursor off. This is compatible with the Facit Twist
terminal.

;"\ 3

3

i
.1-

Aug 5 19:12 1985 wh_escapes.doc Page 6

3311

312

313

314

315

316

319

3

32

20

321 20

2 to imply only vertical movement of the text cursor and

323

324 ?5 Screen node. when reset the window is not inverted.

334

Q.-Q

PC

|“\>

Reset Mode

ESC[(Ps);(Ps);...;(Ps)l

Resets the nodes specified by the paraneter(s). The different nodes

317 are:
318

Paraneter Meaning

Line feed new line node. when reset causes the LF key

the RETURN key to send the single code CR.

325 ?6 Origin node. when reset the text cursor hone position
Shb°' is at the upper—left position of the virtual screen.

27 :7 Auto wrap node. when reset, the text cursor will
28 not advance to the next line when it reaches the right

nargin.329

330 ?32 Scroll node. This is compatible with the Facit Twist

331 teruinal.
° ? Reverse block cursor. This is coapatible with the

3 Facit Twist terminal.

335

333 ?35 Cursor on. This is compatible with the Facit Twist

33? terniuai.

!"\ 33c 33

3'3
?34 Non-blinking cursor. This is compatible with the Facit

Twist terninal.

333

339

.t no i i --3 C

La

..»-I

M

I-I

I‘-

346

‘F’!-
~.-ct},

0

we-12%

~|i‘~Q

347

348

349

350

J

"“ 354

ass

asa

l .7I‘,\ Select Ctara:ter Set
--»--~,-»._¢._»-~-.--»---=-_.-m»~,-u--~<~---»---~_----.-~-aaw----»--.-

43 Eih or ESCFA

344 escte or cscla
345

ESC(Z or ESB)Z

Selects the desired font. when changing between fonts of different
351 sizes, the fonts will be aligned so that the base lines of the fonts
352 will be the sane.

353 Note that when the font is changed for a window, the saving of the

text contents of the window will be lost.

357 2.
358

359

360

361 2.1

362

366

367

368 ’

369

379

AS81600 Private Escape Sequences
-nuaupcn-o_-__-cyan.‘--nu-up-Q-—___-unucun-----_--a-n-un->--_---_---------—--_

Draw Line

363

364 ESC:{x);(r);(pno);<cno)d
365

Draws a line from the current graphic cursor position to <x),(y),
using the pattern specified by (poo). If the colour nuwber (coo) is
1’ a normal line is drawn and if it is ‘O’ or not specified the line

is the inverse of that obtained with the colour number ’1’. If (pno)

is not specified, a continous line is drawn.

371 The graphic cursor position is updated to <x),<r).
372

Aug 5 19:12 1985 wh_escapes.doc Page 7

J

373

374

’75
376

377

378

379

380

381

382

38

384

385

336

387

388

3

"‘\ 389

390

391

392

393 2.4 Draw Point
/"\ 394

395

396

2.2 Draw Inverted Line

ESC:(X);(¥)i

Draws a line from the current graphic cursor position to (x),(r) by

inverting the corresponding pixels. The line can be renoved by drawing

an inverted line a second tine.
The graphic cursor position is updated to (x),(y).

2.3 Hove Graphic Cursor

ESC:(x);(r)n

Positions the graphic cursor at (x),(r).

ESC:(x);(r);(op);(cno)p
397

398 Changes or reads the pixel at (x),(r). (op) determines the operation:

399

4U

4

4

4o

415

DE

37

U3

39

4i
”~\ 416 2 5

4C0

411
|

Hi

D

V

r

V

r

-D-c;_4,§|I‘\J

T4.0
"_\ 411 2.

4i2
4

(II-3="C.nl

417

418

419

420

421

42

423

424

425

426

427 ‘D’ or not specified the arc is the inverse of that obtained with the

428

429 The graphic cursor position is updated to the last drawn pixel in the

430 a.c

43

2

1

432

433 2.6 Draw Inverted Arc

434

If (op) is D or not specified, set the pixel.
If (op) is 1, clear the pixel.
If (op) is 2, conplenent the pixel.
If (op) is ID, the colour of the pixel at (x),(r) is reported:

ESE (x);(y);11;(cno)p (cno) is ’1’ if the pixel is
set, otherwise ’D’.

ESC:(x);(y);1lp The specified pixel is outside
the virtual screen.

The graphic cursor position is updated to (x),(y) if (op) is D, 1, or

Note that (cno) is not used for (op) equal to D, 1, 2, or 10 and nay

be left out.

. Draw Arc

ESE:(x);(r);(len);(pno);(cno)a

Draws a circle arc with the origin at (x),(r) fron the current graphic
cursor position counter-clockwise with length (len) using the pattern
(pno). If (pno) is not specified, a continous arc is drawn.

The length (len) is the number of vertical and horizontal pixel steps,
i.e. a full circle is drawn when (len) is S * circle radius.
If the colour nunber (cno) is ’l’, a norual arc is drawn and if it is

colour nunher '1‘.

ov-

-_¢u__va———_—qp|-—q---_—u-_—__@_——__—_—_

~.. a-u qr

Aug 5 19 12 1985 wh_escapes.doc Page 8

439

440

441 The

442 i.e. a full circle is drawn when (len> is 8 * circle radius. ‘

443

444 arc.

445

445

447 2.7 Fill Area

448

449

450

435 D

436 ESC:(X);(Y>;(lehll
437

38 Draws a circle arc, with the origin at (x>,(y>, from the current
graphic cursor position counter-clockwise with length (len) by

inverting the corresponding pixels.
length (len> is the number of vertical and horizontal pixel steps,

The graphic cursor position is updated to the last drawn pixel in the

ESC:(x>;(y>;(pno>;(cno>f

!"\ 451.

.-

_,/4

458

459

460 4

461

462 2.8 Draw Filled Circle
453 ::::::::::::::::::
464

465 ESC:(x>;(v);(rad>;(pno>;(cno>c
466

467

468

469 circle are set.
470

471 ‘D’ or not specified, the circle is the inverse of that obtained with
47..

*7‘ 47"

486

487

488 “goes around corners‘. If (pno> is not zero the paint does not “go

489 around corners“.
49D If the colour number (cno> is ’1’ a normal paint is done and if it is
491 ‘D’ or not specified, the paint is the inverse of that obtained with
492

493

494 Note that since paint works directly with the graphic memory,

496

452 Fills a rectangle with the pattern (poo). If (poo) is not specified,
453

454

455

/'"\ 456

457

all pixels in the rectangle are set.
The rectangle has one of its corners at (x>,(v) and the opposite
corner at the current graphic cursor position.
If the colour number (cno) is ‘l’, a normal fill is done and if it is
‘O’ or not specified, the rectangle is the inverse of that obtained
with colour number ‘I’.
The graphic cursor position is updated to (x>,(r>.

Draws a filled circle with origin at (x>,(v> and with radius (rad)
using the pattern (pnot. If (pno> is not specified, all pixels in the

If the colour number (cno> is ’1’, a normal fill is done and if it is

° colour number ‘1’.
o The graphic cursor position is updated to (x>,(y).

474

475

476 2.9 Paint Area

477

*7) are

no

no»--—-pa--p-u-__—_-—nn__

. ESC:(x>;(v>;(pno>;(cno>F
480

48l
482 be limited by continous lines (curves) generated by previous line,
483 dot, circle, fill, paint, etc. operations.
484

Paints an area with the pattern (pno>. The area to be painted should

(x>,(y> specifies the starting point for the paint and should be

85 within the area. If the pixel at (x),(y> is cleared, the limits of
the area are supposed to consist of set pixels and vice versa.
if (pno> is ‘D’ or not specified, the area is painted completely and

colour number ’1’.
The graphic cursor position is updated to (x>,(y).

85 different results may be obtained if the window being painted is
overlapped by another window or not.

fF‘\

T
-

Aug 5 19:12 1985 wh_escapes.doc Page 9

497

1 498

499 2.10 Home Area

SQQ :::::::::
531

582 ESC:(xsrc);(ysrc);(xdest);(rdest);(width);(height);(op)r
SC}

584 Moves (actually copies) the rectangular area with lower left corner

505 at (xsrc),(ysrc) to (xdest),(vdest). The area has width (width) and

506 height (height).
507 If the operation (op) is ‘C’ or not specified the area is moved

508 (copied) as it is, and if it is ’1’ the area is complemented.

589 The graphic cursor position is not updated.

510 Note that only those areas where both the source and destination areas

511 are visible are moved.

512

513

514 2.11 Define Pattern
Sl ::::::::::::::
516

517 ESC:(pno);(hmask);<vmask);(shift);(op)R
;r~\ 518

"A sss

519 Redefines the pattern (pno) as specified. The pattern is defined for
520 portrait mode and will be tilted 90 degrees when used in landscape

521 mode.

522 (hmask) defines a 16 bit horizontal mask used repeatedly on a scan

523 line during fill or when drawing lines or arcs.
524 (vmask) defines a 16 bit vertical mask where each bit determines the

525 operation on the corresponding scan line. If a bit is set (hmask) is
526 used to fill the scan line, otherwise (op) determines the operation:
52?

528 (op) = 0 Clear the line, rotate (hmask) the number of bits
529 given by (shift).
530 (op) = 1 Set the line, rotate (hmask) the number of bits
531 given by (shift).
532 (op) = 2 Use (hnask) but complemented, rotate thmask) the

533 number of bits given by (shift).
534 (op) = 3 Leave line as it is, rotate (hmask) the number of bits

given by (shift).

%

sac (op) =

537 (op) I
538 (op) =

539 (op) =

540

--.__|lCJ'-¢;\-lb

Clear the line, no rotate.
Set the line, no rotate.
Use (hmask) but complemented, no rotate
Leave line as it is, no rotate.

552

ss

541 (pno) can be in the range 1 - 15. Pattern number zero can not be

542 redefined.
543 (shift) can be in the range 0 - 15.

544 Only (hmask) is used by the draw line and draw arc escape sequences.

T

545

1 546

547 2.12 Set Text Cursor
548 :::::::::::::::
549

550 ESC:(5el)H
551

The text cursor is positioned at the position of the graphic cursor
3 according to (sel):

554

555 (sel) = O The upper left corner of the font box is placed at the
556 i graphic cursor.
557 (sel) = 1 The lower left corner of the font box is placed at the

558 graphic cursor.

Aug 5 19:12 1985 wh_escapes.doc Page 10

S59

560

561

56c

563

564
'-

5o5

566

567

568

569
570

571

574

K-\ 575 (SE1)

57o
J‘

577

S78

579

;-, 580

581

582

583

584

585

586

S87

588

589

590

591

592 (sel)
593

594

595

5%

""‘ 597

see

599

600

601

"'\ 502

603

694

6C

Er

5@

El

61

1:?»

0

6-
f -

BC

6C

*7

A‘-

€.'O‘~J4‘-.C)‘\

l 1

1

no

CHcr-.l.'J"-gr-.gr».cr-.CW-

|\)IIF”rAls:-1|<~1l==‘ AH

CI)~43DD'\,|Cf'~Q1-11%»(,4I‘-J|---L.)

(sel) = 2 The left edge of the base line for the font box is
placed at the graphic cursor.

° Note that when this escape sequence is sent to a window, the saving of
the text contents of the window will be lost.

Pa)

g-4

CAI

ESC:<Sel)H

House Report
-unna-
noun-nun

This escape sequence is used to get a report of the current nouse

S72 pointer position. The report is, depending on (sel), only sent when

573 the nouse pointer or the nouse buttons have changed.

r 7 The report is sent iwnediately if the nouse has

changed since the last report. Otherwise the report
is sent as soon as the nouse changes. A change is
either a uouse novenent or a status change of a nouse

button.
The report sequence is:

ESC:(x);(y);(buttons)P

where (x) and (v) is the position of the mouse

pointer. If the noose pointer is outside the virtual
screen, the reported position will be at the virtual
screen border.
(buttons) is ‘l’ if the left button is pressed, ‘Z’ if
the niddle button is pressed, *3’ if both the left and

middle buttons are pressed, and ‘O’ if no button is
pressed.

= 8 Identical to (sel) = 7, except that reports are only
sent when the left or middle buttons changes.

Note that mouse reports are only sent to the top level window.

2.14 Device Status Report

ESC:(sel)n

Reports the status of different devices, determined be (sel):

(sel) = 1 Reports the graphic cursor position. The report
sequence is:

ESC:(x);(r)R

where (x),(v) is the current graphic cursor position.
(sel) = 2 Reports the nouse position and button status. This is

identical to the Mouse Report escape sequence with
(sel) = 7 (ESC:7H), except that the report is sent
innediately.
Note that reports are only sent to the top level
window.

(sel) - 3 Reports the size of the virtual screen and the current
font. The report sequence is:

ESC:(vsx);(vsr);(fsx);(fsy);(bl);(fno)w

ug 5 19:12 1985 wh_escapes.doc Page 11

621

522 (vsx) and (vsy> are the x and y pixel sizes,

623 respectively, of the virtual screen, (fsx) and (fsyl

624 are the x and y pixel sizes of the current font box,

625 (hi) is the base line for the font box, and (foo) is

626 the AS011 code for the name of the curtent font.

627

628

629 2.15 Set Graphic Origin
539 ::::::::::::::::::
631
632 ESC:(x>;(y>0

633

634 Sets the graphic origin to (x>,<y>. The graphic cursor position is
635 set to 0,0.
636 All coordinates given by the graphic escape sequences are relative

,r~\ 637 to the graphic origin.
638 Note that the mouse position is always reported relative to the lower

639 left corner of the virtual screen.

640

641

¢-\ 642 2.16 Clear All
643

A 659

644

645 E5C:J

646

647 Clear window and hone cursors, etc. as follows;
648

649 - The text cursor is set to 1,1.

650 - The graphic cursor is set to 0,0.
651 - The graphic origin is set to 0,0.
652 - The scroll region is reset to the whole virtual screen.

653 — If the current character font is the saue as the default font for
654 the window, the text contents of the window will be started to be

655 renenhered again.

656 - The whole virtual screen is cleared.
657

658

’ 2.17 Load Key LEDs

568 :::::::::::::
661

662 ESC:(sel>;(sel);...;(se1>q
663

664 Loads the LEDs on the INS and ALT keys according to the paraneter(s).
665

666 (sell I 0 Clear both the LEOs.

667 (sel) = 1 Light the INS key LEO.

668 (sell = 2 Light the ALT key LED.

669

670 If no parameter is specified, the LEDs are cleared.
671 Note that the status of the keyboard LEDs always reflects the LEO

672 status for the top level window.

673

674

675 2.18 Private Set Mode

676 ::::::::::::::::
677

678 E3C:(S8l);(S8l);...;(SEl)h
679

680 Sets the ABC1600 private nodes specified by the paraneterisl. The

681 different nodes are:
682

Aug 5 19:12 1985 wh_escapes.doc Page 12

683 (sell = 2 Phased pattern node. Hhen set, the patterns obtained

684 when using the fill area, draw filled circle, paint

685 area, and spray escape sequences will be phased.

686

687

688 2.19 Private Reset Mode

589 ::::::::::::::::::
690

691 ESC:(sel>;(sel>;...;(sel)l
692

693 Resets the AS01600 private modes specified by the paraoeter(s). The

694 different modes are:
695

696 (sell = 2 Non—phased pattern mode. when reset, the patterns

697 obtained when using the fill area, draw circle, paint

698 area, and spray escape sequences will not be phased.

/"\ 699

760

701 2. Spray

‘-.~|\,,~‘

9-CnlP-Q

POI

ll
ll

ll
II

ll

¢"‘\ 7E ESC:<x);<y);<pno>;(op)s

725

"_‘ 726

xx
¢"!'>

an

796 This escape sequence manipulates the pixels which are set both in the

767 spray mash and in the pattern specified hr (pnol, according to the

798 cperaticn tent.
229 <xl,{w> is the lawer left corner cf where ta put the 32x32 pixels
710 spray mash.

711 If <pno> is not specified, ’0’ is used and if (op) is not specified,
712 ‘O’ is used.

713 The following operations can be performed:

?l4
715 (op) I 0 All pixels which are set both in the spray mask and in

716 the pattern are set and the remaining pixels are

717 cleared (replace).
712 (op) = 1 All pixels which are set both in the spray mask and in

719 the pattern are set. The remaining pixels are left
720 unaffected (set).
721 (op) = 2 All pixels which are set both in the spray mask and in

722 the pattern are cleared. The remaining pixels are left
723 unaffected (reset).
724 (op) I 3 All pixels which are set both in the spray mask and in

the pattern are complemented. The remaining pixels are

' left unaffected (complement).

72?

728 The spray mash for a window can he altered by a request to the window

729 handler.
730 For most applications of this escape sequence, the window must

731 probably be set to phased pattern mode in order to give a meaningful
732 result.
733 The current graphic cursor position is updated to <x>,(y).

:5

T
T1-

4r_____,|e—-0

an

0

G
T:

.1

Z9

c.n.|'.=..o~1r\)l-*CI)-q:|OCl‘-Jr:r~t;J'l-l=>-¢;,qr\>s--

20

21

¢*“\ 22

23

24

25

2 E.

27

28 2. Command Syntax

29

30

31

32

33

34

35

3b
I

7
J7

40

41

42

43

(_~\ 44

45

46

47

48 The ’-n’ option is used if no output file at all shall be generated.

49-

50

51

52

53

54 3. The Format of the Input File
55

56

57

Sm

59

50

bl
62

Jul 29 16:09 1985 wshpp.doc Page 1

1985-07-29

Peter Andersson

Luxor Datorer AB

THE WINDOW SHELL PREPROCESSOR - HSHPP

1. Introduction

wshpp is a preprocessor for the window shell — wsh. As input it takes

a text file describing the menu’s and other things to be used to start
programs, open pull down menus, etc. when using the AS01600 window

handler. The output is in a compact binary format which wsh can handle

efficiently.
ta wshpp can also produce single data structures to be used by other

¢f‘\ l7
18

programs when creating windows, setting up icons, etc. By always using

wshpp when creating the data to be used to call the window handler,

future incompatibility problems can be avoided.

It should be pointed out that the format of the text input file is
of a fairly low level, instead it is possible to use most of the

facilities of the window handler. If higher level routines is desired

(for example the input is just a collection of independent icons), it
is recommended that a program is written which as output produces a

text file which can be processed by wshpp.

The syntax of wshpp is:

wshpp [-n] [linfile>] [-x <struc> (outfile> —x <struc> <outfile>...]
[-o <outfile>]

<infile> is the input text file. If it is not specified, the standard

input is used instead.
‘,_\ 38 The ’-o’ option specifies the filename of the wsh data output file.

39 The ’-x’ option with its two following arguments specifies a single
structure to be output to a file (see part 4).
If no ’-x’ or ’-o’ options are given, the wsh data is written to the

file .window, which is the file wsh reads by default. No wsh data file
is generated if no ‘-o’ and one or more ’—x’ options are specified.
All or some of the outfiles may be replaced by a dash (-). in which

case the corresponding data is written to the standard output (all
messages displayed by wshpp are written to the standard error output).
This is intended to be used together with pipes.

All error messages displayed by wshpp are by default in english.
However if the environment variable LANGUAGE is set to ’swedish’, all
error messages are displayed in swedish instead.

--1----an-n_unc---—_---n—\-----n_c--'-_-_-—-_q-1-4--¢-a--n-_-Q»-1-up-u-v-~-unnu-

The input file consists of descriptions of data items and action
items.
The data items is (the structures refered to are the ones

used to communicate with the window handler and can be found in

the documentation for the handler):

Jul 29 16:09 1985 wshpp.doc Page 2

63

b4

65

66 mode.

67

68

69

70

71
Q
{IO

L.

73

74

75

76

77

75 flags window flags data (the flgstruc structure).
/"‘ 79

B0

Bl
82

33

/"\ 84

85

86

B7

88

89

90

9

92

l

93

94

95

96 3.1 Data Items

97

98

99

»--t"we*3‘
*rd(3-Ii

cc-

! ,

1 It
5.....-

Tia
.a..l.

Tr.‘
,ran-~

ll
-n

130

,'~\ lDl
lD2

193

1E4 (ii) several strings separated by commas (environ, penyiron,
,~ I5

,QA

.7

9

I-J}=.—_—\

l“‘\|~——\

‘\.|Q1-.C114:».C»!r-,3i-*(:1

11V:
.....

U3

window Data for a window (the winstruc structure).
icon Data for an icon (the winicon structure).
string A string to be used in both landscape and portrait

pstring A string to be used in portrait mode only.
lstring A string to be used in landscape mode only.
pointer Data for the layout of a mouse pointer (the npstruc

structure).
header Data for a window header (the headstruc structure).
environ Environment strings used to modify the environment

in both portrait and landscape screen mode.

penviron Environment strings to be used in portrait mode only.
lenviron Environment strings to be used in landscape mode only.
directory A directory pathname.

command A command (the file name and the arguments).

zoomlist Zoom list data (the zoomlst structure).
substitute House substitute keys (the substit structure).
background Data for a background pattern (the chbgstruc

structure).

The action items are:

init Describes what to do on initialization.
menu Describes a menu window. .

choice Describes a choice which can be made from a menu

window.

action Describes the action when a certain choice has been

chosen.

terminal Describes a terminal window, i.e. a window running
a program.

The description of a data item consists of its name, which is the name

of the item, immediately followed by a number. A colon separates the

name from the data. The data either consists of

(i) one string (string, pstring, lstring, directorr),

lenviron, command), or
(iii) keywords (with corresponding values) and flags (window, icon,

pointer, header, flags, zoomlst, substitute, background).

The string in (i) is the rest of the line after the first colon. The

strings in (ii) are those between the first colon and a comma or a

newline, between two commas, or between a comma and a newline.
Data items in (iii) consists of 4-letter keywords, optionally followed
by a value, separated by colons. If it is a numerical value, the
keyword shall be followed by a ’t’ character and the numerical value.
The numerical value can be a decimal number, an octal number, or a

hexadecimal number. The syntax of the different numbers are the same

as in the C language: A number starting with a zero is interpreted as

an octal number, a number starting with ‘Ox’ or ‘OX’ is interpreted
119 as a hexadecimal number, otherwise it is interpreted as a decimal

120

l2l
122 character and the string terminated by a colon or a newline.
123 "

124

number.

If the value is a string, the keyword shall be followed by an ’=’

A flag consists of just a keyword and if it is present the flag is
set, otherwise it is reset.

F" Q

Jul 28 16:09 1985 wshpp.doc Page 3

125 The backslash (\l can be used as an escape character in strings. This
126 works as in the C language (it has been augmented by ’\e’ which neans
I27 ESCAPE, 27 decimal).
128 Leading and trailing spaces and tabs are significant in all strings.
129 A line can be continued on the next line by ending the line with a

130 backslash.
131

132

133 3.1.1 Hindow
134 ::::::
135

136 The window data item gives the data for a window. Every kevword has

137 a corresponding wenber or flag in the winstruc structure (see the
138 documentation for the window handler). In the following list the
139 corresponding structure wewber or flag is listed inside paranthesis
L40 and a ‘t’ character indicates that it is a numerical value, otherwise

/'"\ 141 it is a flag.
142

143 Keyword Description
144

145 pxort 1wp_xorig) The x coordinate in portrait node of the
/”‘~ 146 lower left corner of the virtual screen.

"R 163

/“\ ,

147 lxort lw1_xorig) The x coordinate in landscape node of the
148 lower left corner of the virtual screen.
149 pvorw {wp_vorigl The v coordinate in portrait node of the

150 lower left corner of the virtual screen.
151 lvort {wl_vorig) The v coordinate in landscape node of the

152 lower left corner of the virtual screen.
153 pxsit (wp_xsize) The horizontal size in portrait node of the
154 virtual screen.
155 lxsit (wl_xsize) The horizontal size in landscape node of
158 the virtual screen.
157 pvsit (wp_vsize) The vertical size in portrait node of the

158 virtual screen.
159 lysit (wl_ysize) The vertical size in landscape node of the

168 virtual screen.
161 pvxot (wp_vxorig) The x coordinate in portrait node of the

162 lower left corner of the window relative to the lower

left corner of the virtual screen.
184 lvxot (wl_vxorig) The x coordinate in landscape node of the

185 lower left corner of the window.

188 pvvot 1wp_vvorig) The y coordinate in portrait node of the

167 lower left corner of the window.

168 lvvot T (wl_vvorig) The v coordinate in landscape node of the

169 lower left corner of the window.

170 pvxst (wp_vxsize) The horizontal size in portrait node of
171 the window.

172 lvxst (wl_vxsize) The horizontal size in landscape node of
173 the window.

174 pvvst (wp_vvsize) The vertical size in portrait node of the
175 window.

178 lvvst (wl_vvsize) The vertical size in landscape node of the
177 window. .

178 colrt (w_color) Background colour in the window.

179 0 = Black, 1 = white.
180 bordt (w_border) The type of the window border.
181 The different types are (N = No border, S = Single
182 line border, D = Double lines border):
183

184 Border Left Right Upper Lower

185 type side side side side
185 :::::::::::::::::::::::::::::::::::::

!"\ 2E

er

Jul 29 16:09 1985 wshpp.doc Page 4

E87

lB8

189

Z90

191

192

l93
l94
l95
196

290

2E1

T‘-Jr-.2

CJ14:».CAIIR)

29Lb

2%

197 -
l98 -
l99 .

5iF:ZT-'»4=~<»|r3»:-¢5§~l:-can-~i0~<n-I=~¢,av~>._-ca

Q><::==’\:::U>cn¢1><:>==9t:><-Or.r>¢.Oc::<::7¢;>:z:

t:7c.:':<:7<;9<.f>c::$¢;5cn¢r.n.~;_r_>t:1¢;;>t:J<;;;3Z

'~=7c::cnc:a<::'c_n'==7cn<=>cnU>c::¢J>c.o=:¢,r;:z

@&2:JC7C.!3=7<:1CDv;;7cJ‘D¢_nt<;_;:Cnc_r>€:7<,_1)Z

9

Q
>

T-n

pfntl (wp_font) The initial font in portrait node (ASCII

code, i.e. font A is 65).
207 lfntt (wl_font) The initial font in landscape node.

PQ|"-QPQrqPOpgP-JrqI“-JrgT‘-J1'-QPO.3
MNFI‘|;_—.1|“*“4:431:1;__al“1'[:41|._¢.1

""‘3"-0CO"-4CI"-U‘?-l=-(NH)""‘C2)"~13CO

a
oa-

1

->

222

usrbt (w_uboxes) The naxiwal nunber of user defined boxes

that can be set up in the left side of the border.
tsigt (w_tsig) The signal used to signal that the window has

noved to the top level. The window shell always sets
this one to zero for nenu windows.

nsigt (w_ntsig) The signal used to signal that the window

has wowed from the top level. The window shell always

sets this one to zero for menu windows.

rsigt (w_rsig) The signal used to signal a window that it
has to redraw itself. The window shell sets this one

to zero for wenu windows if the ‘stxt’ flag is
present. If the ‘stxt’ flag is not set, the window

shell sets this signal to an appropriate value.
csigt (w_csig) The signal to be sent to processes in a

window when the close box is used.

223 hscr (BX_HSCR) The scroll left and right boxes shall be

224

225

226

227

228

229

/2 230

231

232

233

234

present in the border.
vscr (BX_VSCR) The scroll up and down boxes shall be

present in the border.
cbox (BX_CLOSl The close box shall be present in the

border. The window shell clears this flag for nenu

windows.

sbox (BX_SIZE) The size box shall be present in the border.
nbox (BX_HOVE) The wove box shall be present in the border.
zbox (BX_ZO0N) The zoow box shall be present in the border.
avis (BX_AVIS) Scroll left/right and up/down are only

visible if the whole virtual screen is not visible.
235 bbox lBX_BLOH) The blow up box shall be present in the
236 border.
237 hbox (BX_HELP) The help box shall be present in the border.
238 pnod lPHODE) Portrait node coordinates given.
239 lnod lLHODE) Landscape node coordinates given.
240 stxt iSAVETEXT) Save the text contents of the virtual
241 SCTBEH.

242 sbnp (SAVEBITMAP) Save the bitmap contents of the virtual
243 screen {future use).
244 lock (LOCK) Lock the window on the top level.
245

246

247

novr (HOOVER) The window oust not be overlapped by another
window.

ncur (NOCURSOR) Text cursor not visible.
248 nnov (HOMOVE) The window oust not be noved or change size.

Jul 29 16:09 1985 wshpp.doc Page 5

249 alls
250 spec

‘nag,-P'°'Iv¢

ALLSCR) The window wust be the whole virtual screen
SPECIAL) Special window.

,¢P\ 265
‘L.

251 kscr (KEYSBROLL) Make sure that the text cursor is visible
252

253

254

255

256

257

258

259
260

261

262

263

in the window evervtine a key is pressed.
wscr (HRITSCROLL) Make sure that the text cursor is visible

in the window evervtine sowething has been written to
the window.

ansp (ALTHPNT) Allocate space to store a private noose

pointer for the window.

rltv (RELATIVE) Add the window relative to the parent
window.

ncpi (NOCPIN) Prevents text from being copied into this
window.

ncpo (NUCPOUT) Prevents text from being copied from this
window.

264 text (TXTSIZE) The size of the virtual screen, the window,

1.. ‘:1 E1

267

‘. .13

and the origin of the window are supposed to be given
in tern of characters instead of pixels.

wgrp (HGROUP) This window shall belong to a window group.
Q.-'"1». In go’! 11.2.. .3 ‘,-Jun!» .-,1! ‘fr! .. :w_-_ 1. ‘ -lac? rot; gnEl_Uce; twee wieww whats rwilw ate aiét wanuow
J r, ".-"’“ reiative the upper left corner of the parent (not(A A_"I 1-‘

/**t 270

271

272

273

274

275

276

meaningful if the window is not a child window).
rurc (REL_URC) This window shall follow its parent window

relative the upper right corner of the parent (not
meaningful if the window is not a child window).

rllc (REL_LLC) This window shall follow its parent window

relative the lower left corner of the parent (not
meaningful if the window is not a child window).

277 rlrc (REL_LRC) This window shall follow its parent window

278

279

280

281
0')

'1¢1r.-4Q~|c/~1€<§1c,~:¢<21P~JroP~>r-.:P\>P~>r~>1\>r\:»P->r-.9!‘->r~.:»P->r~.>P->I‘~>r-.9

:19anF1094)C;-Qtijijq1,)"~Q~.c|"-Q'~."-§:l“-vQ~.|§"-Q\..\‘~QQ|:|1l:lj':@l:C0c"JCCiC

"'|‘-(_r|-H»-('__,qI"~D|--nC)\-CI(;r;)‘-J(7-‘(J1-Dr-(;,qT\D|--CD-q:)CO\.4U"~(.n-i>~C.»JI‘

nrr

3C9

310

I
8

relative the lower right corner of the parent (not
meaningful if the window is not a child window).

The following is an exanple of a snall window put sonewhere in the

middle of the screen (only portrait node coordinates are given):

windowbzpxor#300:pvor8500:pxsiil:pysihl00:pvxot0:pvyoi0:pvxst100:\
:pvvshB0:colrt1:bordi2:pfntiGx41;\
:pnode:stxt:cboxzsboxznbox

Note that all values which are not specified are guaranteed to be

zero.

(ll

F-uni

r~Q

icon
—u-uno----_

The icon data iten gives the data for an icon. Every keyword has a

corresponding newber or flag in the winicon structure (see the
docunetation for the window handler). An ’=’ character after the
kevwords neans that the value is a string.

Keyword Description

pxort lip xorig) The x coordinate in portrait node of the
lower left corner of the icon.

lxorh iil_xorig) The x coordinate in landscape node of the
lower left corner of the icon.

pvort rip_vorig) The v coordinate in portrait node of the
3:7 lower left corner of the icon.
338 lvort fil_vorig) The v coordinate in landscape node of the

lower left corner of the icon.
pxsit {ip_xsize) The horizontal size in portrait node of the

~...

Jul 29 16:09 1985 wshpp.doc Page 6

CA

<‘1|a1|_;;\-‘\

<.J'\.|::-<'.»-lrgl--~

1'

F

an

O

c,~:‘<»-fc.~4

.,,,

~.Qco_;c:r~

icon.
lxsit (il_xsize) The horizontal size in landscape node of

the icon.
pysit (ip_ysize) The vertical size in portrait node of the

icon.
lysit (il_ysize) The vertical size in landscape node of the

icon.
cseq= (i_cndseq[l) Character sequence to be sent by the

icon.
320 pnod (I_PMODE) Portrait node coordinates given.

21 lnod (I_LMODE) Landscape node coordinates given.
322 pres (I_PRESS) Send sequence when left button is pressed.
323 rise (I_RELEASE) Send sequence when left button is
324

325

326

27 icon area.
328 leav (I_LEAVE) Send sequence when we are leaving the icon
329

3

/"\ 3

330

331

/"“\ 332

333

334

335

336 lzer (I_LZERO) The sequence is sent only if the window is
337

338 text (I_TEXT) The icon coordinates are supposed to be in
339

340

341

342

343

344

345

346

347

343 zero.

3

1

{'73 349

50

351

352

’,_‘ 353

354

355

356 I like
357

353

359

360

361

362

363

364

365

366

367

368

369

370

371

372

released. .

2 inve (I_INVERT) Invert icon when we are pointing to it.
entr (I_ENTER) Send sequence when we are noving into the

area.
rnov (I_REHOVE) Remove the icon when a sequence has been

sent.
rqst (I_RQST) Only send the sequence if there is a pending

read request to the window.

schk (l_SETCHK) Check if ’entr’ or ’leav’ is fulfilled when

setting up the icon.

at the top level.

character units.

The following exanple puts the icon in the lower left corner of a

virtual screen (only portrait node coordinates are given):

icon17:pxor#0:pyor#0:pxsi#80:pysi#50:cseq=\200:\
zpnodzpreszrlse:inve:rqst

Note that all values which are not specified are guaranteed to be

3.1.3 String, pstring, and lstring
an-no--|--1-1-upun--mac-up---n-n¢-n-n-un-_unu-~-up‘---»c-nun.-up--1-Q--u-—————cu___—

To set up the string

WINDOWS!

using string, pstring, or lstring, looks like:

string36:I like\nHINDONS!

pstring12:I lik9\nUlNDOHS!

lstring19:I like\nHTNDONS!

3.1.4 Pointer
_¢--an-nuuun__—p——-

The pointer data iten gives the data for a mouse pointer layout.
Every keyword has a corresponding nenber in the npstruc structure
(see the documentation for the window handler).

Jul 29 16:09 1985 wshpp.doc Page 7

373

374

3?S

376

377

378

379

389

381

382

333

334

385

335

387

388

I"\ 389

390

391

392 UxfffeffffIuxfffeffffjxfffeffff:0xfffeffff,\

Keyword Description

v~"°~,-»-¢-""§

xsizt np_xsize) The with of the douse pointer.
ysizt np_ysize) The height of the mouse pointer.
xpntt np_xpnt) Pointing part of the mouse pointer, x

coordinate.
ypntt (np_ypnt) Pointing part of the nouse pointer, y

coordinate.
andwt (np_andlll A series of 16 AND masks used to construct

s the noose pointer. The different elements are
separated by connas.

oroat (np_or[l) A series of 16 OR masks used to construct
the noose pointer. The different elenents are
separated by conaas.

The following is an example of a black hair cross mouse pointer:

pointer7:xsiz#31:ysiz#31:xpctl15:rpnt#15:\
zandntxfffeffff uxfffeffff Uxfffeffff 0xfffeffff,\

393 uxfffeffff,0xfffeffff,0xfffeffff,Uxfffeffff,\
¢'"\ 394 Hxfffeffff,Oxfffeffff,0xfffeffff,0x00000001,\

395 -Rxfffeffff,0xfffeffff,uxfffeffff,0xfffeffff,\
396 oxfffeffff,Oxfffeffff,0xfffeffff,0xfffeffff,\
397 Rxfffeffff,0xfffeffff,0xfffeffff,0xfffef‘ff,\

399

4C0

401

0--~;..._199-yenwe(113(ff)pgL3cg)C1‘)(jg
J-=~¢;,.|RDI--—CD-.3C0\Jcr-.U‘!4:».C.-lr-.9

415

‘A 416

398 Exfffeffff,0xfffeffff,0xfffeffff,0xffffffff\
’ ,0,0,0,0,0,0,0,0,0,0,0,0,0,0:orna#u,0

Note that all values which are not specified are guaranteed to be

zero.

3.1.5 Header
——_§_cn
—__———

The header data item gives the data for a window header. Every

keyword has a corresponding nenber or flag in the headstruc structure
(see the documentation for the window handler).

Keyword Description

head: (h_hdrll) The header string.
invh (H_INVHD) Invert the window header.

inrt (H_lNVT) Invert the top window header.

417

418 The following is an example of the header ’ MY PROGRAM ’:
419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

header17:head= HY PROGRAM zinvt

3.1.6 Directory

To specify the directory pathnane /usr/sven/bin, use the line:

directoryé:/usr/sven/bin

3.1.7 Environ, penviron, and lenviron
ancn—__nw__an—-Q-noun-n-.--n--1-—_¢--_-Q->--nun—
upunuunnunuun-o-un--__—-wa-n--Q-Q.-—--nnnncnun-nun-u

These data items specifies how the environment for the program

-r

Jul 29 16 09 1985 wshpp.doc Page 8

435 shall be nodified before it is executed by wsh. If the specified
436 environment variable already exist, the old one is replaced. Otherwise
437 the environment variable is added to the environnent list.
438 To specify PATH to be ’/usr/avdir/bin’ and TERM to be ’vt100’, use

439 the line:
440

441 environ3:PATH:/usr/nvdir/bin,TERH=vtl00
442

443 By nodifving the environment it is possible to tell prograus, which

444 uses terocap, the size of the virtual screen. If the size of the
445 virtual screen is 132 columns times 33 lines, use:
446

447 environ7:TERM=win,TERHCAP:w0{win§w:co#132:li433:tc=abc1600w:

448

449 ’abc1600w’ is an entry in the terocap file which should be used for
450 this purpose only.

/"\ 451

452 The syntax for penviron and lenviron is equivalent.
453

454

455 3.1.8 Cownand

fF"\ 455 :::::::

472

"_‘ 473

457

458 To specify the ‘ls —l’ command, use the line:
459

460 conoandlz/binfls,ls,-l
461

462 ’/bin/ls’ is the file name, ‘ls’ is argument 0, ’-l’ is arguwent 1.

463

464

465 3.1.9 Flags
456 :::::
467

468 The flags data iten gives the data for new window flags. Every

469 keyword has a corresponding flag in the flgstruc structure (see the

470 window handler documentation).
471

Keyword Description

474 lock
475 novr

476 ncur

477

"“‘ are
479

480

481

482 ncpo

483

484

485

486

487

488

489

490

491

492

493

494

495

496

nnov

alls
kscr KEYSCROLL

HRITSCROLL)wscr

ncpi

rulc
rurc
rllc
rlrc

The following exaople can be used to set the LOCK flag for the window

in the example in section 3 1 1

flags56:lock

3.1.10 Zoonlist

d"-,o~v~d'"§,-p-q,@""'~,-n-§"-Q,-we;-A""~;-~n*"~¢n~u-#"§

LOCK) See the description of the window data item
uneven)

nocunsoal

wonove)

ALLSCR)

nncvtwl
nnceout

ne1_u1c

ne1_oac

REL_LL8

REL_LRC

%-§§-_;"vnn},%;§..4'

l

‘A 54o 1

Jul 29 16:09 1985 wshpp.doc Page 9

497 The zoomlist data item gives the data for a zoom list. Every keyword
498 has a corresponding member or flag in the zoomlst structure (see the
499 documentation for the window handler).
S00

501 Keyword Description
502

503 plstr (zp_list[]) The set of fonts to be used in portrait
mode.504

cncJ'1u1U‘\

Qj“-.lCr».CJ‘!

Q--0

569

mode.

llstr (zl_listll) The set of fonts to be used in landscape

pmod (Z_PHODE) Portrait mode list given.
mod (Z LHODE) Landscape mode list given.

510 The following is an example of a zoom list (only data for portrait
511 mode is given) which will make it possible to toggle between the
512 window’s default font and the font F:

;*"\ S13

514

515

516

zoomlist7:plst=F:pmod

517 3.1.11 Substitute
518

519

520 The substitute data item gives the data for a set of mouse substitute
521 keys. Every keyword has a corresponding member in the substit
522 structure (see the window handler documentation).
523

524 Keyword Description
525

526 initt (c_initflg) Flag indicating if the substitute keys are
527

530

enabled or not after the set up (1 if enabled, 0 if
528 not).
529 onoft (c_keys[S_0NOFF]) Key used to toggle the substitute

keys on or off.
531 mpupt {c_keys[S_HPU]) Move mouse pointer up.

532 mpdot (c_keys[S_HPD]) Hove mouse pointer down.

533 mplet (c_keysfS_HPL]) Hove mouse pointer left.
I F Y

539 lpupt
pdot

541 lplet
542 lprit
543 lpult (c_keys

544 t P

545 lpurt (c_keys[S_LHPUR]) Hove mouse pointer up - right a long
546 t

556

4"-¢§,unn.~¢""~opI~a~

S

c keys

r--\

S LHPD]

c_keys

c_keys

E‘ .

s ep.

547 lpdlt (c_keys[S_LMPDL]) Hove mouse pointer down - left a

548 long step.
549 lpdrt (c_keys[S_LHPDR]) Move mouse pointer down - right a

SS8 long step.
S51 pcmdl (c_keys[S_PCHD]) Replacement for the left mouse

552 button.
553 cwint {c_keys[S_CHHIN]) Replacemet for the right mouse

554 button.
555 mtxtt (c_keys[S_HCA]) Replacement for the middle mouse

button.
557 step! lc_step) Step length for a normal move of the mouse

558 pointer

r--s""""r-'-|

S_LHPL]

S_LHPRI

S_LHPUL

L.’-J§.§--,p&¢§~“.p§-|p¢¢.___a'§-IF-”,p

534 mprit yc_keysyS_HPR]) Hove mouse pointer right.
(’_\ 535 mpult (c_keysfS_HPULI

536 mpurt (c_keys[S_MPURI

537 mpdlt lc_keysIS_HPDL}

538 mpdrt (c_keys:S_HPDR)

c_keysfS_LHPUI

Move mouse pointer up - left.
Move mouse pointer up — right.
Hove mouse pointer down - left.
Hove mouse pointer down - right.
Move mouse pointer up a long step.
Hove mouse pointer down a long step.
Move mouse pointer left a long step.
Hove mouse pointer right a long step

) Hove mouse pointer up - left a long

Jul

55

560

<

i
\>

29 16:09 1985 wshpp.doc Page 10

9 lstpt (c_lstep) Step length for a long move of the mouse

pointer.
561 9

56

S63 k

2 The following is an exemple of the set up of the mouse substitute
99$:

564

565 substitutelzinitiuzonoftuxfe:mpupi0xa1:mpdo#0xa3:mple#0xac:\
5&6 zmpriiuxat:mpul#0xad:mpurt0xa5:mpdl#0xaf:mpdrt0xa7:
567

S68

569

:lpuptxbl:lpdo#0xb3:lplet0xbc:1pri#0xb4:lpul#0xbd:\
:lpurl0xbS:lpdltxbfzlpdrt0xb7;pcmd#0xcc:cwin#0xce:\
:mtxt#0xcd:stept4:lstp#10

570

571

572

573

3.1.12 Background

574

f"\ 575 The background data item gives the data for a background pattern.
576 The keyword has a corresponding member in the chbgstruc structure
577 (see the documentation for the window handler).
578 1

579

!"\ 580

S81

S82

583

Keyword Description

bmapl (cb_bitoap) The bit pattern of a 16 x 16 pixels area
representing the pattern. The 16 elements shall be

separated by commas.

SS4

S85 The following is an example of a white background pattern:
586

587 background2:bmaptxffff,0xffff,0xffff,0xffff,\
uxffff Uxffff Oxffff Oxffff \533 1 1 1 1

589 Bxffff,0xffff,0Xffff,0xffff,\
590 , , ,Uxffff uxffff Uxffff Oxffff
591

592 Note that alt values which are not specified are guaranteed to be

593 zero.
594

595

596 3.2 Action Items
597 ::::::::::::
598

599 The description of an action itew consists of its name, which is the

amh :12

as

'7.-T§'¢_§'§CP~'C"*C'\‘;[*CP~

ll

if

630 name of the item in most cases followed by a number. A colon separates
1 the name from the description part, which consists of data items,

action items, or in some cases some special actions.

B4

35 3.2.1 Init
Q5 ::::
37

38 The init action consists of a list of actions to be performed upon

9%? initialization. They are executed in the specified order. The

to following things can be specified to be performed on initiaiizationz
ll
612 Item uescription
613

614

515

substitute The keys used as substitute for the mouse. No keys

will be set up if substitute is not present.
616 background A new background pattern. The default pattern is used

61

618

619

7 if no background is present.
pointer The layout of the global mouse pointer. If no pointer

is specified, the default mouse pointer is used.

620 terminal Open a terminal window with a program running in it.

Jul 29 16:09 1985 wshpp.doc Page ll

621 menu The starting menu window. This oust be specified.
622 inverse Set the screen to inverse video. This is a special
623 action and no number shall be given.
624 normal Set the screen to normal video. This is a special
625 action and no number shall be given.
626

627 Dnlv one init action can be specified and therefore no init number

628 shall be given.
629 An example:

630

631 init:substitute1:oenu3
632

633

634 3.2.2 Menu

635 ::::
’6Eu} 7

,-\ 637 The menu action describes a menu window, a pull down menu, etc.
638 The following things can be specified:
639

64D Item Description
641

,*~\ 642 window Data for the window to be used as menu. If the window

643

"~\ 659

already is open, wsh checks if the window already
644 contains the desired strings and icons, and if so

645 these are not set up once more. However if the

646 contents is new, the new icons are set up and the new

647 strings are displaved. One and only one window must

648 be specified.
649 header The header of the menu window. The header is optional.
650 choice Describes the choices which it is possible to make

651 from this nenu. If no action is specified, at least
652 one choice must be specified.
655 action The specified action will be executed directly without
654 waiting for a choice from the mouse. If any choices

655 have been given, they are ignored.
656 string Text and graphic contents of the menu window.

657 pstring Text and graphic contents of the nenu window.

658 lstring Text and graphic contents of the menu window.

f pointer The layout of the mouse pointer when it points into
660 this menu. If no pointer is specified, the global

6 661 mouse pointer is used. The ’amsp’ flag for the menu

662 window must be set to make it possible to set up a

663 private mouse pointer.
664

665 An example:

666

667 menu5:window1l:choice2D:choice2l:choice22:pstringl3:lstringl3
668

669 If both an action and choices are given, a warning message is issued.
670

671

672 3.2.3 Choice
5]} ::::::
674

675 The choice action connects an icon with the actions to be performed
676 when that icon is chosen. The following two things must be specified
677 in a choice:
678

679 Itew Description
680

681 icon The icon.
682 action The actions to be performed when the above icon is

!'“\ 7.

v

Jul 29 16:09 1985 wshpp.doc Page 12

683

684

685

686

687

688

689

690

691

692

693

694

695

696

chosen.

An example:

choice9:icon7:action17

3.2.4 Action

The action consists of a list of actions to be performed. The actions
will be executed in the same order as they are specified. The

following items may be specified in the list:

697 Item Description
698

7E0

761

\1‘~J--J‘-J-1\J\i‘~J\|\J\1‘-l*~J-4‘~:1T*:_1..?;1\:

Po*--‘r44"‘r==~P-4'weI44i ~1P"r—+("3'756?;(:9£29;gC}?C3

cg)‘-O¢;;0*~J¢r,(11.1:-(Ar-,3!--@\Of:O-._|CP~CJ1.;:~.<L»~lr-.3

(7 721

722

723

724

725

726

727

728

r"\ 699 flags New window flags for the current menu window.

substitute Set new mouse substitute keys.
background Set up a new background pattern.
pointer Set up a new global mouse pointer.
terminal Open a terminal window with a program running in it.
menu Go to the specified menu.

The following special actions may be specified in an action list
(no number shall be specified after these special actions):

Special action Description

close Close the current menu window.

restore Restore the screen.
inverse Set the screen to inverse video.
normal Set the screen to normal video.
top Hove the current menu window to the top level
turn Turn the screen.
logout Log out. This will only work if there are not

any open terminal windows. Hsh takes care of
checking this.

At least one ’menu’ must be given. If several are given, a warning is
issued. A warning also appears if a ‘menu’ does not end the list (in
this case the actions after the ‘menu’ will never be executed).
An example:

action18:flags5:terminall0:close:menu7

729 3 2.5 Terminal
730

73l
732

733

734

735

736

737

738

739

The terminal action describes a window to be used to run a program.
The following can be specified in a terminal description:

window Data for the window to be used as terminal. At most

one may be specified. If no window is specified, the
command will be executed with ‘idem/null’ as standard
input, output, and error output.

header Optional header for the terminal window.

74D zoomlist Optional zoom list for the terminal window.

741

742

743

744

pointer Layout of the mouse pointer to be used when pointing
into the terminal window. if no pointer is specified,
the global mouse pointer is used instead. The ’amsp’
flag for the terminal window must be set to make it

Jul

745

746

29 16:09 1985 wshpp.doc Page 13

possible to set up a private mouse pointer.
icon Optional icons to be set up before the execution

747 of the program starts.
748 string Optional strings to be written to the terminal window

749 before the execution of the program starts.
750

751

752

753

754

7

pstring As above.

lstring As above.

directory An optional directory to move to before the execution
of the program starts. If no directory is specified,
the current directory for the program when it starts

55 will be the same as the one where wsh were started
756 fron.
757 ‘
758

759

760

,r-\ 761 a special action and no number shall be given.
762

super If present, the “super” channel will be open as file
descriptor 3 in the program. This is a special action
and no number shall be given.

wait Causes wsh to wait for the command to finish. This is

environ Optional modification of the environment.
763 penviron As above, but only for portrait aode.

764 lenviron As above, but only for landscape mode.

765 coanand Specifies the program to be executed in the terminal
;*~\ 756 window.

717F

768 An example:

769

770

771

terminal15:window7:header7:pstring5:pstring6:lstring5:lstring6:\
zdirectoryll:environ3:environ4:penviron3:lenviron5:\

772 :comnand23

773

774

775

776

3.3 More about the Fornat
u--nu-Qcna-n-———|n¢--_o——cu-nun-I_-—---vcnn-un--o-vcunuununaun-an--u

777

778

779

780

The number of all the numbered items must be an integer greater than

or equal to one.

All lines starting with a ’t’ character are supposed to be comments

781 and ignored.
roe

/7 res
All the data and action items may be given in any order.

784

785 4 . writing Single Structures to File
735 :::::::::::::::::::::::::::::::::
787

788

789

790

791

To output, for example, a single window structure (winstruc) to a

file, the ’-x’ option is used.

Suppose we have a text file - menu.wd - which contains a description
of a window named window3. The command

792

793
'7
1

wshpp nenu.wd -x window3 win3
94

795 will write the window data structure described by window3 to the file
796 9 win3. All the remaining data in the input file is ignored.
797

798

The following data items can be extracted and written to a file in
this way:

799

800

801

window

header

802 icon
803

804 fl
805

806

pointer
ags

zoomlist
substitute

-
~o

Jul 29 16:09 1985 wshpp.doc Page 14

807 background

l~ _,

Jul 15 11:04 1985 wsh.doc Page 1

4

[Iii

-‘L

f
1

J-

rt

y y‘-

I
In

I
an

ti

-

7\>PO2:12::ts.»

h~¢:>\O¢Q"~J\:y'-C.;>.C/4I\a*—*<2D~.,gL13\Jcr~Ln.p-tam)»-

I"\ 22

23

24

25

2a
I

27

30

31

L-

33

34

35

36

37

38

39

40

41

A5

46

47

48

49

S0

S1

52

53

54

55 ’rsig’ to 0 and supposes the window handler to take care of the

56

S7

58

S9

60

61

62

1985-07-07

Peter Andersson

Luxor Datorer AB

THE NINDON SHELL - HSH

1. Introduction

The window shell - wsh - is an interface between the user and the
ABC1600 window handler. To know what to do, wsh starts by reading a

data file. This file is created by the window shell preprocessor -
wshpp. The documentation for wshpp covers most of the things
concerning wsh, so this documentation just describes the syntax of
wsh and gives some notes of how wsh behaves in different situations.

2. Comuand Syntax and Start Up
nu-—_—@|n—¢n—__c-cunuuc-nunanncnunnnnnnn——u-ncouocu-um-u_—_—_nncu___nn__uunnuuar—

The syntax of wsh is:

wsh [—n] [<file>]

(file) is the input data file. If it is not specified, wsh tries to
read the file ’.window’ in the current directory, and if this fails

28 it finally tries to read the file ’/etc/.window’.
29 Normally wsh (after reading the data file) activates the window

handler. The ’-n’ option tells wsh not to do this. In this case wsh

assunes that the window handler already has been activated and that
3° the file descriptor for the window handler “super channel” is 3.

This can be used together with the ‘wait’ and ’super’ special actions
(see the documentation for wshpp) to start "sub-window shells".
If wsh is started from another terminal than the console or from a

window, the ordinary shell - sh - is executed instead.
Error messages from wsh are by default in ehglish. However if the

environment variable LANGUAGE is set to ’swedish’, all error messages

are displayed in swedish instead.

42 3. Some Notes of the Behaviour of Nsh

43

"_\ 44

nap-n___—un——___—un———_——_-pup-can-n——un——_—_—_--n-_—__|-pc-1----—-w—~——_-un—_—_-—

— when wsh are going to get a command from a menu window it first
checks if the window is already open (if not wsh opens it). Then

it is checked that the contents (header, strings, and icons) is
the desired and if not the old header and icons are removed and

the new header and icons are set up and the specified strings are
written to the wenu window.

- wsh automatically sets up a redraw signal (’rsig’) for all nenu

windows which have not the 'stxt’ flag set and takes care of
redrawing them when necessary. If the ’stxt' flag is set, wsh sets

redrawing of the window. Note that because wsh manipulates ’rsig’
for menu windows, the same window data description should not be

used both for menu and terminal windows.

- There is no need to specify the character sequence (’cseq’) to be

sent by the icon for icons used in nenu windows as wsh uses its own

sequences. As for window data, the sane icon data description

Jul 15 11:04 1985 wsh.doc Page 2

63

64

65

66

67

should not be used both for menu and terminal icons.

- ’tsig’ and ‘nsig’ are always set to 0 and the ’cbox’ flag is
cleared for menu windows. The reason is that wsh can not handle
these things.

is not cleared before the specified strings are displayed in a

so 9

69 - The cursors are not mowed to their home positions and the window
70

71

72

73
74

75
-1.1
.-"£1:

"9

COQQCU“*4\-J"-J

FDI--Z‘~431:1)"'--

83

84

B5

B6

87

B8

90

91

92

93

94

95

96

97

98

99

tooA 101

l02
103

184

105

window. These things must, if necessary, be included in the
strings. Be especially careful with strings which must be rewritten
by wsh to update menu windows.

'' 3 T... s... ..1' -..J ,.J....
~ Strings are always written in toe smecxriee order.

~ all terminal windows are set up as controlling terminals, i.e.
’/dew/tty‘ refers to the window.

- The processes running in different terminal windows belongs to
different process groups.

- only file descriptors 0, 1, and 2 (standard input, output, and

error output) and sometimes 3 (the “super channel”) are open when

the command specified in a terminal description is executed.

- when the command in a terminal description is executed, all signals
are set to default except those signals specified by ‘tsig’,

89 ’nsig‘, ’rsig’, and ’csig’ which are ignored.

- The current directory for wsh is always the directory where it was

started from. Terminals will initially have the same current
directory if no ‘directory’ is specified.

- The command specified in terminals can be shell scripts and wsh

automatically searches for the command in all the directories
specified by the PATH environment variable.

~ when handling the ‘turn’ special action, wsh checks that there
are no windows open, except for menu windows. If not, all menu

windows are closed and the window shell executes the ’init’ action
in the new screen mode.

- when handling the ’logout’ special action, wsh ignores it if there
are any windows open, except for menu windows.

Aug 5 18:37 1985 window_hnd.doc Page l

F,

T
4.

5

Q

F

1

/\ ;

I-‘-1POI‘-QragrgI‘~.DPOhas|;~_:n

U‘!-:2:-C»-lr~Q""*€3'-OC0--._|C"~:41-l=v-¢,~|r\>I-*¢;;>\1:v¢;Q-_|cr~¢;|.a=-.¢,.;|~,Q;...

26

27

28

29o

30

31

3t')

.13

34

35

36

37

38

39

40 2. Starting and Terminating the window Handler
41

42

43A at
45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

l985—07-29, Peter Andersson, Luxor Datorer AB

ABCl600 HINDOH HANDLER
up--an-ununcnqncncn-u-up-u--nun--—-nun-n-qnnn-------u-_----_

The AS81600 window Handler is, as indicated by the nawe, implemented
as a handler under ABCenix and has special calls to open new windows,
wove windows around, return the status of a window, rewove windows,
etc. It also autoaatically takes care of things like:

- Moving and altering sizes of windows, using a wouse.

- Convert pointing to a specified area inside a window to a

conwand sequence (e.g. pointing to icon’s).
- Moving text between windows.

1. The Model
__— — _ u _ mm—__—_un_—_

when several windows are present on the screen each of thew is thought
of as being at a certain level. The window on the top is at level 0

and it receives all the input from the keyboard. All the other windows

are at lower levels; the window one step frow the top is at level 1

and so forth.
To switch to another window (i.e. attach the input from the keyboard
to another window), that window must be put at level 0. when this is
done, all windows previously at higher levels than the new level 0

window are moved one level down. The level 0 window can also be noved

to the botton, waking all other windows moving one level up. r

The output from the processes connected to a certain window are always

sent to that window, regardless of if it is at level 0 or not.
Each window emulates a DEC VT100 terminal augnented by ABCt600 private
escape sequences. The ABCl600 private escape sequences are compatible
with or similar to their counterparts in the ABCl600 terwinal
emulator. See wh_escapes doc for further details regarding the escape

sequences.

_ _ _ Q — q — _ _ — — m Q _ — - Q _ Q _ — _ Q — — — — Q — Q — — — — _ Q — — @ Q — mu-c — _ - _ _ — - Q — — — _ — — _ Q _ _ — — — Q — — n Q m _ — — _ _ — _ — _ — — - _ -_

The window handler is started by giving the conwand:

/usr/window/whgo

This is a start~up program, usually started by the rc script, which
mounts itself on the ’/win’ directory and waits in the background
until the window handler is activated. This is done with an open

request, which in C can look like:

fd = open('/win/activate”, 2);

The file descriptor returned (greater than or equal to zero if no

errors) can later be used to disactivate the handler and also to issue
some special requests to it.
On activation of the window handler, ’whgo’ performs some

initializations and then executes a portrait or landscape node version
of the handler, depending on the direction of the screen.
A close request is used to disactivate the window handler:

close(fd);

/'“\ I

\,

Aug 5 18:3? 1985 window_hnd.doc Page 2

I
no

1|

J-

T

f

l T

8‘-

J

t

|-n

‘S

T

in

1kg::uLT.

In

‘ ,

)-AP"-‘Ir--¢

I
-

:l‘__._.

T T

.4.

»1

4up

9

.a--

T

63

64

65

66

67

68

69

70

when the handler receives this request it sends hangup signals to all
processes in the windows, resets the screen, and then executes ’whgo’
again.
The terminate signal will terminate the window handler in a controlled
manner witout executing ’whgo’.

71 3. Opening windows

72

73

74

75

76

——un—Q_—__—_¢u_——nuns:-n-n--unun-an-a-_uo-v

when the window handler has been activated, windows can be opened by
issuing an open request to the handler:

77 fd I open('/win“, 2);
73

/"\ 79

30

Bl
B2

33

/"\ 84

85

86

87

This will not create a window on the screen, it just tells the handler
to allocate space for a new window. The returned value — ’fd’ — is
greater than or equal to zero if the open was successful and is used

to write to, read from, send I/0 control requests to, and close the
window.

To acctually create the window on the screen, the Hincreat request is
used (see below).

88 4. Closing Hindows

39

90

91

93

94

95

96

97

98

To close a window, a close request shall be sent to the handler with
92 the file descriptor obtained when the window was opened:

closetfdl;

This will cause the handler to rewove the window from the screen.

99 5. write to and Read fron windows

E0

t 1

I‘-J1-._;>I\)1-QPO1|-1l~J¥='-l*¥='|--¢r--€'f3c:3C?)c;;)Ci?Q)
-n-c_,qI‘On--~C2>~g0O~q€.‘P~C.|:».(/~|I\Jp-»CZD’~Ox*~l(:r~£J1-@~(,.4P~J

4

0-I

11 To write to a window the standard write systen call can be used with
the file descriptor obtained when the window was opened:

writeffd, bp, bc);

To read from (through) a window, i.e. get input from the keyboard, the
read systeu call can be used:

cnt 1 read(fd, bp, bc);

6. window Requests
—-_—_—u-nn_—cu_——_---snaps-nnnunnuuunu--uan_

The following is a description of all the requests which are
implemented to uanipulate the windows from other processes.
They are ail macros, and the definitions of thew can be found in the

Li. file (win/w_wacros.h>. The constant definitions can be found in
(win/w_const.h>, the structure declarations in (win/w_structs.h>, and

new variable type declarations can be found in (win/w_types.h>.
The requests returns a negative value if they fail.
The unions included in wost of the structures below are reserved for
future use. To guarantee compatibility with future versions, the

Aug S 18:37 1985 windou_hnd.doc Page 3

125 nenber of the union oust be zero.
126

E27

128 6.1 Create Window
:29 :::::::::::::
£30

131 To create e window the following request is used:

133 Hincreat(fd, bp);
134 ' int - id;
135 struct winstruc *bp;
136

137 ’fd’ is the file descriptor obtained fron the open request and the
138 structure ninstruc looks like:
139

140 typedef short pix_d;
141 typedef short cur_d;
142 typedef char sint;
143 typedef unsigned short word;
144 typedef unsigned long ufiags;
1

I-45
;*"\ 146 struct winstruc

I47 i
Z48 Pix_d wp_xorig;
149 Pix_d w1_xorig;
L50 Pix_d np_yorig;
il PiX_d wl_yorig;
I52 Pix_d wp_xsize;
i53 pix_d w1_xsize;
154 pix_d wp_rsize;
E55 Pix_d w1_ysize;

156 Pix_d up_vxorig;
£57 Pix_d u1_vxorig;
158 Pix_d wp_vyorig;
159 Pix_d ui_vyorig;
159 Pix_d wp_vxsize;
161 pix_d wl_vxsi2e;
162 PiX_d up_vysi2e;

/’~\ 163 Pix_d ni_vysize;
_J4tr short w_co1or;

165 sint w_border;
£66 char wp_font;
167 char wl font;/'\ , -
e68 char w_curfont;
169 sint w_leve1;
170 sint w_uboxes;

171 cur_d w_xcur;
L72 cur_d n_ycur;
173 Pix_d w_xgcur;
E74 pix_d w_ygcur;
175 sint u_tsig;
176 sint w_ntsig;
177 sint u_rsig;
178 sint w_csig;
£79 word w_boxes;

£80 uflags u_flags;
£81 sint w_rstat;
182 union
183 {
184 long u_xxx;
£85 } n_Pad;

186 };

132
’

Aug 5 18:37 1985 window_hnd.doc Page 4

T

*8

up

T‘.

POQ[*9POP9
;:n_~<’

OD

L.

~—1

up

*1

F

l87
288

189

l90
191

Z92

193

l94
l95
96

l97
98

199

F’F’iiF3F?$8F8i9%E3E3E3C3E3E5
-~|C'~u14>~c.4P~>*~*c:>*ii'~io\l'i'f‘~cn-H-ri,~aP~>'-"c:>

J3

220

221 window in portrait node.

222

223

22"" 225

4

226

9

The weaning of the structure newbers are:

wp_xorig The x coordinate of the lower left corner of the
virtual screen relative to the lower left corner of
the screen. The coordinates are expressed in terns of
pixels. If the lower left corner is to the left of the
lower left corner of the screen, this value is
negative. This coordinate is used in portrait node.

wl_xorig As ’wp_xorig’, but used in landscape node.

wp_yorig The y coordinate of the lower left corner of the

virtual screen in portrait node.

wl_yorig As ’wp_yorig’, but used in landscape node.

wp_xsize The horizontal size of the virtual screen expressed in
pixels in portrait node.

wl_xsize As ’wp_xsize’, but used in landscape node.

wp_ysize The vertical size of the virtual screen expressed in
pixels in portrait node.

wl_ysize As ’wp_vsize’, but used in landscape node.

wp_vxorig The x coordinate of the lower left corner of the

window (excluding the border) relative to the lower

left corner of the virtual screen in portrait node.

wl_vxorig As ’wp_vxorig’, but used in landscape node.

wp_vyorig The y coordinate of the loner left corner of the

wl_vyorig As ‘wp_vyorig’, but used in landscape node.

wp_vxsize The horizontal size of the window in portrait node.

227 wl_vxsize As ’wp_vxsize’, but used in landscape node.

228

229 wp_vysize The vertical size of the window in portrait node.
0

‘J

230

231 wl_vrsize As ’wp_vysize’, but used in landscape node.

232

233 w_color Background colour in the window (BLACK or WHITE).

234

235 w_border The type of the border: i

NOBORDER - No border.236

237 SLBORDER ~ Single line border.
238 DLBORDER — Double lines border.
239 DSSSBORD - The left side is a double lines border and

240 the rest of the sides are single line
borders.241

242 SDSSBORD - The right side is a double lines border and

243 the rest of the sides are single line
244 borders.
245 SSDSBORD - The upper side is a double lines border and

246 ‘the rest of the sides are single line
247 borders.
248 SSSDBORD - The lower side is a double lines border and

A 2e7

Aug 5 18:37 1985 window_hnd.doc Page 5

249

250

25l
252

the rest of the sides are single line
c borders.

DDSSBORD - The left and right sides are double lines
borders and the upper and lower sides are

253 single line borders.
254

255

256

257

258

259
260

261

262

263

264

,#~\ 265

266

267

268

269

DSDSBORD - The left and upper sides are double lines
borders and the right and lower sides are
single line borders.

DSSDBORD — The left and lower sides are double lines
borders and the right and upper sides are
single line borders.

SDDSBORD - The right and upper sides are double lines
borders and the left and lower sides are
single line borders.

SDSDBORD - The right and lower sides are double lines
borders and the left and upper sides are
single line borders.

SSDDBORD - The upper and lower sides are double lines
borders and the left and right sides are
single line borders.

DDDSBORD - The lower side is a single line border and

270 the rest are double lines borders.
271 DDSDBORD - The upper side is a single line border and

272 the rest are double lines borders.
273 DSDDBORD - The right side is a single line border and

274 the rest are double lines borders.
275 SDDDBORD - The left side is a single line border and

276 the rest are double lines borders.
277

278

279

280

281

282

283

284

285

286

288

289

290

291

"xi 292

wp_font The initial font in portrait node. The font can be in
the range ‘A’ - ‘Z’.

wl_font As ’wp_font’, but used in landscape node.

w_curfont The currently used font.

w_level The level of the window. A newly created window will
be on level 0 if it is not a special and not a child
window, and on the lowest level if it is a special
window (see the SPECIAL flaol, and on the top level
of its window group if it is a child window.

w_uboxes The maximal nunber of user defined boxes allowed (see

the winubox() request). The value of this nenber is
293 significant only if the BX_USER flag in ’w_boxes’ is
294

295

296

297

298

299

300

301

322

363

364

Q»!caQ»!weMon
I"cg)*3#5‘:#4(ii;

C29sCO--4I‘.?'~()1

set {to be compatible with older versions of the

window handler, it was done in this way). If BX_USER

is not set, this value is assumed to be zero.

w_xcur x coordinate for the text cursor position. This is
only used to return the initial position of the
cursor, which is the upper left corner of the window.

w_ycur y coordinate for the text cursor position.

w_xgcur x coordinate for the graphic cursor. This one is
only used to return the initial position (which is
the lower left corner of the window).

w_rgcur r coordinate for the graphic cursor.

w_tsig The signal to be sent to the processes in the window

Aug 5 18:37 1985 window_hnd.doc Page 6

4

3:so$1$1so=~

‘T-"'~c.i'1-b-C.»-Jr-,3!-*

when it has woved to the top level (level zero). If
0, no signal will be sent.

w_ntsig As above, but signals are sent when the window moves

fron the top level to a lower level.

317 w_rsig S Ihe signal to be sent to the processes in the window
318

319

320

321

322

323

324

325

326

,r~\ 327

328

329

330

331

;*"\ 332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353f‘ 554

when the window has changed in some wav. If 0, no
Q

signal will be sent.

w_csig The signal to be sent to the processes in the window
when the close box in the border IS used. If 0, no

signal is sent, instead all requests to this window

will be teroinated with bad status.

w_boxes Contains flags indicating which boxes shall be present
in the border; .

BX_HSCR — Scroll left and right boxes and the
. horizontal visible indicator shall be

present in the border.
BX_VSCR - Scroll up and down boxes and the vertical

visible indicator shall be present in the
border.

BX_CLOS - The close box shall be present in the
border.

BX_SIZE - The size box shall be present in the border.
BX_HOVE - The wove box shall be present in the border.
BX_ZO0M — The zoom box shall be present in the border.
BX_AVIS — The scroll boxes and the horizontal and

vertical visible indicators are only visible
if the whole virtual screen is not visible.

BX_BLOH - The “blow up“ box shall be present in the

border (see the windflszll request).
BX_HELP - The help box shall be present in the border

(see the Hinhelpll request).
BX_USER - Indicates that the value of the 'w_uboxes’

oenber is significant.

w_flags Contains some flags:

PMODE ~ Indicates that coordinates have been

given for portrait node.

LHODE - Indicates that coordinates have been

355 given for landscape node.

356

357

358

SAVETEXT - Save the text contents of the virtual
screen.

SAVEBITMAP - Save the bitmap contents of the virtual
359 screen (virtual bitmap) (reserved for
360

361

362 LOCK

363

364

365

366

367

368

369

370

371

372

future use).
OVERLAP - The window is overlapped flag.

- The window is locked on the highest level
(level 0).

HOOVER - The window oust not be overlapped bv

another window.

MOCURSOR - Cursor not visible.
NOHOVE - The window oust not be wowed or change

SIZE.

ALLSCR — The window oust be the whole virtual
screen.

7

SPECIAL - A special window will be added on the
lowest level. Special windows are always

I-w

f'\ ‘:5

Aug 5 18:37 1985 window_hnd.doc Page 7

373

374

375

376

377

378

379

380

381

382

383
384

385

386

387

388

;'"\ 389

390

391

392

393

394

395

396

397

398

399

400

4C1

-&=-4:»-l>-.n~

Ln.»-(APO

486

487

409

on lower levels than non~special windows

and their level does not change when the
level of other windows are changed. They

can for exanple be used as menu windows.

KEYSCROLL - Every time a key is pressed it is checked

if the whole cursor is visible and if not
the window is scrolled.

HRITSCROLL - After each write request to the window,

it is checked if the whole cursor is
visible and if not the window is

. scrolled.
ALTHPNT - Allocate space to store a wouse pointer

which is used when we point to this
window. Initially the nouse pointer will
be the sane as the global pointer.
See the Hinchwpnt() request.

RELATIVE - The coordinates ’w_xorig’ and ’w_yorig’
are supposed to be relative to the lower
left corner of the parent in this window

group (see section 8).
NOCPIN - Makes it iwpossible to copy text into

this window using the text copy facility
of the window handler.

NOCPOUT - Makes it impossible to copy text frow
this window using the text copy facility
of the window handler. Instead the status
of the middle uouse button is reported on

nouse position reports. Note that the

middle button is only reported if this
flag is set.

TXTSIZE - The ’wp_xsize’, ’wl_xsize’, ’wp_ysize’,
3 ’wl_ysize’, ’wp_wxorig’, ’wl_vxorig’,

’wp_vyorig’, ’wl_vyorig’, ’wp_vxsize’,
’wl_vxsize’, ’wp_vysize’, and ’wl_vysize’
nenbers are supposed to be given in tern

468 of characters instead of pixels.
Note that in this case ’wp_vxorig’,

410 ’wl_vxorig’, ’wp_vyorig', and ’wl_vyorig’
"7 411

412

413

4l4
‘T

1

-b4:»43-.9.-l>-4:»-

\>|~0'._,|___1‘.._

T‘CD"-1-"CO\3O"-

422

423

424

425

426

427

428

429

430

431

432

433

434

wust be given relative to the upper left
corner of the virtual screen.

HGROUP - This window shall belong to a window

group (see section 8).
REL_ULC - This window shall follow its parent

window relative the upper left corner
of the parent (this flag has no effect
if the window is not a child window).

REL_URC — This window shall follow its parent
window relative the upper right corner
of the parent (this flag has no effect
if the window is not a child window).

REL_LLC — This window shall follow its parent
window relative the lower left corner
of the parent (this flag has no effect
if the window is not a child window).

REL_LRC - This window shall follow its parent
window relative the lower right corner
of the parent (this flag has no effect
if the window is not a child window).

Note that at nost one of the flags REL_ULC, REL_URC,

REL_LLC, or REL_LRC may be set.
All these flags are single bits in the flags word.

/"\ 451

452

’__\ 4.t

"“‘ are

an

Aug 5 18:37 1985 window_hnd.doc Page 8

435 Of these only the GVERLAP flag is non-significant when

436 creating a window.
437 All the remaining bits should be zero to guarantee
438 compatibility with future versions. .

439

440 w_rstat Return status;
441 w_ox - or.
442 HE_ILPARA - an illegal parameter was specified.
443 HE_LOR0 - the window can not be created because of
444 another window with the NOOVER or LOCK

445 flag set.
446 HE_ALRCR - the window has already been created.
447 NE_ALLSCR - the whole virtual screen is not visible
448 and the ALLSCR flag is set.
449 HE_NOHEH - enough memory does not remain to create
450 the window.

HE_FATHER - the window has the RELATIVE flag set, but
there is no parent window.

453 HE_iLHOD — the coordinates for the current screen
454 mode has not been given, e.g. the screen
455 is in landscape node and the LHODE flag

;-\ 456 is not set.
457 HE_NOFONT - the specified default font can not be

458 loaded.
459

460 Of the above members, only the following are used when a window is
461 created:
462

463 wp_xorig or wl_xorig, wp_yorig or wl_vorig, wp_xsize or

464 wl_xsize, wp_vsize or wl_vsize, wp_vxorig or wl_vxorig,
465 wp_vvorig or wl_vvorig, wp_vxsize or wl_vxsize, wp_vvsize

466 or wl_vvsize, w_color, w_border, wp_font or wl_font, w_tsig,
467 w_ntsig, w_rsig, w_csig, w_boxes, w_flags
468

469 On exit the values of these members remains the sane, except for some

470 adjustments that may occur in order to make the window fit, etc.
471 The other members have on exit received their initial values.

7’)

473

474 6.2 Hove window to Level Zero
475 :::::::::::::::::::::::::
476

477 The level zero window is the window that receives the keyboard input.
The request

479

480 Hinlevel(fd, bp)

431 int fd;
482 struct winlevel tbp;
483

484 is used to move a window which does not belong to a window group to
485 the zero level. If the window indicated by ’fd’ belongs to a window

486 group, the whole group is moved to the top without altering the
487 relative levels inside the group.
488 The winlevel structure looks like:
489

490 tvpedef char sint;
491

492 struct winlevel
493 T

494 sint l_rstat;
495 union
496 l

-~.

,~\ 5.

Aug 5 13:37 1985 window_hnd.doc Page 9

497 long l_xxx;

SC

56

SE

56

SQ

u-1.;>c.~a|;;.3s--@

can

499 };
sco

SE

an

51

51

51

1

507
508

SE9

5’0

5l5
516

CIR4'-'=-C»|r-Q0--

520

521 ’fd’ is the file descriptor for the window and the winlevel structure
522

523

524

525

526

52

530

531 int fd;
532 _

S33

534

"_‘ sas

536

537

538

539

"‘“ 540

541

542

543

544

545

546

547

S48

549

552

553 H_0K - all is well.
554

555

556

557

558

} l_Pad;

where ’l_rstat’ is the return status:

H_0K ~ everything is well.
wE_NOTCR - the window has not been created yet.
HE_SPECIAL - the window can not be uoved to the top because

it is a special window.

wE_LOR0 - the level can not be changed because of another
window with the LOCK or NOGVER flags set.

5.3 Hove window to the Top Level of its window Group
-an-----Q-—_p_——-_-uu—_-—-___n_--_—q-—------any-nncnuncun-——___~->-—-_nn_—_a_-1-’----—-------»--__----—--_—-_

To wove a window, belonging to a window group, to the top level of the
group, use the request:

517 winllevlfd, bp)

538 int fd/"\ :

519 struct winlevel rbp;

was described in section 6.2.

6.4 Alter a window

7

528 To alter the size, position, etc. of a window, the request
529

Hinalterlfd, bp);

struct winstruc tbp;

is used. If the window is a parent of a window group, all the
children are also moved according to the flags REL_ULC, REL_URC,

REL_LLC, and REL_LRC. If none of these flags are set for a child
window, the child is not moved.

The winstruc structure was described in section 6.1. On entry to this
request, the following structure ueuber values are significant:

wp_xorig or wl_xorig, wp_vorig or wl_yorig, wp_vxorig or
wl_vxor1g, wp_vvor1g or wl_vvor1g, wp_vxs1ze or wl_vxs1ze,
wp_vvsi2e or wl_vvsi2e

Further the PMODE and LHODE flags in ’w_flags’ are used to check that
the data is relevant and if the TXTSIZE flag is set, the coordinates
and sizes are interpreted in units of characters. The size of the
current default font is used.
The remaining parameters can not be changed using this request, but

550 the current values of then are returned.
551 ’ w_rstat' is the return status:

NE_NOTCR - the window has not been created yet.
wE_ILPARA - an illegal parameter value was used.
HE_LOR0 - the window can not be altered because of another

window with the LOCK or NOOVER flags set.
HE_ALLSCR - the whole virtual screen will not be visible and

A 5

rs Q

Aug 5 18:37 1985 window_hnd.doc Page 10

559

.r

I

564

565 6.5 Alter a window without Affecting Child windows

566

567

568

569

S70

571

572

573

574 int fd;

577

578

S79

582

583

584

585

586

587

588

589

590

591

592 int fd;
593

594

595

596

5,7
598 wp_xorig or wl_xorig, wp_rorig or wl_yorig, wp_vxorig or

599 ‘
600

603

604

605

636

607

638 H_0K - all is well.
609

6l0
I

I

6?it
(I
5..

61

CI"-r;r-.

|4'§;;o

6i
61

all

00"-10"-c.n4=-¢.~1P-9

61

'-O

620

the ALLSCR flag for the window is set.
560 HE_NOHOVE - it is not allowed to change the location or the
Sal size of the window (the NOHOVE flag is set).
562 HE_ILHOD - data for the current screen node is not present.
563

This request is identical to the Hinalterfl request, except that if
the specified window is a parent of a window group, its child windows
are not noved.

The request is:

Ninlalterlfd, bp)

75 struct winstruc *bp;
576

6.6 Set up Default Size and Location for a window

/'"\ 580

581 ' 'when the blow up box is used the size and location of the window

toggles between the default size and location and the size and

location it had before it was altered to the default.
when a window is created, its initial default size and location will
be the sane as the initial size and location of the window.

when the default font is changed, the default size and location will
be set to the sane as the size and location of the window after the
default font has been changed.

To set up another default size and location, use the request:

Hindflszlfd, bp)

struct winstruc *bp;

The winstruc structure was described in section 6.1. 0n entry to this
request the following structure uenbers are significant:

wl_vxorig, wp_vyorig or wl_vyorig, wp_vxsize or wl_vxsize,
wp_vysize or wl_vysize

601A e02 ’ ’Further the PHODE and LHODE flags in w_flags are used to check that
the data is relevant and if the TXTSIZE flag is set the coordinates
and sizes are interpreted in units of characters. The size of the

current default font is used.

The return status - ’w_rstat’ - is:

HE_HOTCR - the window has not been created yet.
HE_ILHOD ~ data for the current screen node is nissing.
HE_ILPARA - an illegal value was specified.

6.7 Alter Window Flags

To alter the flags in the ’w_flags’ word for a window, use the
request:

Hinflags(fd, hp);

/'- 6

Augv 5 18:37 1985 window_hnd.doc Page ll

621 int fa;
622 struct flgstruc tbp;
623

624 The flgstruc structure looks like:
625

626 typedef unsigned long uflags;
627 typedef char sint;
628

629 struct flgstruc
63$ {

631 uflags _flags;
632 sint f_rstat;
633 union
634 i
635 long f_xxx;
636 } f_P&d;

--+1

'o7 };
638

639 ’f_flags’ is the new flags for the window.

640 The following flags war be altered: LOCK, HOOVER, NOCURSOR, HOHOVE,

641 ALLSCR, KEYSCROLL, HRITSCROLL, NOCPIN, ROCPOUT, REL_ULC, REL_URC,

/'"\ 642 REL_LLC, and REL_LRC.

64’

"_‘ 664

5 The following flags are ignored: PHODE, LHODE, SAVETEXT, SAVEBITHAP,

644 OVERLAP, SPECIAL, ALTNPNT, RELATIVE, TXTSIZE, and HGROUP.

645 The the bits not used in the flags word should be zero to guarantee

646 compatibility with future versions.
647 ’f_rstat’ is the return status:
648

649 N_0K - everything is OK.

650 HE_LOR0 - the flags can not be altered in this way because

651 the window is overlapped or it is not on the top
652 level.
653 HE_ALLSCR - the whole virtual screen is not visible and the
654 ALLSCR flag was set.
655

656

657 6.8 Get window Status
558 :::::::::::::::::
659

660 To get the current status of a window, use the request
661

662 Hinstat(fd, hp);
663 int fd;

' struct winstruc *bp;
665

666 The winstruc structure was described in section 6.1.
667 On exit all the nenbers are set to their current values. Only one of
668 portrait or landscape node coordinates and font is returned,
669 depending on the node of the screen. Hhich one is indicated by the
670 PMODE and LHODE flags. 6

671 The return status ’w_rstat’ is:
672

673 H_0K - all is well.
674 HE_NOTCR — the window has not been created yet.
675

676

677 6.9 Insert a Header in a window Border
578 ::::::::::::::::::::::::::::::::::
679

680 To insert a header, such as the program name, in the border of a

681 window, use the request
682

Aug 5 18:37 1985 window_hnd.doc Page 12

683 Hinheaderlfd, hp);
684 int fd,
685

686

687

688

689

690

691

692

693

694

695

struct headstruc *bp;

where the headstruc structure looks like;

typedef unsigned short word;

struct headstruc

{ char h_hdr[HDRSIZE];
word h_flags;
union

696 {

697 long h_xxx;

698

701

702

l h_PH4;/'\ 699 };
700

’h_hdr[]’ is the header string, ’h_flags’ contains some flags:

703 H_INVHD - Invert the window header (relative the window

704

705

706

707

708

r40”‘I‘1|———\[leiI1[.11

111'-.CJ1-bu(,4I‘-Jl-*4:)'-O

I l
r

717

7l8
719

720

723

724

725

*7‘ 726

727

728

729

730

731

732

733

734

background).
H_INVTOP - Invert the top window header (relative H_INVHD).

The remaining bits should be zero to guarantee compatibility with
future versions.
Note that the header can be added before the window is created.

6.10 Icon Support

The window handler can automatically take care of decoding conaands

given by first pointing to an icon, uenu item, etc. and then pressing
an appropriate key on the uouse or the keyboard.
The request

Hiniconlfd, hp);
"'7 721 inc fa;

722 struct winicon *bp;

is used to specify that when the pointer points inside a specified
area in the window, a specified code sequence shall be sent to the

calling process by putting it in the keyboard input buffer for the

window.
s

The winicon structure looks like:

typedef short pix_d;
typedef unsigned short word;
trpedef char sint;

struct winicon
735 i
736

737

738

739

740

741

742

743

744

pix_d ip_xorig;
pix_d il_xorig;
pix_d ip_yorig;
pix_d il_yorig;
pix_d ip_xsize;
pix_d il_xsize;
pix_d ip_ysi2e;
pix_d il_ysize;
char i_cwdseq[ICONSEOLEH];

Aug 5 18:37 1935 window_hnd.doc Page 13

745

746

747

no {
749 1

750

word i_flags;
sint i_rstat;
union

ong i_xxx;
l i_Pd;

251 T;

752

753

754

755

’ip_xorig’, ’il_xorig’ and ’ip_yorig’, ’il_yorig’ is the lower left
corner of the area relative to the lower left corner of the virtual
screen in portrait and landscape node, respectively. ’ip_xsi2e’,

756 ’il_xsize’ and ’ip_ysize’, ’il_ysize’ is the width and height of the
757 area in portrait and landscape node, respectively.
758 ’i_cwdseq[]’ is the sequence to be sent to the calling process (it
759

760

/"\ 761

762

763

can be of zero length).
'i_flags’ contains sone flags indicating the type of icon and some

attributes:

I_PHODE - Portrait node coordinates are given.
764 l_LHODE - Landscape node coordinates are given.
765

!"\ 766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782'7 res
784

785

786

rev
*7 roe

l_PRESS - Send the sequence when the mouse pointer points to
the area and the left button is pressed.

I_RELEASE - Send the sequence when the nouse pointer points to
the area and the left button is released.

I_lNVERT - Invert the area occupied by the icon when the
mouse pointer is pointing to it.

T_ENTER — The sequence is sent when the mouse pointer noves

into the area. The area does not have to be

visible. The I_INVERT flag is ignored.
I_LEAVE - As i_ENTER but the sequence is sent when we leave

the area.
I_REMOVE - The icon is renoved when the sequence has been

sent.
T_RuST ~ The sequence is sent only if there is a pending

read request to the window.

I_SETCHK - when I_ENTER and/or I_LEAVE is set, it is checked

if the nouse pointer is inside or outside,
respectively, the specified area, and if so the

sequence is sent innediately.
I_LZERO — The sequence is sent only if it is the level zero

window.

I_TEXT - The coordinates and sizes of the icon is supposed

to be given in tern of characters instead of
pixels. Note that ’ip_xorig’ and ’ip_yorig’ or

789 ’il_xorig’ and ’il_yorig’ in this case are inter~
790

791

792

793

794

795

796

797

798

799

800

881

cococo

C'*~cn-l>~c.~1I‘

preted as the character position relative the
upper left corner of the virtual screen.
Hhen the default font is changed, the locations
and sizes of icons set up with this flag set are
adjusted.

The renaining bits should be zero to guarantee compatibility with
future versions.
Note that if no one of I_PRESS, I_RELEASE, I_ENTER, or I_LEAVE is
given, I_PRESS is assuned. I_ENTER and I_LEAVE overrides I_PRESS and

l_RELEASE.

° The return status ’i_rstat’ is:

H_0K - everything is well.
HE_NOTCR - the window is not created yet.
HE_ILPARA — any of the input paraneters are illegal.

¢

iv

Aug S 18:37 1985 window_hnd.doc Page 14

807

808

809

810

Ell
812

813

814

815

816

8l7
818

820

821

822

;-\ 823

824

B25

826

827

,-\ 828

829

830

831

832

833

834

B35

836

837

838

839

840

841

842

843

e44A ens

846

847

HE_NOICON — no nenory left for the new icon.
NE_0NICON - the icon will cone above another icon in the sane

window.

UE_ILHOD - nodcoordinates are given for the current screen
no e.

6.11 Remove Icon’s
——_§—no—nn_———_macs-n-on-_cu___cn—

To remove all set up icon’s for a window, use the request:

Rnicons(fd);
319 int fd;

6.12 House Substitute Keys

To nake it possible to use the nindow handler without a mouse, the
different functions supported by the mouse can be simulated by

function and other special keys on the ABC99 keyboard (these keys
generates codes with the nost significant bit set).
To specify these keys, use the request:

Hinnsub(fd, bp);
int id;
struct substit *bp;

The file descriptor used oust be the one obtained when the window

handler was activated (the first open request to the handler). The

structure substit looks like:

typedef char sint;

struct suhstit
l

sint c_initflg;
unsigned char c_keys[SUBSTKEYS];

unsigned char c_step;
unsigned char c_lstep;
union

848 i
849 long c_xxx;A eso l ¢_Pd;
B51 };
852

853

854

855

856

857

858

859

860

861

B62

863

864

The meaning of the different nenbers are:

c_initflg If ON the mouse simulation keys will be enabled after
this request. If OFF they will initially be disabled.

c_keys[] The keys used as substitue for the mouse.

c_step Step for normal house pointer move (no. of pixels).
c_lstep Step for long mouse pointer nove (no. of pixels).

The index for the different keys in the ’c_keys[]’ array are:

S_0NOFF The key used to toggle the mouse simulation keys on or
off. when off, the keys behaves as norwal (except

865 'S_0NOFF').

866

B67

S_HPU Move noose pointer up.
S_HPD Hove mouse pointer down.

868 S_HPL Hove noose pointer left.

Aug 5 18:37 1985 window_hnd.doc Page 15

869

870

871

87

873

2

874

875

876

877

878

879
880

881

882

883

884

887

x"\ 885

886

888

889 Pressing and releasing a button on the mouse is replaced by pressing

1‘892

r'“\ 898

891

893

894

895

896

897

898

899

930

981 lt fd;
9-2 -

9'1
4

fl

iu

(‘Tr’)

9;

‘-C"-O\°‘-D

¢'3.3¢6?:

¢O-~.|C"'-cn-l=-c..-1

989

910

911 {
*7 912

913

914 1

915 4 long cb_xxx;
916

917 l;
918

S_HPR Hove mouse pointer right.
S_HPUL Hove mouse pointer up — left.
S_HPUR Home mouse pointer up - right.
S_HPDL Hove mouse pointer down - left.
S_HPDR Hove mouse pointer down - right.
S_LMPU Hove mouse pointer up long.
S_LHPD Hove mouse pointer down long.
S_LHPL Hove mouse pointer left long.
S_LMPR Hove mouse pointer right long.
S_LMPUL Hove mouse pointer up - left long.
S_LHPUR Hove mouse pointer up - right long.
S_LHPDL Hove mouse pointer down - left long.
S_LHPDR Hove mouse pointer down - right long.
S_PCHD Point to command key (replaces the left key on the

mouse).

S_CHHIN Change window level key (replaces the right key on the

mouse).

S_HCA Hark text area to copy (replaces the middle key on the
mouse).

the chosen keyboard key twice.
Note that no keys will be occupied by these keys if this request has

not been issued.

6.13 Alter the Background Pattern

To alter the pattern of the background, use the request;

Hinchbg(fd, bp)

struct chbgstruc *bp;

‘fd’ must be the file descriptor obtained when the window handler was

activated.
The chbgstruc structure looks like:

typedef unsigned short word;

struct chbgstruc

word cb_bitmap[BGPSIZE];

union

} Cb_P&d;

919 ’cb_bitmap[]’ is the bit pattern of a 16 x BGPSIZE pixels area which

9

922

923

924

925

926

927

928

9o

920 will be repeated all over the background.
21 Note that the most significant bit in a ‘word’ is displayed to the

left on the screen.

6.14 Bet the Visible Parts of a Window or the Background

To get the visible parts of a window or the background, use the
929 request:
’0

qv 0 ._._’-.._,,,_,

Aug 5 18:37 1985 windou_hnd.doc Page 16

931

932 int fd;
933 struct buffer *bp;

93a

937

939

939

940

941

942

943 T

944

945

94c 1;
9*-\ 947

948

949

950

95l
/'~\ 952

Hingetvis(fd, hp, bc)

934 int bc;
935

fd is the file descriptor for the window, or the file descriptor
obtained when the uindou handler was activated if the visible parts
of the background are desired.
’bc’ is the size of the buffer structure.
The buffer structure looks like: 9

struct buffer

struct visdes v;
struct rectdes b[VSIZE];

The visdes structure is a parameter structure and looks like:

tvpedef char sint;

struct visdes
953 i
954

955

956

957 i
958 long v xxx;
959

960 l;
961

962

963

964

965

966

967

968 i
"79 9&9I

970

971

972

973 l;
"79 974

975

976

977

978

979

980

981

982

983

9984

985 H_0K - 0k

984 ve_uorce 9 the uindou has not been created vet.
99? 9E_SPhCE ~ ot enough space to hold the rectangles (i.e. VSIZE

988 is too small).
989

998

991

992

short v_nrect;
sint v_rstat;
union

T 9-944;

The rectdes structure describes one rectangle which the visible part
of the virtual screen or the background can be divided into:

typedef short pix_d;

struct rectdes

pix_d r_xorig;
pix_d r_yorig;
pix_d r_xsize;
pix_d r_vsize;

where ’r_xorig‘ and ’r_yorig’ are the x and 9 coordinates respectively
of the lower left corner of the rectangle. ’r_xsize’ and ’r_vsize’ are
the width and height, respectively, of the rectangle.
Hhen this request is executed the ’v_nrect’ oenber of visdes should
contain the number of rectdes structures (VSIZE) in the buffer
structure. The request returns the actual number of rectangles that
the virtual screen (or the background) can be divided into in
’v_nrect'.
’v_rstat’ is the return status:

6.15 Inverse Video

/'\ 1

Aug 5 18:37 1985 window_hnd.doc Page 17

0
;.

C

Q

1

1'.

.‘.

T

G

h

0
-‘.

I
..

"1

1'

Q

;_1I‘-\p-Q

10

1027 1

993

I

996

99

99

999 changes the screen to inverse video. ’fd’ wust be the file descriptor

Ci

‘Q

|ll‘

.__1E?we*7-7*0-

rP12;.)4;)9;vi(3herag;C)(_i)

l-'CD\n*IO-qC'*~C.rI4=>.C.-Jr-Q!--*¢;:>

013

I'"\ 1314

I015 ‘

7

8

IND

1016

17

--18
019

320

994 The request:
9o5

Hinivideo(fd)
int id;

obtained when the window handler was activated.

6.16 Nornal Video

The request:

winnvideolfd)
it fd;

restores the screen to norwal video. ’fd’ must be the file descriptor
obtained when the window handler was activated.

6.17 Hake the Cursor Visible in the window
_—__an-———_p_——-__—un@_In___n-an-u-c-a--n-nu-—__——-menu-u-nncnu-unnununnun-1‘---cu--van:-u--u---_---n

To wake the cursor visible in the window, use the request:

Hincurvis(fd)
O

-121 Int fd;
1022

1023

1024

1025

If the whole cursor is not visible, the window is scrolled.

26 6.18 Change House Pointer

1028

1029

1030

1031

1040

1041

lC4t

is

1
1

£048 pix_d np_xsize;
£049

1050

1051

1352 dword np_and[HPSIZE];

1353 dword rp_or[HPSIZE];
1854 byte np_flags;

4

. I

1

1 1

1

icasA rose.

roar
lose
was

'9

1143

1044
11 10:

To change the layout of the mouse pointer, use the request:

Hinchwpntlfd, bp)

1032 int fd;
1033 struct npstruc *bp;
1034

If fd is the file descriptor obtained when the window handler was

activated, the global mouse pointer is altered. therwise the wouse

pointer for the window indicated by the file descriptor is altered
(in this case, the ALTHPNT flag for the window oust be set).
The npstruc structure looks like:

typedef short pix_d;
typedef unsigned long dword;

tvpedef unsigned char byte;
typedef char sint;

u45

;G46 struct npstruc
1247 1

pix_d cp_ysize;
pix_d np_xpnt;
pix_d rp_vpnt;

IC -W ~0-
,4-

Aug 5 18:37 1985 window_hnd.doc Page 13

9.

£-

0
1 1

O
r

Q

l‘~\l“*'

Z061

-36a

355 sint np_rstat;
1356 union
i057 {

053 ong np_xxx;l
1059 l np_pad;
-0o0 },

1 ° ’np_xsize’ and ’np_ysize’ are the width and height, respectively, of
i963 the new mouse pointer. The naxinal width is 32 pixels and the height
D64 MPSIZE pixels.
065 ‘np_xpnt’ and ’np_ypnt’ are the pixel which is the pointing part of

106a the noose pointer. It shall be specified relative the upper left

T
4.

11

tr

I

P

1332

1083 HE_NOMP - The ALTHPNT flag for the window is not set, and

1084

1085

1086

1087

1088

1089

1090 To find out how nany windows which are open and/or created, use the
1091 request:

‘H
1.oe2"‘ 1093

<

r

I
an

10*“

>

4 r

A
r

1

r

‘F.

r .

...

10

1075 significant bit in a 'dword” is displayed to the left on the screen.
/"\ 1076 '

-377

£067 corner of the nouse pointer.
068 ’np_and[]’ and ’np_or[]’ are wasks used to construct the mouse

1069 pointer.
1070

;'“\ 1071

1072 (x & np_and[prow]) 1 np_or[prow]
1073

Each pixel row of the nouse pointer is constructed by the operation:

74 where ‘x’ is the contents of the graphic weuory. Note that the most

np_flags’ is reserved for future use and should be zero to guarantee
~ compatibility with future versions.

1078 ’np_rstat’ is the return status:
079 .

1380 H_0K - 0k.

1081 wE_ILPARA - An illegal value was specified.
w£_worcn - The window has not been created yet.

. therefore the nouse pointer can not be changed.

6.19 Get Number of Open windows
__—un—_————_cu____——nu—_——-an-an-no-nun-wanna-nuccnnnsnun-n-1-‘--are-——_

1 Hincntlfd, hp)

y struct nwstruc *bp-
1094 . int fd;
1095 - ,

‘ I-C°6

Z097 ’fd’ is the file descriptor obtained when the window handler wasA icon1 activated or the file descriptor for a window.

1099 The nwstruc structure looks like:
1100ll .tr

1101 struct nwstruc

1102 l
103 short nw_open;

1104 short nw_created;
1105 union

106 {
107 long nw_xxx;

108 l nw_pad;
1'

r 0

‘P
r

1.09 },
-110

1111 ’nw_open’ is the number of windows currently open and ’nw_created’ is
1112

lll3
1114

1115 6.20 Restore Screen

the nuuber of windows currently created (and opened).

11$::::::::::::::

Aug 5 18:37 1985 window_hnd.doc Page 19

‘T

1ea._:_,

do

4‘-

h

1:‘;;::nA|“—*

Y

9

4

nu

Q

-Q

h

T
1;

n

er

‘i

1

Ii
F--s9A .160 1

£161 long tx_xxx;

red

1129

-154

1155

1156

-117

1118

1119

T21

122

1120 Ninrestorlfdl
- int fd,

1'

ll

1126

1127

ize

zoo

:31

li32-
I

Z41

To restore the screen, i.e. rewrite the whole screen, use the request

123 ’fd’ nust be the file descriptor obtained when the window handler was

i124
125

activated.

6.21 Get Text Contents of window

To get the text contents of a window, use the request:

Hingettxt(fd, bp, bc) ‘

/"\ 1133 int fd;
1134 struct buffer *bp;
;135 int bc;
’ 36

1137 ’fd’ is the file descriptor for the window. The structure buffer
;'~\ 1i38 consists of a parameter structure followed bu a buffer with space

1139 to hold the desired text contents:
1140

struct buffer
i142 l
1143

1144

struct txtstruc s;
char b[BSIZE];

145 1;

nae.

1147

148

i149
£150

£151

1152 struct txtstruc
1153 {

4

1157

158
'9

1

1162
I
1.

1164

1165

7

The txtstruc structure looks like:

typedef short cur_d;
typedef char sint;

cur_d tx_row;
cur_d tx_col;
cur_d tx_rcnt;
cur_d tx_cont;
sint tx_rstat;
union

} tx_pad;
163 l;

’tx_row’ is the row number of the first row to be read and ’tx_col’
1165 the nunber of the first column. ’tx_rcnt’ and ’tx_ccnt' is the number

116 of rows and columns, respectively, to be read. BSIZE nust be at least
1163 tx_rcnt * tx_ccnt.

9

an

Tl
TY

ii

r

1an

{<1

i73
174

il75
1176 ‘$.22 Test if Hindow Handler is Activated
1177

ii78

Z169 ’tx_rstat’ is the return status:
Z70

1171 N_0K - Everything is oh.

1172 HE_TSAVE - The text contents of the window is not saved.

NE_ILPARA - Illegal parameters was given.

I

1A-»

Aug 5 18:37 1985 window_hnd.doc Page 20

G
I

1

Q

F

I

3 1

‘H

up

O

an

T
4.

1

*1

1?

F

-‘
0

.-

*1

:1F“p===

-LL

L179

180

1181

Z132 . int fd;
183

191

192

Z193

Z194

/"\ 1195

To test if the window handler is activated, use the request:

Hintest(fd)

1184 ’fd’ is the file descriptor for a window or the one obtained when

ll8S
1186

187

1188

1189 6.23 Set Initial Driver and Terninal Parameters
1190

the handler was activated.
If a negative value is returned, the window handler is not present.

—_—_____———§——__Q——__cn_Q—c______——»—————un@up-'--nnno-u-—-»—___—-—uu_—u-nu-__——__——un—————uu_—-an

This request is used to set the initial driver and terninal parameters
for windows. The request is:

Hinsinitifd, hp)

196 int fd;
i197

198

r-.>P->ro!f9'§9r\>"9r

¢‘!>(3enweQ)19(3
-..QCf.'J~..._|C|"-(J'I.§-C.-lr-Q

struct wininit *bp;

1199 ’fd’ nust be the file descriptor obtained when the window handler was

¢'~\ taco

1221
to

activated.
The wininit structure looks like:

twpedef unsigned long t_stop;
typedef unsigned short word;

struct wininit
{

t_stop td_thstop[TSTOPSIZE];
word td_tern;

1210 struct
1211 i
1212 unsigned short c_iflag;
1213 unsigned short c_oflag;
4

n

-L

F.21a

"_\ 1217 unsigned char c_ccs[8];
1218

e
1

9

1

F
T

T
4.

Q

-in

‘T75l‘*==\

5224

Z225 ’td_tbstop[]’ contains the tab stops. A set bit indicates a tab stop.

1214

215
9 .

1219

unsigned short c_cflag;
unsigned short c_lflag;
char c_line;

} td_driver;
union

222 {

222

E2 -’,_\ c 21 long td_xxx,
} td_P&d;

223 1;

226 The least significant hit of the first elenent corresponds to the

1227

1228

1229

1230

1231

1232

233 TD_USCORE underscore character attribute.
3 P

2 4

1235

1236 TD_CUNDER underline cursor.

first character position of a row.
’td_tern’ contains initial VT—100 terwinal flags:

TD_NL linefeed newline node.

‘D_HRAP auto wrap node.

*D_0RI6IN origin node.

TD_REVERSE reverse character attribute.
TD_SCREEN screen node.

237 TD_N0NBLNK non~blinking cursor.

239

ea

A-L 240

238 TD_PHASE phased pattern mode.

rD_NUSCR no scroll (page) node.

‘at

Aug 5 18:37 1985 window_hnd.doc Page 21

1241 The remaining bits in ’td_tern’ should be zero to guarantee
1242 compatibility with future versions.
1243 ’ ’

1244 the same structure as the teroio structure (see the header file
1245

l
E247

£248

1249 sane as those of the console when the window handler was activated.
50

i251

1
1.2

W

td_driver is a structure which contains the driver parameters. It is

(sys/tereio.h> and the documentation for the ioctl() unix systee
245 call).

The default tab stops are every eight position, of the terminal flags
the TD_HRAP flag is set by default, and the driver parameters are the

252 6.24 Get Initial Driver and Terninal Parameters

12

1254

T I

4

l-LL

l

F
1

1270

127

l
78

"_\ 1279 Ninzooulfd, bp)

1280 int fd,

4

/"\ .
I

4

4

A

5pg

1294

1255

1256

,-\ 1257

125a

o

2

53

To get the values of the initial driver and terminal paraweters, use

the request:

° Hinginit(fd, bp)

1259 int fd;
1260 struct wininit *bp;

61

¢*~\ 1262 ’fd’ oust be the file descriptor obtained when the window handler was

Z263

1264

65

1266

activated.

2 6.25 Set Up a Zoon List for a Hindow

1267

i268

—_¢-up-|___——uncv———_—n—_———ccnnnnnncna--—_-n-u-n-uua-1-q-can-on-ac-\-u----on--a-—un_.—_

269 A zoom list is a list of fonts to change between when the wouse

1271

l272
1273 is reached, the next font will be the first one in the list.
l274
l

pointer points to the zooa box and the left button of the nouse is
pressed. Every time this happens, the next font in the zoom list
becomes the default font for the window. when the end of the list

when a zoom list is set up, the current default font will become

275 the first font in the list followed by the fonts specified in the
2 6 zoonlst structure.
277 To set up a zoom list, use the request:

1')

1281

1282

1283 ’ ’

struct zooolst *bp;

fd is the file descriptor for the window. The zoowlst structure
284 looks like:

2

1285

1286 typedef unsigned char byte;
*287 tvpedef char sint;

88

2 struct zoonlst
1290 {
1291 char Zp_list[ZO0HSlZE];
r

1289

1 2 c 299° har l list[ZO0HSIZE];
1293 byte z_flags;

sint z_rstat;
1295 union
2% {

1297 long 2_xxx;
l

1298 } z_pad;

1299 l;
1300

1301 ’zp_list[]’ is the list of fonts to be used in portrait mode and

1302 ‘zl_list[]’ is used in landscape node.

/'"\
.1

one an

-w

Aug 5 18:37 1985 window_hnd.doc Page 22

4
r

1

4‘-

ll

#

in

D

l

1 r

f

,*~\. t3
1

n
1 5

'7

E32;

L323

24 Hinndchrlfd, bp);

9
4.

J4

35

36

37

U8

1309

1310 The return status ’z_rstat’ is:
I311

ca

isle
1313

1314

1315

l3l6
1317

1312

/-\ 1319

Lalo
321

9

1325 int fd,
1326 struct dfltchr *bp;
-3 7

1329

t
r r

1'

9

T

_34Cff‘ 1341

“' 1342 byte dc_rstat;
1343

1330

I331

1332

‘ I

1348

z_flags contains some flags:

Z_PHDDE - Portrait node zooo list is given.
2_LHODE - Landscape node zoom list is given.

The remaining bits should be zero to guarantee compatibility with
future versions.

H_DK - everything is ok.
HE_ILPARA - an illegal font was specified.
HE_ILHOD - no list is given for the current screen node.

Note that this request can be used before the window has been created.

6.26 Change the Default Font for a Window
_qn~|____—————Q__cunuo—___@—cunn-nann--un-qn__unaw---——_——__--——_-_———_wn—__»——___-

To change the default font for a window, use the request:

L328 fd is the file descriptor for the window and the dfltchr structure
looks like:

typedef short cur_d;
typedef unsigned char byte;

1333

1334 struct dfltchr
i335 i
i336 char dcp_font;

char dcl_font;1337

1338 cur_d dcp_x;

1339 d d 1cur_ c _x;
cur_d dcp_y;
cur_d dcl_y;

union

344 i
1345 long dc_xxx;

1346 l dc_pad;

-347 l,

1349 ’dcp_font’ and ’dcl_font’ are the new default font in portrait and

D.

‘ 1

1350

i351
L352

1353

i354 the window after the default font has been changed.

1355 ’ ’

i356
1357

Z358

l35
1360

1361

1362 ’dc_rstat’ is the return status:
i363

9

landscape mode, respectively. If the specified font is zero, the next
font in the zoon list is used.
’dcp_x’, ’dcp_y’, ’dcl_x’, and ’dcl_y’ is the character coordinates in
portrait and landscape node, respectively, for the niddle character in

dc_flags contains some flags:

2_PMDDE - Data has been given for portrait node.

Z_LMDDE ~ Data has been given for landscape node.

The remaining bits should be zero to guarantee compatibility with
future versions.

1364 H_0K ~ everything is oh.

‘I ._ ,

Aug 5 18:37 1985 window_hnd.doc Page 23

1365

1 1:‘ {:1 Ll

33d?na-

1368
9‘

A

O

Q

1 i

l

369

o

374

HE_NOTCR - the window has not been created yet.
he_ltMOh - no data is given for the current screen node.

we_itewnn - an iliegal font and/or iilegal character
coordinates were given.

HE_TSAVE - the text contents of the virtual screen is not
save .

HE_NOHOVE — tte NOHOVE flag for the window is set.
HE_NOFONT - the specified font does not exist.

-370 d

1371 HE_ALLSCR - the ALLSCR flag for the window is set.
-37u

I373

i375 This request does not (if possible) change the size of the window.

i376 theThe size of the virtual screen is however adjusted so it contains
1377 sane number of character rows and colunns.
1378

l

'5

F

H

~\I“\

F
r..»

"I

f

I

14-

Z41

l4-
i415
1416

1417

1418

i419
i420
i421

i422

-390

-391

l4o
l4l
14.

1379

1380

/"\ E331

i382
1383

1384

i385
I"\ Z386

i387 int id;
-388

1389
r

>

i392
1393

1394

Z395

i396
i397
1398 i
1399

1400

ll
482 {

441~."*i-11xiii:Q3£531;)cq‘t-J

.;:>.¢»~Ir\30--¢;3'~On:Q'*~l0\c.n.>.Q~J

l423
1424

1425

1426

6.27 turn the Screen
___—_—__———___¢u--n---n-__--Q--n-nu-_|

To turn the screen fron portrait to landscape mode or vice versa, use

the request:

Hinturn(fd, bp)

struct nodstruc tbp;

All channels, except the one obtained when the window handler was

activated, oust be closed.
’fd’ oust be the file descriptor obtained when the window handler was

activated. The wodstruc structure looks like:

trpedef char sint;

struct wodstruc

sint n_wode;

sint n_rstat;
union

long w_xxx;

} o_pad;

l;

’o_node’ will on return be M_POR¥ if the new node is portrait node or

H_LAND if it is landscape.

'o_rstat‘ is the return status:

H_0K - everything is oh.

HE_0PEN - there are windows open.

6.28 Get Screen Mode
-an-_nn-n—_no___nn____—_—~nu—_-nu-u—__

To get the current screen node (portrait or landscape), use the
request:

Hinoodelfd, bp)

int fd;
struct nodstruc top;

’fd' is the file descriptor obtained when the window handler was

activated or the file descriptor for a window. The wodstruc structure

Aug 5 18:37 1985 window_hnd.doc Page 24

>

l
1

l

>

O

1

1427

£428

i429
14

i431

£43k

l4
1434

£435 window border. Hhen the oouse pointer points to a user box and the
1436 left mouse button IS pressed, a signal is sent to the processlesl
£4

£438 When a window is created, the maximal number of user defined boxes
1439 for the window must be specified (see the Hincreatll request).
i440

441

1442

;*-\ L443 int fd;
i444 -

was described in section 6.27. The ’m_mode’ member contains the
current mode (M_PORT or H_LAND) and ’m_rstat’ is always H_0K.

so

6.29 Add a User Defined Box
9 IIIZIZZIZZIZZZZIIIIZZI

33

User defined boxes are 16x16 pixels boxes in the left side of the

37 running in the window.

To set up a user defined box, use the request:

Hinubox(fd, hp)

struct userbox rbp;
-445

1446 ’fd’ is the file descriptor for the window. The userhox structure
1447 looks like:
1448

1449 typedef unsigned short word;

£450

£451 typedef char sint;
145a

typedef unsigned char byte;

9

1453 struct userbox

T

4T

Tl

I

l
T

I454 {
1455

1456

1457 byte bx_flags;
£458 sint bx_rstat;
1459

1460 f
loot long bx_xxx;

1462

E463 f;
i464

f'_\ i465 ‘bx_bmap[]’ contains the bitmap for the box. Note that the most

1466

word bx_bmap[UBOXSIZE];

short bx_sig;

union

} bx_pad;

significant bit in a "word" is displayed to the left on the screen.

1467 ’bx_sig’ is the signal to be sent when the box is used.

£458 ’bx_flags’ is reserved for future use and should be zero to guarantee

,,_\ 1469 compatibility with future versions.
1470 ’bx_rstat’ is the return status:
1471

i472 R_0K - all is well.
1473 HE_NOTtR - the window has not been created yet.
1474

£475 already been set up.
1476

HE_SPACE - the maximal number of user defined boxes have

HE_ILPARA - an illegal signal number was specified.
1477

1478

1479 6.30 Alter Help Box Sequence

1480

L481

1482 The help box is a box in the upper side of the border containing a

1483

1484

question mark which when used puts a character sequence on the key-
board input buffer. The intention is that all programs use this

1485 facility so help can be requested in a similar manner in all programs
1486 when a window is opened, the help box sequence is initialized to a

1487

1488

single question mark (?). To alter this to another sequence, use the
request:

Aug 5 18:37 1985 window_hnd.doc Page 25

1489

149d

1491 int fd;
1492

1496

9

F
y .

tl

Tr

4

i598

15-

15-

l5-
l5l7
1518

1519

i502

i503
i504 {

|*;4f‘l~1i|===n

()1CJ1CI!
4»kw£5r$5~s;¢>

CI"~(J1.p-Cm-1|pgi--4:)\O

1520

1521

l-531

"_\ 1532 struct kysigst
1533 {
15:4T

T

i536

I537

£522

Z523

l524
1525

£526 int fd;
1527 struct kysigst *bp;
l528

£529 ’fd’ is the file descriptor for the window and the kysigst structure
1530 looks like:

S

0

1541 T,

1542

1543

1544 ’ks_flags’ is reserved for future use and should be zero to guarantee
1545

IS46

1547

1548 H_0K - everything is well.
1549

1550

winhelp(fd, bp)

struct helpst *bp;
l493
1494 ifd’ is the file descriptor for the window. The helpst structure looks
l495 kl 9:

1497 typedef unsigned short word;
-498

1499 struct helpst
1500 {
.501 char hlp_seq[HLPSIZE];

word hlp_flags;
union

,*~\ i505 long hlp_xxx;
i506 } hlp_pad;
1507 T,

’hlp_seq[]’ is the new help box sequence. ’hlp_flags’ is reserved for
future use and should be zero to guarantee compatibility with future
versions of the window handler.
Note that the help box sequence can be altered before the window has

been created.

6.31 Keyboard Input Signal
- _ - ~ - - - - - - - - _ --l-.------ _ - - - - _ - . - - - - - _ - - . - --.

To nake it possible to know when there is something to read fron the
keyboard buffer, a signal can be set up for this purpose. The signal
will be sent when there is no pending read request to the window and

reading the keyboard buffer will not lead to wait.
The request is:

winkysig(fd, bp)

sint ks_sig;
L535 byte ks_flags;

sint ks_rstat;
union

L538 {
i539 long ks_xxx;
£540 l ks_pad;

ks_sig is the signal to be sent. If zero, no signals are sent.

compatibility with future version.
’ks_rstat’ is the return status:

HE_ILPARA - an illegal signal was speoifiead.

"_\ 1594 respectively, of the lower left corner of the area to read. ’p_width’

Aug 5 18:37 1985 window_hnd.doc Page 26

1551

1552

1553

1554

,.

<1

, ,

>

1

I

1558 Hpictrd(fd, bp, bc);
1559 int fd,
1560 struct buffer *bp;
1561 int bc,

1565

1566

/"\ 1567

1568

1569

1570

1571 struct buffer

1L

¢'~\ 1572 1

1573

575

1576

1577 The wpictblh structure looks like:
1578

1579

1580

1581

1582 1

1583

1584

1585

1536

1587

1588 1

1589 long p_xxx;

1590

159

1591 1;

159.9

0

6.32 Read the Contents of the Picture Memory
_nn__—nnuu——nn__u-upunaunnnnna--up-—un_cnnc|—cn_-nu-_an—uuun——-----u--6-nu-_un_nuncuc-an--1-—_an-n-_—_—n¢——-u___uu_

1555 To read the contents of the picture nenory for a window or the whole
screen, use the request:issb ‘

1557

O

-562

1563 ’fd’ is the file descriptor for the window or, if the contents of the
1564 whole screen is desired, the file descriptor obtained when the window

handler was activated. The buffer structure consists of a parameter
structure followed by a buffer big enough to hold the contents of the
specified picture neuory area:

typedef unsigned char byte;

struct wpictblk p;

1574 byte b[BSIZE];

1,

typedef short pix_d;

struct wpictblk

pix_d p_xaddr;

pix_d p_yaddr;

pix_d p_width;
pix_d p_height;
union

1 P_PHd;

’ ’p_xaddr’ and ’p_yaddr’ are the x and y pixel coordinates,

is the pixel width of the area and ’p_height’ the pixel height.1595

1596 BSIZE must be at least p_height * (p_width + 7) / 8.
1597 Data areas in buffer.b[] corresponding to non-visible areas of a

1598

1599

1600

1601

16E

16$

16$

169

161

16.

162

161

1+»,

16$

16.
I,

Tr

CO‘\l|j*§C)‘I-I21»-€..o~lI'~DI--Iix

1612

virtual screen will contain zeroes, i.e. cleared bits.
Note that the nost significant bit in a byte is displayed to the left
on the screen.
WARNING: At the nouent this request is extremely slow and the conputer
seems to hang up while this request is served.

6.33 Alter the Spray Hash

This request changes the 32 tines 32 pixels pattern used by the spray
escape sequence (see wh_escapes.doc).
The request is:

Spraywask(fd, bp)

-.

Aug 5 18:37 1985 window_hnd.doc Page 27

4',
l .

an

1'

a

P

'.'
1..

l
>

1627

1

4.

T 1

?
l

A

Tl

4

F

1

|

1652

1653

1654

1658

l659
1660

1661

Q

1623

1624 l;
1625

l 2 ’ ’

|-:\[~—1

chQ-t0-chi:I-.1:1--

FfiL11[661lei

U14:»CA

5-.“

Z3
v,-'1'-

’ “'9'!

C1.
nil

struct sprayst *bp;

6 ’fd’ is the file descriptor for the window and the sprayst structure
17 looks like:
8

l6l9 typedef unsigned long dword;
i620

1621

i622
struct sprayst

{
dword sp_mask[8*si2eof(dword)];

6 6 where sp_mask[] contains the bit pattern for the spray mask.

Note that the most significant bit in a "dword“ is displayed to the
628 left on the screen.

I

I

I

I

-639

£640

Z641

1645

E646

Z647

.650

”_\ 1651

/"\ 1629

1630

no-—-nuns:-an-1---snuu_n_|—¢n—---pc--an

1631 7. Other I/0 Control Commands

-632 ------------------------ --
;633

!"\ T1634 This is a list of I/0 control requests which are identical or similar
-635 to their counterparts in the tty device driver:
-636

1637 PFNKLD Load A8699 function keys. The file descriptor
l638 can be both the one for a window and the one

obtained when the window handler was

activated.
PFNKRD Read ABC99 function keys. The file descriptor

1642 can be both the one for a window and the one

164

l644

3 obtained when the window handler was

activated.
PTOKBD Hrite data to the ABC99 keyboard. The file

descriptor must be the one obtained when the
window handler was activated.

1648 TIOCGETP Fetch the basic parameters for the terminal
1649 (v7)

TIOCSETP Flush and then set the basic parameters (r7).
TIOCSETN Set the basic parameters (no flush) (v7).
TIOCEXCL Set “exclusive-use” mode (v7).
TIOCNXEL Turn off "exclusive-use‘ node (v7).
TIOCFLUSH Flush input and output queues (v7).

’,.\ 1655 TIOCSETC Set the special characters (v7).
‘ 1656 TIOCGE'C Get the special characters (v7).

l657

I
L668

1669

Z670

-673

1674

FIORDCHK Check if any character on input (v7).
TCSETAF wait for output to drain, then flush the input

queues, and set the parameters for the
terminal.

TCSETAH As above, but do not flush the input queues.
° TCSETA Set the parameters for the terminal.166; t

1663 TCGETA Bet the parameters for the terminal.
Z664

1665 output queues.

1666

1667

TCFLSH Flush the input, output, or both the input and

It should be noted that the set up of the ABC99 function keys is
common for all windows. Hence the PFHKLD and PFNKRD requests should
be used carefully.

l67l
i672 8
F

.% Window Groups
-nunuuunuunnunnqnqcnnun
__—@——uu——qn_—_

‘G 40

Aug 5 18 37 1985 window_hnd.doc Page 28

1675

1676

l
1678

1679

1680 HGROUP flag set (i.e. the remaining windows in a group). If the
lo81

‘T

..‘.

O

.-

Tl

4

ii

-n

Q
4

.-

f

a

1-

I
no

‘ r

>

T

T
>

T

r

lo

All windows belonging to the sane process group and with the HGROUP

flag set, belongs to a window group.
677 The parent window in a group is the first window in a process group

I

I

I682

i683

I684

created with the HGROUP flag set.
A child window is a window which is not a parent and which has the

parent disappears (i.e. is closed), the children looses their group
connection.

It is guaranteed that all windows in one window group always are on

consecutive levels.
1685

1686

37 9

1638

1689

1690

. Sone Notes about the Storage of the Text Contents of a

Virtual Screen

691

tote If the SAVETEXT flag for a window is set, the window handler will
1693

£694

1695

wF“\ I696 text contents and regards text as graphics:

internally store the text contents of the virtual screen and

automatically update the window when necessary.
There are two cases when the window handler stops rewenbering the

697

‘T;

/\ ,;

1731

I732

I733

4

‘ ,1707

1738

i709
710

-1

|;_;;1:1

£698

1699

1700 sequence.

it

Q

pi

-7-5
Z716

l?l7
ll
tr

1721

17°

l72
1724 If the pointer points to a parked area in the lower right corner of

i) If the escape sequence ESE : tn) H is sent to the window or
ii) If the font is changed using the Select Character Set escape

There exists two possibilities to force the handler to start
rewewbering the text contents again:

i734

1735 i) Send the Reset to Initial State escape sequence (ESE c) to the
i736 window or

ii) Send the ESC : J escape sequence to the window when the current
font is the sane as the default font for the window.

Method il has some side effects, so method ii) is to be prefered.

2

3 10. Functions Automatically Supported by the window Handler
4 IZIZIIIIZZZZZIIIZIIZIZIIIZIIIIIIIIIZIIIIZZIZZZIIIZZIZII

The handler automatically moves a pointer around the screen when the
nouse is wowed.

i7-8
i719 If the pointer points to a region parked by the Hinicon() request, the
1720 area is inverted if the I_INVERT flag is set and if the left button

on the mouse is pressed, the specified code sequence is sent to the
.2 appropriate process.

3

a window border and the left button on the mouse is pressed, the size1725

1726 of the window can be changed be mowing the woese around. The operation
1

iF2? is suspended when the ieft oouse button is released. If the window is
1728 a parent of a window group, the children will also be noted if
l72
l7
1731

1732 pointer on the wart at the upper right corner of the border, press the
1733

1734

l7

9 appropriate.
30

35

1736

To wove a window (including the virtual screen) around, put the

left button on the mouse and wove the window by noving the nouse. To

stop the operation, just release the button. If the wowed window is a

appropriate.
parent of a window group, the children will also be noved if ,

Aug 5 18:37 1985 window_hnd.doc Page 29

E737

1738 To change the part of the virtual screen which is visible in the
T L739 window put the pointer on one of the four scroll arrows and press the

1740 left button on the nouse. This will cause the window to scroll one

£741 row or colunn in the direction indicated by the arrow.
1742 An alternative is to put the mouse pointer on the horizontal or the
£743 vertical visible indicator, press the left button, and drag the
L744 indicator to the desired location. The window is scrolled when the ~

i745 left button is released.
174a

, I

£747 If the pointer is put on the nark at the upper left corner of the
i748 border and the left button on the mouse is pressed, a signal (if
£749 specified) will be sent to all processes in the window.

1750 "

£751 To copy a region (a rectangle) of text fron one window to another, put
1752 the pointer at the upper left character of the rectangle, press the

/'~\ 1753 middle button on the mouse and a rectangle can now be made by moving

1754 the pointer to the lower right character and releasing the button. The

i755 marked region is now indicated by four lines surrounding it. To

1756 abort the operation, press any button, except the niddle one,
1757 otherwise wove the pointer to the destination window and press the

¢"*~ 1758 middle button once wore, causing the marked region to be copied. Note
1759 that this operation will also work with programs not knowing about the
1769 T windows, since the text contents of all the windows are stored by the
1761 window handler.
1762

1763 To wake a window the top level window, put the mouse pointer on the
1764 window and press the right mouse button. If the window already is the
1765 top level window, the window is moved to the botton instead.
1766 If the pointer is pointing to the background or a special window, the
1767 top level window is put at the bottom.
1768 If the window to be noved to the top or the bottom belongs to a window

£769 group, the whole group is moved without affecting the relative levels
1770 inside the group.

/"‘\

"2

i

I

I

f

f

6

l
I

i
P

i

v; l

-»~

r

W,._.-W..-.“;._..,-.-

V

t

5

1

1

f

?

f

