//

USERS MANUAL
ABC1600 WINDOW HANDLER

page 2

PREFACE

The ABC1600 WINDOW HANDLER is a powerful help to fully utilize the
graphic capacity of the microprocessor system ABC1600. It is specially
useful when making menu windows. An example of such a menu if the one
which is displayed when the Window SHell (WSH) is started.

We hope that this users manual shall help you to get familiar with
the graphics and design your own menu windows as quickly as possible.

Motala in November 1985
LUXOR DATORER AB

c copyright 1885, Luxor Datorer AB, Motala, Sweden

CONTENTS. U et eteteeereeieennnnnaa..3

SUB-CONTENTS (listing of the items of chapter 3 and 6).4

PREFACE
1 INTRODUCTION
1.1 How to use this manual...... ceceen cecene ceccccsccccnes .5
1.2 Presentation
2 BASIC OPERATIONS
2.1 Starting windows........ cececccccccccsscsssscsana I §
2.2 Terminating windows
2.3 Opening windows
2.4 Closing windowsS......cccccececeees cececececccssscscsssne 8
2.5 Writing in windows
2.6 Reading from windows
3 WINDOW REQUESTS
3.1 - 3.33 (listed in page SUB—CONTENTS)....cccco0cceeccanss 9
4 MISCELLANEOUS
4.1 Other 1/0 commands.......... ceceees ceescsessssccce eeed0
4.2 Window groups.....ccocccee ceccesccssssssscnsnes ceesessdl
4.3 Storage of the text contents of a virtual screen
4.4 Automatically supported functions......... ceseseane - .4
5 EXAMPLES
Ex 1....0...-..... ®® %00 o0 0 00 ® o oo 000 ®® 0o 00000 ‘...“
Bx 2".‘...'.'......'....‘....'.Cl.l...'.'.....045
BX 3.cccceeccccccccanscscsssssccscnnns cecees cececceces 47
6 WINDOW UTILITY COMMANDS
6.1 - 6.15 (listed in page SUB-CONTENTS)........... cececessdl

Add an user defined box
Alter help box B8eqUENCe. .. cccceccvecccccscscscccseceeedb

Keyboard input signal....... - 1 4
Read the contents of the picture memory
Alter the spray MasK.....cccccceeecceccccccccccccceaald8

WN=OWONM

SUB-CONTENTS
3 WINDOW REQUESTS
3.1 Create window....... cecescccens ceeessescccsescsccccnans 9
3.2 Move window to zero level........ccceveeeccncncens .es16
3.3 Move window to the top level of its window group
3.4 Alter WindoW......ceceeeennvnncnacesccccecacaaenaeessl?
3.5 Alter a window without affecting child windows....... 18
3.6 Set up default size and location for a window
3.7 Alter window flags........cc00u... cecccccss ceccene ...19
3.8 Get window status
3.9 Insert a header in a window border......c.cccceceeee..20
3.10 Icon support
3.1]1 RemOVEe 1CODS...ccccceeccccesccccsocaccsccccsocnsse .23
3.12 Mouse substitution keys 7
3.13 Alter the background pattern.......ccceeeeeeeeeceecesc24
3.14 Get the visible parts of a window or the background..25
3.15 Inverse VideO......cececeeeeccccnccanse cecesccccesccnns 26
3.16 Normal video
3.17 Make the cursor visible in the window
3.18 Change mousepointer........cc.cceeeececccccccccncne .y |
3.19 Get number of open windows............... cecsescecces .28
3.20 Restore screen
3.21 Get text contents of a window......... cecccsacccccces 29
3.22 Test if the window handler is activated..............30
3.23 Set initial driver and terminal parameters
3.24 Get initial driver and terminal parsmeters...........31
3.25 Set up a zoom list for a window......ccc00eceeeeeee..32
3.26 Change the default font for a window........cc0c0....33
3.27 Turn the screen..... cteccccsccccccccnes cetececsccsnan 34
3.28 Get screen BMOde.....ccccceececcccccccccccsccccconnces 35
3.2
3.3
3.3
3.3
3.3

WINDOW UTILITY COMMANDS

Wzoom .

Wiont....oooeeecccccacces cecscscee ceccccas cesccssscesed2
Wtop

Wbg

Wesk

MR, ccccceccccceacccsssssscccsossanassnnancnsssssascane 53
Widtp

Wshdis

pmmmmmmpmmmmmmm

page 4

page 5
1 INTRODUCTION

1.1 BOW TO USE THIS MANUAL

This manual consists of four major parts. They are presented briefly
in the following chapter (1.2). However, the most important chapters
when using the manual are the chapters two and three, describing the
basic operations and the requests necessary when programming.

For quickest possible wiew over the function of the window handler,
study the examples in chapter fivg. But, very important it is of course
to begin with the presentation (1.2).

In the end of this manual there is a set of three opens a window in both ’por
is more complex and involves icons. Example three opens a window
with status of a specified terminal — i e emulates the specified

terminal.

For optimal survey, the CONTENTS plan for this manual is limited to
one page. Then, if a special command is looked for, there is a com-
plete listing of the command headings of the chapters three and six
under the heading SUB-CONTENTS. If you already know the name of the
command or keyword, use the INDEX instead.

The USERS MANUAL can also be used as a reference document because the
INDEX includes the most important expressions as well as keywords and

request statements.

1.2 PRESENTATION

As indicated by the neme, the ABC1600 WINDOW HANDLER is implemented
as a window handler under ABCenix. Its calls are specially designed
for creating and manipulating windows with minimum effort. Typical

examples are moving windows and returning the status of a window.
The main features of the ABC1600 WINDOW HANDLER are:

— Mouse control. Using the mouse as input source, most user actions

are simplified and made faster.

-~ Command convertions. Using the mouse pointing on a specified area
inside a window (an icon), the ABC1600 WINDOW HANDLER converts it

tn a ~remrlete ~ommand seanence.

= MOV1IOR LEeXL DELWEEtIll WiIIUUWS.

The first of the four major chapters is number two — a detailed descrip-
tion of basic operations on windows, such as starting them and writing
in them. Chapter three describes the function of the window requests -
the commands that are used as calls from programs and controls the gene-
ral window operations. In addition to these commands there are others
which for example affects the I/0 and the virtual screen. They are de—
scribed in chapter four. Chapter six regards the window utility com—
mands which, unlike the window requests, are used directly from the
keyboard.

When several windows are present on the screen each of them is thought
of as being at a certain level. The window on the top is at level zero
and it receives all the input from the keyboard. All the other windows
are at lower levels. This means that the window one step from the top

is at level one and so forth.

page 6

To switch to another window (i e attach the input from the keyboard to
another window), that window must be put at level zero. When this is
done, all windows previously at higher levels than the new level zero
window automatically are moved one level down. The level zero window
can also be moved to the bottom, iaking all other windows automatically
move one level up. The output from the processes connected to a

certain window are always sent to that window, regardless of its level.

Each window emulates a DEC VT100 terminal augmented by ABC1600 private
escape sequences. The ABC1600 private escape sequences are compatible
with or similar to their coxmtex;parts in the ABC1600 terminal emmlator.
See chapter two of the swedish documentation ®ANVANDARHANDLEDNING
ABC1600 FONSTERHANTERARE’ for further details regarding the escape

sequences.

page 7
2 BASIC OPERATIONS

2.1 STARTING WINDOWS
The window handler is started by the command
/usr/window/whgo
This is a start—-up program, usually started by the ’rc script’, which
mounts itself on the ’/win’ directory and waits in the background
until the window handler is activated. The request for opening
(activating) the window handler runs
fd = open("/win/activate”, 2);
The file descriptor returned (greater than or equal to zero if no
errors) can later be used to disactivate the handler and also to issue
some special requests to it.
When starting the window handler, ’whgo’ performs some
initializations and then executes a ’portrait’ or ’landscape mode’ version
of the handler, depending on the direction of the screen.
2.2 TERMINATING WINDOWS
The request for closing (disactivating) the window handler rums
close(fd);
When the handler receives this request it sends hangup signals to all
processes in the windows, resets the screen, and then executes ’whgo’
again. The terminate signal will terminate the window handler in a
controlled manner witout executing ’whgo’.

2.3 OPENING WINDOWS

When the window handler has been activated, windows can be opened by
issuing an opening request to the handler which rums

fd = open("/win", 2);

This will not create a window on the screem, it just tells the handler

to allocete space for a new window. The returned value - ’fd’ - is

ana 1S USeU 10I WILLilU)Y LUy L1TIULUR 11US,) DTLUULLE 1/V CULLIVL LA CSYUCSve

to, and for window closing

To acctually create the window on the screen, the Wincreat request is

used (see 3.1, page 9)

page 8
2.4 CLOSING WINDOWS

To close a window, a closing trequest shall be sent to the handler with the
file descriptor obtained when the window was opened. The request runs

close(fd);

This will cause the handler to remove the window from the screen.

2.5 WRITING IN WINDOWS
When writing in a window the standard write system call can be used
with the same file descriptor obtained as when the window was opened.

The request rums

write(fd, bp, bc);

2.6 READING FROM WINDOWS

To read from a window (get input from the keyboard), the read system
call can be used. The request runs

cnt = read(fd, bp, bc);

page 9

3 WINDOW REQUESTS

The following is a description of all the requests which are implemen-
ted to manipulate the windows from other processes. They are all macros,
and the definitions of them can bé-found in the file <win/w_macros.h>.
The constant definitions can be found in <win/w_const.h>, the structure
declarations in <win/w_structs.h>, and new variable type declarations

can be found in <win/w_types.h>.

The requests returns a negative value if they fail. The statements

‘union’ included in most of the structures below are reserved for future
fgs;ejo guarantee compatibility with future versions, the statement

?

un

jon’ must be zero in all structures where ’union’ is included.
In all the following window requests, ’fd’ is the file descriptor obtained

from the 'open’ request. This specific ’fd’ must be used when included

in a window request as a parameter.

3.1 CREATE WINDOW

The request for creating a window rums
Wincreat(fd, bp);
int fd;

struct winstruc *bp;

’fd’ is the file descriptor obtained from the open request.

page 10
The structure winstruc looks like:

typedef short pix_d;

typedef short cur_d;
typedef char sint;
typedef unsigned short word;
typedef unsigned long uflags;
struct winstruc
éa
pix_d wp_xorig;
pix_d wl_xorig;
pix_d wp_yorig;
pix_d wl_yorig;
pix_d wp_xsize;
pix_d wl_xsize;
pix_d wp_ysize;
pix_d wl_ysize;
pix_d wWp_vxorig;
pix_d wl_vxorig;
pix_d wp_vyorig;
pix_d wl_vyorig;
pix_d wp_vxsize;
pix_d wl_vxsize;
pix_d wp_vysize;
pix_d wl_vysize;
short w_color;
sint w_border;
char wp_font;
char wl_font;
char w_curfont;
sint | w_level;
sint w_uboxes;
cur_d w_xcur;
cur_d w_ycur;
pix_d w_xgcur;
pix_d w_ygcur;
sint w_tsig;
sint w_ntsig;
sint w_rsig;
sint w_csig;
word w_boxes;
uflags w_flags;
sint w_rstat;

urion

-e

4 w_pad

PRV

page 11

All these flags are single bits in_the flags unit descriptor ’word’.
Of these only the ’OVERLAP’ flag is non—significant when creating a

window.
KEYWORD - DESCRIPTION

wp_xorig Portrait mode’: The x coordinate of the lower left cormer oi
virtual screen relative to the lower left cormer of
the screen. The coordinates are expressed in terms of
pixels. If the lower left corner is to the left of the

lower left corner of the screen, this value is

negative.
wl _xorig As ’wp_xorig’, but used in ’landscape mode’.
wp_yorig 'Portrait mode’: The y coordinate of the lower left

corner of the virtual screen.
wl_yorig As 'wp_yorig’, but used in ’landscape mode’.

wp_xsize 'Portrait mode’: The horizontal size of the virtual

screen expressed in pixels.
wl_xsize As ’wp_xsize’, but used in ’landscape mode’.

wp_ysize ’Portrait mode’: The vertical size of the virtual

screen expressed in pixels.
wl_ysize As 'wp_ysize’, but used in ’landscape mode’.
wp_vxorig 'Portrait mode’: The x coordinate of the lower left
corner of the window (excluding the border) relative
to the lower left cormer of the virtual screen.

wl_wvxorig As ’wp_vxorig’, but used in ’landscape mode’.

wp_vyorig 'Portrait mode’: The y coordinate of the lower left

corner of the window.
wl_vyorig As ’wp_vyorig’, but used in ’landscape mode’.
wp_vxsize 'Portrait mode’: The horizontal size of the window.

wl vxsize As ’wr vxsize’, but used in ’landscape mode’.

wWp_vysise

wl_vysize

w_color

w_border

As ’wp_vysize’, but used in ’landscape mode’.
Background colour in the window (BLACK or WHITE).
The type of the border:

NOBORDER - No border.

SLBORDER - Single line border all around.

DLBORDER - Double lines border all around.

The following principle is used when designating combina-
tions of single (’S’) and double (’D’) line border types:

<left) <right> <upper> <lower> BORD

This means that a window limited by double lines all around
except for the right side is expressed ’DSDDBORD’.

wp_font

wl_font

w_curfont

w_level

w_uboxes

w_ycur

w_xgcur

w_ygcur

w_tsig

w_ntsig

w_rsig

w_csig

page 12

The initial font in 'portrait mode’. The font can be in
the range ’A’ to ’Z°’.

As ’wp_font’, but used in ’landscape mode’.
The currently used font. *XPK forkl

The level of the window. A newly created window will
be on level zero if it is not a special and not a child
window, on the lowest level if it is a special

window (see the 'SPECIAL’ flag), and on the top level

of its window group if it is a child window.

The maximal number of user defined boxes allowed (see
the Winubox() request 3.29, page 35). The value of this membe
significant only if the ’BX_USER’ flag in ’w_boxes’ is
set. This value is assumed to be zero if ’BX_USER’ is

not set.

x coordinate for the text cursor position. This is
only used to return the initial position of the
cursor, which is the upper left corner of the window.

y coordinate for the text cursor position.

x coordinate for the graphic cursor. This one is
only used to return the initial position (which is

the lower left corner of the window).
y coordinate for the graphic cursor.

The signal to be sent to the processes in the window
when it has moved to the top level (level zero). If

’0’, no signal will be sent.

As above, but signals are sent when the window moves

from the top level to a lower level.

The signal to be sent to the processes in the window
when the window has changed in some way. If ’0’, no

signal will be sent.

The signal to be sent to the processes in the window

wher the close box in the border is used. If ’0’, no

VWASL W TWilMalivww VTAVLL M Mageswme ewmwe cocee—e ———— — -

w_boxes Contains flags indicating which boxes shall be present
in the border:

BX_HSCR - The two boxes and the single icon which all
three scrolls the text horizontally will be present in
the border.

page 13

BX_VSCR - As above but scrolls vertically.

BX_CLOS — The ’close’ box will be present in the border.

BX_SIZE - The ’size’ box shall be present in the border.
BX_MOVE - The ’move’ box shall be present in the border.
BX_Z00M - The ’zoom’ box shall be present in the border.
BX_AVIS — The four boxes and the two icons which scrolls

the text horizontally and vertically will only be visible

if the whole virtual screen is not visible.

BX_BLOW - The ’blow up’ box shall be present in the
border (see the Windflsz() request 3.6 page 18).

BX_HELP - The ’help’ box shall be present in the border
(see the Winhelp() request 3.30 page 36).

BX_USER - Indicates that the value of the ’w_uboxes’

statements is significant.

w_flags PMODE - Indicates that coordinates have been given
for ’portrait mode’.

IMODE - As above but for ’landscape mode’.
SAVETEXT - Save the text contents of the virtual
screen.

N\ . ‘ - .

\ \ / -

\.KAVﬁBI'IMAP -\ Save é;e bitn\ap contents of &e virtual A
oy /oo o\ N’ A

J _/ ' \(for f\&t)n"e use),’ g

OVERLAP — The window may not be overlapped by another
window.
LOCK — The window is locked on the highest level

(level zero).

NOOVER — The window may not be overlapped by another

window.

NNTIMSOR — Invisible curscr.

NUMVU VS ~“'the wWihaow Bay not be moveu Or "BlZe TrnaEngea.

ALLSCR - The window must be the whole virtual screen.

SPECIAL -

KEYSCROLL -

WRITSCROLL -

ALTMPNT -

RELATIVE -

NOCPIN -

TXTSIZE -

page 14

A special window will be added on the lowest
level. Special windows are always on lower
levels than non-special windows and their
levels does not change when the levels of
other windows are changed. They can for example

be used as menu windows.

Every time a key is pressed it is checked
if the whole cursor is visible, and if not,

the window is scrolled.

After each write request to the window it
is checked if the whole cursor is visible

and if not the window is scrolled.

Allocate space to store a mouse pointer
which is used when we point to this window.
Initially the mouse pointer will be the same
as the global pointer. See the

Winchmpnt() request 3.18, page 27.

The coordinates ’w_xorig’ and ’w_yorig’ are
supposed to be relative to_the lower left cormer
of the parent in this window group (see

4.2, page 41).

Makes it impossible to copy text into this
window using the text copy facility of the
window handler.

Makes it impossible to copy text from this
window using the text copy facility of the
window handler. Instead the status of the
middle mouse button is reported on mouse
position reports. Note that the middle
button is only reported if this flag is set.

The ’wp_xsize’, ’wl_xsize’, ’wp_ysize’,
'wl_ysize’, ’wp_vxorig’, ’wl_wxorig’,
‘wp_vyorig’, ’wl_vyorig’, 'wp_vxsize’,
’wl_vxsize’, ’wp_vysize’, and 'wl_vysize’
statements are supposed to be given in terms
of characters instead of pixels. Note that in

thic case 'wp vxorig’. ’wl vvarie’ ’un vvorig’.

WGROUP

UPPTL LACLIL LUILUGE Vi il VAL Vuua srva wwase

=~ This window shall belong to a window group

(see 4.2, page 41).]

The following four flags have no effect if the actual
window is not a child window (see 4.2, page 41). Note that
at most one of the four flags may be set.

REL_ULC

REL_URC

REL_LLC

REL_LRC

This window shall follow its parent window
relative the upper left corner of the parent.

This window shall follow its paremt window
relative the upper right corner of the parent.

This window shall follow its parent window
relative the lower left corner of the parent.

This window shall follow its parent window
relative the lower right corner of the parent.

w_rstat

page 15

return status:

W_OK

WE_ILPARA

WE_LORO

WE_ALRCR

WE_ALLSCR

WE_FATHER

WE_IIMOD

WE_NOFONT

- everything is well.

- an illegal parameter was specified.

-~ the window can not be created because of
another window with the ’NOOVER’ or ’LOCK’
flag set.

- the specified window has already been created.

- the whole virtual screen is not visible and
the ’ALLSCR’ flag is set.

enocugh memory does not remain to create the

specified window.

the specified window has the RELATIVE’

flag set, but there is no parent window.
- the coordinates for the current screen mode
has not been given, (the screen is in ’land-

scape mode’ and the ’IMODE’ flag is not set).

- the specified default font can not be loaded.

Of the above statements, only the following are used when a

window is created:

wp_xorig
wp_yorig
wp_xsize
wp_ysize
wp_vxorig
wp_vyorig
wp_vxsize
wp_vysize
wp_font

and

or wl xorig
or wl_yorig
or wl_xsize
or wl_ysize
or wl_vxorig
or wl_vyorig
or wl_vxsize
or wl_vysize

or wl_font

w coler. w bhorder. w tsig. w ntsig.

On exit, the values of these statements remains the same,
except for some adjustments that may occur in order to make
the window fit, etc. The other members have on exit received

their initial values.

EXAMPLE

The following example shows how to position the lower left
corner of the virtual space at the screen coordinates (x,y)=
=(350,400). The lower left corner of the window is positioned
at the coordinates (x,y)=(0,0) relatively the virtual space.
The size of both the window and the virtual screen is (150,200).
The addressable area of the window is (0,0) to (149,199). The
colour is white, the border is double all around and the font
used is B.

The window can be used both in portrait- and landscape modes
while the coordinates have been specified for both modes.

The icons ’close box’, ’'size box’, ’move box’ and ’zoom box’
will be presented in the border.

The text contents of the window will be stored.

struct winstruc win;

win.wp_xorig = 350;

win.wp_yorig = 400;
win.wp_xsize = 150;
win.wp_ysize = 200;
win.wp_vxorig = 0;

win.wp_vyorig = 0;

win.wp_vxsize = 150;
win.wp_vysize = 200;
win.wl_xorig = 350;
win.wl_yorig = 400;
win.wl_xsize = 150;

win.wl_ysize = 200;
win.wl_vxorig = 0;
win.wl_vyorig = O:

win wl tvedl~a = 1

WAlle W_LU4iswa T srdss sy

win.w_border = DLBORDER;

win.wp_font = ’B’;

'B’ ;

BX_CLOS 6 BX_SIZE & BX_MOVE O BX_ZOOM;
PMODE 6 IMODE 6 SAVETEXT;

win .wl_font

win.w_boxes

win.w_flags

if (Wincreat(fd, &win) < 0 66 win.w_rstat != W_OK) &
printf("Cannot create the window.0n");

a

page 16

3.2 MOVE WINDOW TO ZERO LEVEL

The zero level window is the window that receives the keyboard inmput.
The request

Winlevel(fd, bp)
int fd;

struct winlevel *bp;

is used to move a window which doeé not belong to a window group to
the zero level. If the window indicated by ’fd’ belongs to a window
group, the whole group is moved to the top without altering the rela-
tive levels inside the group. The winlevel structure looks like:

typedef char sint;
struct winlevel
&
sint 1_rstat;
union
i
long 1 _>oox;
4 1 _pad;
&;

*1_rstat’ is the return status:
W_OK - everything is well.
WE_NOTCR - the window has not been created yet.

WE_SPECIAL - the window can not be moved to the top because

it is a special window.

WE_LORO — the level can not be changed because of another
window with the *LOCK’ or 'NOOVER’ flags set.

EXAMPLE

The following example moves the window to zero level.

struct winlevel lev;

if (Winlevel(fd, &lev) < 0 66 lev.1l_rstat != W OK) &
printf("Cannot move the window to level zero.0n");
a

3.3 MOVE WINDOW TO THE TOP LEVEL OF ITS WINDOW GROUP

To move a window, belonging to a window group, to the top level of the

group, use the request

Winllev(fd, bp) x*(one,L)
int fd;
struct winlevel Xbp;

'fd’ is the file descriptor for the window. The ’winlevel’ structure
is described in section 3.2, page 16.

page 17

3.4 ALTER WINDOW

The request for altering parameters of a window (size, position etc)

runs

Wipalter(fd, bp);
int fd;

struct winstruc %*bp;

If the window is a parent of a window group, all the children are also
moved according to the flags ’REL_ULC’, ’REL_URC’, ’REL_LLC’, and ’REL_IRC’.
If none of these flags are set for a child window, the child is not moved.
The structure ’winstruc’ is described in 3.1, page 9. On entry to this

request, the following structure member values are significant:

wp_xorig or wl_xorig
wp_yorig or wl_yorig
wp_vxorig or wl_vxorig
wp_vyorig or wl_vyorig
wp_vxsize or wl_vxsize

wp_vysize or wl_vysize

Further, the *PMODE’ and ’IMODE’ flags in ’w_flags’ are used to check that
the data is relevant and if the ’*TXTSIZE’ flag is set, the coordinates
and sizes are interpreted in units of characters. The size of the

current default font is used.

The remaining parameters can not be changed using this request, but

the current values of them are returned.

'w_rstat’ is the return status:

W_OK - everything is well.

WE_NOTCR - the window has not been created yet.

WE_ILPARA - an illegal parameter value was used.

WE_LORO - the window can not be altered because of another
window with the LOCK’ or ’NOOVER’ flags set.

WE_ALLSCR

the whole virtual screen will not be visible and

the 741TQCE’ flar for the window ic set.

L L] SV AN AU Y MALVITREU VLU LMUMES YA AV euav avar wa —eaw

size of the window (the ’NOMOVE'’ flag is set).

WE_IIMOD - data for the current screen mode is not present.
EXAMPLE
The following example changes the positions of the lower left
corner of the virtual space to the screen coordinat (x,y)=
=(200,350). The lower left cormer of the window is changed to

the home position, (x,y)=(0,0). The sizes of both the virtual
space and the window are changed to (350, 100).

struct winstruc win;

win.wp_xorig = 500;
win.wp_yorig = 250;
win.wp_xsize = 350;
win.wp_ysize = 100;

win.wp_vxorig = 0;
win.wp_vyorig = 0;

win.wp_vxsize = 350;

n
s
o
o

win.wp_vysize

if (Winalter(fd, &win) < 0 66 win.w_rstat !'= W _OK) &
printf("Cannot alter the window.0n");
a

page 18

3.5 ALTER A WINDOW WITHOUT AFFECTING CHILD WINDOWS

This request is identical to the ’Winalter()’ request, except that if
the specified window is a parent of a window group, its child windows

are not moved. The request runs

Winlalter(fd, bp)
int fd;

struct winstruc *bp;

3.6 SET UP DEFAULT SIZE AND LOCATION FOR A WINDOW

When the ’blow up’ box is used, the size and location of the window
toggles between the default size and location and the previous size
and location (it had before it was altered to the default).

When a window is created, its initial default size and location will
be the same as the initial size and location of the window it was
created from. When the default font is changed, the default size and
location will remain the same for the newly selected font. The request

runs

Windflsz(fd, bp)
int fd;

struct winstruc *bp;

The structure ’winstruc’ is described in 3.1, page 9. On entry to this

request the following structure members are significant:

wp_xorig or wl_xorig
wp_yorig or wl_yorig
wp_vxorig or wl_vxorig

wp_vyorig or wl_vyorig
wp_vxsize or wl_vxsize

wp_vysize or wl_vysize

Further, the *PMODE’ and ’IMODE’ flags in ’w_flags’ are used to check
that the data is relevant and if the ’TXTSIZE’ flag is set the coordi-
nates and sizes are interpreted in units of characters. The size of the

current default font is used.

¥E__ WA CYLA yLMAUuR A4S WwWOCaL.

WEfNOTCR - the window has not been created yet.
WE_iDMOD - data for the current screen mode is missing.
WE_ILPARA - an illegal value was specified.

EXAMPLE

The following example designates the sizes and locations

which are recalled when the icon ’blow up’ is activated.

struct winstruc win;

win.wp_xorig = 100;
win.wp_yorig = 150;
win.wp_xsize = 400;
win.wp_ysize = 400;

win.wp_vxorig = 0;

win.wp_vyorig = 0;
win.wp_vxsize = 400;
win.wp_vysize = 400;

if (Windflsz(fd, &win) < 0 66 win.w_rstat != W_OK) &
printf("Cannot set up default size and location for the window.On

a

page 19

3.7 ALTER WINDOW FLAGS

The request for altering the flags in the ’w_flags’’ unit descriptor

'word’ for a window runs
wWinflags(fd, bp);
int fd;

struct flgstruc *bp;

The structure ’flgstruc’ looks like:

typedef unsigned long uflags;
typedef char sint;
struct flgstruc
a

uflags f_flags;

sint f rstat;

union

a

long f_xoxx;
4 f_pad;
a;

’f flags®’® is the new flags for the window.

Contains some flags of which the following may be altered:

LOCK NOOVER NOCURSOR NOMOVE
ALLSCR KEYSCROLL WRITSCROLL NOCPIN
NOCPOUT REL_ULC REL_URC REL_LLC
REL_LRC.

The following flags are ignored:

PMODE IMODE SAVETEXT SAVEBITMAP
OVERLAP SPECIAL ALTMPNT RELATIVE
TXTSIZE WGROUP

(These flags are explained in page 13.)

'{_rstat’ ig the retvrn stadve -

s VA g viMiLME AD wvn.

W-OK - everbiag is Ow

WE_LORO - the flags can not be altered in this way because the

window is overlapped or it is not on the top level.

WE_ALLSCR - the whole virtual screen is not visible and the
'ALLSCR’ flag is set.

EXAMPLE

The following example removes the cursor from the window and

prevents the size and location of the window to be changed.

struct flgstruc flg;

flg.f_flags = NOCURSOR 6 NOMOVE;

if (Winflags(fd, &flg) < 0 66 flg.f_rstat != W_OK) &
printf("Cannot alter the window flags.0n");
&

3.8 GET WINDOW STATUS
The request for getting the current status of a window runs

Winstat(fd, bp);
int fd;

struct winstruc %*bp;

The structure ’winstruc’ was described in 3.1, page 9. On exit, all
the members are set to their current values. Only one of 'portrait’ or
'landscape mode’ coordinates and font is returned, depending on the
mode of the screen. The 'PMODE’ and 'IMODE’ flags indicate which one

it 1s.

page 20
'w_rstat’ is the return status

W_OK - everything is well.

WE_NOTCR - the window has not been created yet.

3.9 INSERT A HEADER IN A WINDOW BORDER

The request for inserting a header (for example the program name) in

the border of a window runs
Winheader(fd, bp);
int fd;

struct headstruc *bp;

where the structure ’headstruc’ looks like:

typedef unsigned short word;
struct headstruc
&

char h_hdrAHDRSIZEA;

word h_flags;

union

a

long h_xxx;

& h_pad;

a;

’h_hdrAA’ is the header string. ’h_flags’ contains the flags:

H_INVHD - Invert the window header (relatively the window
background).

H_INVTOP - Invert the top window header (relatively H_INVHD’).

Note that the header can be created before the window is created.

EXAMPLE

The following example writes an inverted header intc the win-

dow border The header usec is ! EIRSTLINE °

struct headstruc head;

strcpy(head.h_hdr, " FIRSTLINE ");
head.h_flags = H_INVHD;

if (Winheader(fd, &head) < 0) &
printf("Cannot insert a header in the window border.0n");
a

3.10 ICON SUPPORT

The window handler can automatically take care of decoding commands
given by first pointing to an icon, menu item, or similar, and then

pressing an appropriate key on the mouse or the keyboard.
The request runs
Winicon(fd, bp);

int fd;

struct winicon *bp;

page 21
and is used to specify that when pointing inside a specified area in
the window, a specified code sequence shall be sent to the calling

process by putting it in the keyboard input buffer for the window.

The structure ’winicon’ looks like:

typedef short pix_d;
typedef unsigned short word;
typedef char sint;
struct winicon
a
pix_d ip_xorig;
pix_d il _xorig;
pix_d ip_yorig;
pix_d il_yorig;
pix_d ip_xsize;
pix_d il_xsize;
pix_d ip_ysize;
pix_d il_ysize;
char i_cmdseqATICONSEQLENA;
word i_flags;
sint i_rstat;
union
a
long i_0oex;
4 1i_pad;
a;
’ip_xorig’ is the lower left corner of the area relative to the
’ip_yorig’ lower left cormer of the virtual screen in ’portrait’
’il xorig’ and ’landscape mode’, respectively.
'il_yorig’
’ip xsize’ is the width and height of the area in ’portrait’ and
’ip_ysize’ ’landscape mode’, respectively.

’il_xsize’

’il_ysize’

’i_cmdseqAl’ the sequence to be sent to the calling process (it can

be of zero length).

"i_flags’ contaivg sone flags indicativg the ftype of 1con and sore

I PMODE - Portrait mode coordinates are given.
I_LMODB - Landscape mode coordinates are given.

I_PRESS - Send the sequence when pointing to the area and the
left button is pressed.

I_RELEASE

I_INVERT

I_ENTER

I_LEAVE

1_REMOVE

I_RQST

I_SETCHK

I_LZERO

I_TEXT

page 22

Send the sequence when pointing to the area and the

left button is released.

Invert the area occupied by the icon when pointing
to it.

The sequence is sent when the mouse pointer moves
into the area. The area does not have to be visible. The
’I_INVERT’ flag is ignored.

As ’I_ENTER’ but the sequence is sent when leaving

the area.
The icon is removed when the sequence has been sent.

The sequence is sent only if there is a pending read

request to the window.

When either one or both of ’I_ENTER’ and ’I_LEAVE’
is set, it is checked whether the mouse pointer is
inside or outside (respectively) the specified area.

If it is, the sequence is sent immediately.

The sequence is sent only if it is the level zero

window.

The coordinates and sizes of the icon is supposed to

be given in terms of characters instead of pixels.

Note that ’ip_xorig’ and ’ip_yorig’ or ’il_xorig’ and
’il_yorig’ in this case are interpreted as the character
position relatively the upper left corner of the virtual
screen. When the default font is changed, the locations

and sizes of icons set up with this flag set are adjustec

Note that if no one of ’I_PRESS’, ’I_RELEASE’, 'I_ENTER’, or ’I_LEAVE’ is
given, ’I_PRESS’ is assumed. ’I_ENTER’ and ’I_LEAVE’ overrides ’I_PRESS’

and ’I_RELEASE’.

i _rstat’ is the return status:

W_OK

everything is well.

WE_ILPARA - any of the input parameters are illegal.

WE_NOICON - no memory left for the new icon.

WE_ONICON - the icon will come above another icon in the same
window.
WE_IIMOD - no coordinates are given for the current screen mode.

EXAMPLE

The following example positions the icon in the lower left
corner of a virtual space. The size of the icon is (x,y)=
=(150,75).

The icon can be used in both portrait- and landscape modes
while coordinates have been specified for both modes.

The icon will send a sequence when the left key is pressed or

released. The icon is inverted when pointed at.

struct winicon icon;

icon.ip_xorig = 0;

icon.ip_yorig = 0;

icon.ip_xsize = 150;

icon.ip_ysize = 75;

icon.il_xorig = 0;

icon.il_yorig = 0;

icon.il _xsize = 150;

icon.il_ysize = 75;

strcpy(icon.i_cmdseq, "AAA");

icon.i_flags = I_PMODE 6 I_IMODE & I_PRESS & I_RELEASE & I_INVERT;

if (Winicon(fd, &icon) < 0 66 icon.i_rstat !'= W_OK) a
printf("Cannot create the icon.0n);

&

page 23
3.11 REMOVE ICONS
The request for removing all set up icons for a window runs

Rmicons(fd);
int fd;

EXAMPLE

The following example removes all the icons for the window.

if (Rmicons(fd) < 0) &
printf("Cannot remove all icons for the window.0n");

a

3.12 MOUSE SUBSTITUTING KEYS

To make it possible to use the window handler without a mouse, the
different functions supported by the mouse can be simulated by function
keys or other special keys on the ABC99 keyboard (these keys generates
codes with the most significant bit set).

The request for specifying these keys runs
Winmsub(fd, bp);
int fd;
struct substit *bp;

The structure ’substit’ looks like:

typedef char sint;

cdru-t suhet it

- aas “_amaciaiyg,

unsigned char c_keysASUBSTKEYSA;
unsigned char c_step;
unsigned char c_lstep;
union
a
long c_xxx;
4 c_pad;

&;

Pressing and releasing a button on the mouse is replaced by pressing
the chosen keyboard key twice.

Note that no keys will be occupied by these keys if this request has

not been issued.

KEYWORD - DESCRIPTION

c_initflg If ’ON’, the mouse simulation keys will be enabled after
this request. If ’OFF’ they will initially be disabled.

c_keysAA The keys used as substitue for the mouse.

c_step Step for normal mouse pointer move (no of pixels).

c_lstep Step for long mouse pointer move (no of pixels).

page 24
c_keysAA » The array consists of the following keys:

S_ONOFF The key used to define whether the mouse

shall be active or inactive.

S_MPU Move mouse pointer up.

S_MPD down.

S_MPL left.

S_MPR right.

S_MPUL up — left.

S_MPUR up — right.

S_MPDL down - left.
S_MPDR down — right.
S_IMPU up long.

S_IMPD down long.

S_IMPL left long.

S_IMPR right long.
S_IMPUL up - left long.
S_IMPUR up — right long.
S_IMPDL down - left long.
S_IMPDR down - right long.
S_PCMD Point to command key (replaces the left key of

the mouse).

S_CHWIN Change window level key (replaces the right key

»of the mouse).

S_MCA Mark text area to copy (replaces the middle key

of the mouse).

3.13 ALTER THE BACKGROUND PATTERN
The request for altering the pattern of the background runs
Winchbg(fd, bp)

int fd;
struct chbgstruc *bp:

adsw e e A e -t -—wwere aasrw.

typedef unsigned short word;

struct chbgstruc
é
word cb_bitmapABGPSIZEA;
union
a
long cb_xxx;
4 cb_pad;

page 25

’cb_bitnaplﬁ? is the bit pattern of a 16 x *BGPSIZE’ pixels area which
will be repeated all over the background.

Note that the most significant bit in a unit descriptor ’word’ is

displayed to the left on the screen.

EXAMPLE

The following example changes the background pattern to a
stilistic ’ABC1600°’.

#include <win/w_const.h>
#include <win/w_types.h>
#include <win/w_structs.hd

#include <win/w_macros.h>

struct chbgstruc chbg =

i
0x0, O0x338e, Ox4a50, 0x4a50,
0x7b90, 0x4a50, 0x4a50, 0x4b8e,
0x0, Ox4c44, 0x50aa, Ox54aa,
0Ox5aaa, 0x52aa, 0x4cd44, Ox0

a;

main()
&
int fd;

if (fd = open("/win/activate”, 2)) == -1) &
printf("Cannot open the window.0n");
a
if (Winchbg(fd, &chbg) < 0) &
printf("Cannot alter the background pattern.bn");
é

sleep(15);

close(fd);

e

3.14 GET THE VISIBLE PARTS OF A WINDOW OR THE BACKGROUND
The request'fbr getting the visible parts of a window or the background runs

Wingetvis(fd, bp, bc)

int fd; o
struct buffer *bp;
int bc;

'fd’ is the file descriptor for the window, or the file descriptor
obtained when the window handler was activated if the visible parts of
the background are desired.

'be’ is the size of the structure 'buffer’, and looks like:

struct buffer
&

struct visdes v;

struct rectdes bAVSIZEA;
a;

The structure ’visdes’ is a parameter structure and looks like:

typedef char sint;
struct visdes
&
short v_nrect;
sint v_rstat;
union
a
long V_XXX;
a v_pad;‘
a;

The structure ’rectdes’ describes one rectangle into which the visible part
of the virtual screen or the background can be divided. The structure
looks like:

typedef short pix_d;
struct rectdes
&
pix_d r_xorig;
pix_d r_yorig;

a;

page 26

where ’r_xorig’ and ’r_yorig’ are the x and y coordinates respectively
of the lower left cormer of the rectangle. ’r_xsize’ and ’r_ysize’ are
the width and height (respectively) of the rectangle.

When this request is executed the ’v_nrect’ member of ’visdes’ should
contain the number of ’rectdes’ structures (’VSIZE’) in the ’buffer’
structure. The request returns the actual number of rectangles that

the virtual screen (or the background) can be divided into in ’v_nrect’.

'v_rstat’ is the return status:

W_OK - Ok

WE_NOTCR - The window has not been created yet.

WE_SPACE

Not enough space to hold the rectangles (i e 'VSIZE’

is too small).

3.15 INVERSE VIDEO

The request runs

Winivideo(fd)
int fd;

and changes the screen to inverse video.

EXAMPLE

The following example changes the character contents of the

entire screen to inverse video.

#include <win/w_const.h>
#include <win/w_types.h>
#include <win/w_structs.h>

#include <win/w_macros.h>

main()

if (fd = open("/win/activate”, 2)) == -1) &
printf("Cannot open the window.bn");

a

if (Winivideo(fd) < 0) &
printf("Cannot inverse video.0n");

. ,

sleep(15);

close(fd);

3.16 NORMAL VIDEO
The request runs

Winnvideo(fd)
int fd;

and restores the screen to normal video.

3.17 MAKE THE CURSOR VISIBLE IN THE WINDOW
The request for making the cursor visible in the window rums

Wincurvis(fd)
int fd;

If the whole cursor is not visible, the window is scrolled.

EXAMPLE

The following example makes the cursor visible.

if (Wincurvis(fd) < 0) a
printf("Cannot make the cursor visible in the window.0n");

[\

page 27

3.18 CHANGE MOUSEPOINTER

The request for changing the layout of the mousepointer runs

Winchmpnt(fd, bp)
int fd;

struct npstruc %*bp;

If ’fd’ is the file descriptor obtained when the window handler was
activated, the global mouse pointer is altered. Otherwise the mouse
pointer for the window indicated by the file descriptor is altered
(in this case, the ALTMPNT’ flag for the window must be set).

The ’npstruc’ structure looks like:

typedef short pix_d;
typedef unsigned long dword;
typedef unsigned char byte;
typedef char sint;
struct npstruc
a

pix_d np_xsize;

pix_d np_ysize;

pix_d np_xpnt;

pix_d np_ypnt;

dword np_andAMPSIZEA;

dword np_orAMPSIZEA;

byte np_flags;

sint A np_rstat;

union

é

long np_xxx;

4 np_pad;

4;

'np_xsize’ and ’np_ysize’ are the width and height (respectively) of
the new mouse pointer. The maximal width is 32 pixels and the height
'MPSIZE’ pixels.

'np_xpnt’ and ’np_ypnt’ are the pixel which is the pointing part of
the mousepointer. It shall be specified relative the upper left

corner of the mousepointer.

Rach pixel row of the mouse pointer is constructed by the operation
(x & np_andAprowA) 6 np_orAprowA

where 'x’ is the contents of the graphic memory. Note that the most
significant bit in a ’dword’ is displayed to the left on the screen.

'np_flags’ is reserved for future use and should be zero to guarantee

compatibility with future versions.

page 27

3.18 CHANGE MOUSEPOINTER

The request for changing the layout of the mousepointer runs

Winchmpnt (fd, bp)
int fd;
struct npstruc *bp;

If ’fd’ is the file descriptor obtained when the window handler was
activated, the global mouse pointer is altered. Otherwise the mouse
pointer for the window indicated by the file descriptor is altered
(in this case, the 'ALTMPNT’ flag for the window must be set).

The ’npstruc’ structure looks like:

typedef short pix_d;
typedef unsigned long dword;
typedef unsigned char byte;
typedef char sint;
struct npstruc
é

pix_d np_xsize;

pix_d np_ysize;

pix_d np_xpnt;

pix_d np_ypnt;

dword np_andAMPSIZEAR;

dword . np_orAMPSIZEA;

byte np_flags;

sint np_rstat;

union

é

long np_xxx;

4 np_pad;

&;

’np_xsize’ and ’np_ysize’ are the width and height (respectively) of
the new mouse pointer. The maximal width is 32 pixels and the height
MPSIZE’ pixels.

'np_xpnt’ and ’np_ypnt’ are the pixel which is the pointing part of

the mruseprirter. Tt eh=211 he cenerified ralztive the nmner l1eof:

’np_andAA’ and ’np_orAA’ are masks used to construct the mousepointer.
Each pixel row of the mouse pointe;- is constructed by the operation
(x & np_andAprowA) 6 np_orAprowA

where ’x’ is the contents of the gfaphic memory. Note that the most
significant bit in a ’dword’ is displayed to the left on the screen.

"np_flags’ is reserved for future use and should be zero to guarantee

compatibility with future versions.

| page 28
'np_rstat’ is the return status:

W_OK - Ok.
WE_ILPARA - An illegal value was specified.

WE_NOTCR

The window has not been created yet.

WE_NOMP - The ’ALTMPNT’ flag for the window is not set, and
therefore the mousepointer can not be changed.

3.19 GET NUMBER OF OPEN WINDOWS

The request for finding out how many windows which are open or created rums
Wincnt(fd, bp)
int fd;

struct nwstruc *bp;

’fd’ is the file descriptor obtained when the window handler was

activated or the file descriptor for a window.

The ’nwstruc’ structure looks like:

struct nwstruc
a
short nw_open;
short nw_created;
union '
a
long nw_3XxX;
4 nw_pad;
a;

’nw_open’ is the number of windows currently open and ’nw_created’ is

the number of windows currently created (and opened).

3.20 RESTORE SCREEN

The reauesct For reciarir- *he eoreer ‘i e rewriting the whele screen® runs

R et R Y

int fd;

EXAMPLE

The following example restores the screen.

#include <win/w_const.h)
#include <win/w_types.h>
#include <win/w_structs.h>

#include <win/w_macros.h)

main()
&
int fd;

if (fd = open("/win/activate”, 2)) == -1) &
printf("Cannot open the window.0n");

&

if (Winrestor(fd) < 0) &
printf("Cannot restore screen.0n");

a

sleep(15);

close(fd);

page 29

3.21 GET TEXT CONTENTS OF A WINDOW

The request for getting the text contents of a window rums

Wingettxt(fd, bp, bc)

int fd;
struct buffer %*bp;
int bc;

’fd’ is the file descriptor for the window. The structure ’buffer’

consists of a parameter structure followed by a buffer with space
to hold the desired text contents.

The structure ’buffer’ looks like:

struct buffer
&
struct txtstruc s;
char bABSIZEA;
4;

The structure ’txtstruc’ looks like:

typedef short cur_d;
typedef char sint;
struct txtstruc
a
cur_d tx_row;
cur_d ' tx_col;
cur_d tx_rcnt;
cur_d tx_ccnt;
sint tx_rstat;
union
a
long tx_xxx;
4 tx_pad;
a;

’tx_row’ is the row number of the first row to be read and ’tx_col’ the

number of the first column.

TEx romt? amd Vis ~ord? fe the pumber of rows and columns ‘respectively?

BSIZE must be at least ’tx_rcnt’ % ’tx_ccnt’.

"tx_rstat’ is the return status:
W_OK -~ Everything is ok.
WE_TSAVE - The text contents of the window is not saved.

WE_ILPARA - Illegal parameters was given.

page 30
3.22 TEST IF THE WINDOW HANDLER IS ACTIVATED
The request for testing if the window handler is activated rums

Wintest(fd)
int fd;

’fd’ is the file descriptor for a window or the one obtained when the
handler was activated.

If a negative value is returned, the window handler is not present.
EXAMPLE

The following example checks if the window handler is activated.

if (Wintest(fd) < 0) &
printf("The window handler is not activated.0n");
a

3.23 SET INITIAL DRIVER AND TERMINAL PARAMETERS

This request is used to set the initial driver and terminal parameters

for windows. The request runs
Winsinit(fd, bp)

int fd;

struct wininit *bp;

The structure ’wininit’ looks like:

tipodef uncgigned long t stop:

struct wininit

a
t_stop td_tbstopATSTOPSIZEA;
word td_terﬁ;
struct
&
unsigned short c_iflag;
unsigned short c_oflag;
unsigned short c_cflag;
unsigned short c_1lflag;
char c_line;
unsigned char c_ccsA8A;
4 td_driver; .
union
a
long td_xoex;
4 td_pad;
a;

*td_tbstopAA’ contains the tab stops. A set bit indicates a tab stop.
The least significant bit of the first element corresponds to the first

character position of a row.

page 31
"td_term’ contains initial VT100 terminal flags:

TD_NL ’linefeed newline mode’.
TD_WRAP ’auto wrap mode’.

TD_ORIGIN ’origin mode’.

TD_USCORE ' underscore character attribute.
TD_REVERSE reverse character attribute.
TD_SCREEN screen mode.

TD_CUNDER underline cursor.

TD_NONBINK non-blinking cursor.

TD_PHASE phased pattern mode.

TD_NOSCR no scroll (page) mode.

The remaining bits in ’td_term’ should be zero to guarantee compati-

bility with future versions.

’td_driver’ is a structure which contains the driver parameters. It is
the same structure as the structure ’termio’ (see the header file

{sys/termio.h> and the documentation for the ioctl() umix system call).

The default tab stops are places every eighth position. Of the terminal
flags, the 'TD_WRAP’ flag is set by default. The driver parameters are

the same as those of the console when the window handler was activated.

3.24 GET INITIAL DRIVER AND TERMINAL PARAMETERS

The request for getting the values of the initial driver and terminal

parameters runs

Winginit(fd, bp)
int fd;

struct wininit *bp;

page 32
3.25 SET UP A ZOOM LIST FOR A WINDOW

A zoom list is a list of fonts to chénge between when pointing to the
zoom box and the left button of the mouse is pressed. Every time this
happens, the next font in the zoom list becomes the default font for
the window. When the end of the list is reached, the next font will be

the first one in the list.

When a zoom list is set up, the current default font will become the
first font in the list followed by the fonts specified in the

structpre ’zoomlst’.
Note that this request can be used before the window has been created.
The request for setting up a zoom list runs

Winzoom(fd, bp)

int fd;

struct zoomlst *bp;

*fd’ is the file descriptor for the window. The zoomlst structure
looks like:

typedef unsigned char byte;
typedef char sint;
struct zoomlst
a .
char zp_listAZOOMSIZEA; /’/
char zl_listAZOOMSIZEA;
byte z_flags;
sint z_rstat;
union
a
long Z_XXX;
4 z_pad;
a;

'zp_listEA’ is the list of fonts to be used in portrait mode and

'2z1 listAR’ is used in landscape mode.

’ r~omteine sope flarge:

o_1rrvun tviviaiL moue zZoom 11850 1S given.
2 -Prope

Z_1IMODE - ’Landscape mode’ zoom list is given.

’z_rstat’ is the return status:

W_OK - everything is ok.
WE_ILPARA - an illegal font was specified.
WE_IIMOD - no list is given for the current screen mode.

EXAMPLE

The following example shows a zoomlist which makes toggling
between the default font of the window and the fonts I, L and
R possible.

struct zoomlst zoom;
strcpy(zoom.zp_list, "ILR");
strcpy(zoom.z1_list, "ILR");
zoom.z_flags = Z_PMODE 6 Z_IMODE;

if (Winzoom(fd, &zoom) < 0 &6 zoom.z_rstat != W_OK) &
printf("Cannot set up a zoom list for the window.0n");
a

A page 33
3.26 CHANGE THE DEFAULT FONT FOR A WINDOW

The request for changing the default font for a window runs
Winndchr(fd, bp);
int fd;

struct dfltchr *bp;

’fd’ is the file descriptor for the window and the structure ’dfltchr’
looks like:

typedef short cur_d;
typedef unsigned char byte;
struct dfltchr
é

char dcp_font;

char dcl_font;

cur_d dcp_x;

cur_d dcl_x;

cur_d dep_y;

cur_d dcl_y;

byte dc_rstat;

union

a

long dc_xxx;

& dc_pad;

a;

’dcp_font’ and ’dcl_font’ are the new default font in ’portrait’ and
’landscape mode’ (respectively). If the specified font is zero, the next

font in the zoom list is used.

’dep_x’, ’dcp_y’, ’dcl_x’, and ’dcl_y’ is the character coordinates in
portrait and landscape mode (respectively) for the middle character in
the window after the default font has been changed.

*dc_flags’ contains some flags:

Z_PMODE - Data has been given for ’portrait mode’.

Z_IMODE - Data has been given for ’landscape mode’.

ac_rstal 185 LN€ IreLuril sitalus.

W_OK - everything is ok.

WE_NOTCR - the window.has not been created yet.
WE_IIMOD - no data is given for the current screen mode.
WE_ILPARA - an illegal font or illegal character

coordinates were given.

page 34

WE_TSAVE - the text contents of the virtual screen is not

saved.
WE_ALLSCR - the ’ALLSCR’ flag for the window is set.
WE_NOMOVE — the ’NOMOVE’ flag for the window is set.

WE_NOFONT

the specified font does not exist.

This request does not (if possible) change the size of the window.
However, the size of the virtual screen is adjusted so it contains the

same number of character rows and columns.
EXAMPLE
The following example sets the default font for the window to D.

struct dfltchr dflt;

dflt.dcp_font
dflt.dcl_font
dflt.dc_flags

’D’;
’Dl;
Z_PMODE 6 Z_IMODE;

if (Winndchr(fd, &dflt) < 0 66 dflt.dc_rstat != W_OK) &
printf("Cannot change the default font for the window.0n");
-]

3.27 TURN THE SCREEN

The request for turning the screen from portrait to landscape mode

A~ xtims varsa e1tnc

nminlurniia, op)
int fd;
struct modstruc %bp;

All channels, except the one obtained when the window handler was

activated, must be closed.

The structure ’modstruc’ looks like:
typedef char sint;

struct modstruc
&
sint m_mode;
—~ sint m_rstat;

union

long B_XXX;
& m_pad;
a;

'm_mode’ will on return be ’M_PORT’ if the new mode is ’portrait mode’ or
M_LAND if it is ’landscape mode’.

'm_rstat’ is the return status:

W_OK - everything is ok.

—~ WE_OPEN - there are windows open.

page 35

3.28 GET SCREEN MODE

The request for getting the current screen mode (’portrait’® or
'landscape’) runs

Winmode(fd, bp)
int fd;
struct modstruc *bp;

'fd’ is the file descriptor obtained when the window handler was acti-

vated or the file descriptor for a window. The structure ’modstruc’ is
described in section 3.27, page 34. The ’'m_mode’ statement contains the curre
mode ('M_PORT’ or *M_LAND’) and ’a_rstat’ is always 'W_OK’.

3.29 ADD AN USER DEFINED BOX

In the left side of the window border there are user defined boxes of
16x16 pixels. When the mouse pointer points to a user box and the left
mouse button is pressed, a signal is sent to the process(es) running
in the windowu.

When a window is created, the maximal number of user defined boxes for
the window must be specified (see the Wincreat() request 3.1, page 9).

The request for setting up a user defined box runs
Winubox(fd, bp)
int fd;
struct userbox *bp;

'fd’ is the file descriptor for the window.

The structure 'userbox’ looks like:

typedef unsigned short word;
typedef unsigned char byte;
typedef char sint;
struct userbox
a

word bx_bmapAUBOXSIZEA;

short : bx_sig;

byte bx_flags;

sint bx_rstat;

union

a

long bx_xxx;
& bx_pad;

page 36
KEYNORD - DESCRIPTION

bx_bmapAA contains the bitmap for the box. Note that the most
significant bit in a unit descriptor 'word’ is displayed
to the left on the screen.

bx_sig 1s the signal to be sent when the box is used.

bx_flags is reserved for future use and should be zero to guarantee
compatibility with future versions.

bx_rstat is the return status:

W_0K - all is well.
WE_NOTCR - the window has not been created yet.
WE_SPACE - the maximal number of user defined boxes have

already been set up.

WE_ILPARA - an illegal signal number was specified.

3.30 ALTER HELP BOX SEQUENCE

The help box is a box in the upper side of the border containing a
question mark which upon use puts a character sequence on the keyboard
input buffer. The intention is that all programs use this facility so
that help can be requested in a similar manner in all progranms.

When a window is opened, the help box sequence is initialized to a '?’
(question mark). The request for altering this to another sequence runs

Winhelp(fd, bp)

int fd;

struct helpst *bp;
'fd’ is the file descriptor for the window.

The structure *helpst’ looks like:

typedef unsigned short word;
struct helpst
a

char hlp_seqAHLPSIZEA;

word hip_flags;

union

F

long hlp_xxx;

& hlp_pad;

a;

"hlp_seqAA’ is the new help box sequence. 'hlp_flags’® is reserved for
future use and should be zero to guarantee compatibility with future
versions of the window handler.

Note that the help box sequence can be altered before the window has
been created.

page 37
3.31 KEYBOARD INPUT SIGNAL

To make it possible to know when there is something to read from the
keyboard buffer, a signal can be set up for this purpose. The signal
will be sent when there is no pending read request to the window.
Reading the keyboard buffer will not lead to wait.

The request runs
Winkysig(fd, bp)

int fd;
struct kysigst *bp;

The structure 'kysigst’ looks like:

struct kysigst
a
sint ks_sig;
byte ks_flags;
sint ks_rstat;
union
a
long ks_xxx;
& ks_pad;
a;

'ks_sig’ is the signal to be sent. If zero, no signals are sent.
'ks_flags’ is reserved for future use and should be zero to guarantee
compatibility with future versions.

'ks_rstat’ is the return status:
W_0K - everything is well.

WE_ILPARA - an illegal signal was specifiead.

3.32 READ THE CONTENTS OF THE PICTURE MEMORY

The request for reading the contents of the picture memory for a
window or the whole screen runs

Wpictrd(fd, bp, bc);

int fd;
struct buffer *bp;
int bec;

'fd’ is the file descriptor for the window or, if the contents of the
whole screen is desired, the file descriptor obtained when the window
handler was activated. The structure 'buffer’ consists of a parameter
structure followed by a buffer. The buffer is big enough to hold the

contents of the specified picture memory area and looks like:

page 38

typedef unsigned char byte;
struct buffer
a
struct wpictblk p;
. byte bABSIZEA;:
a;

The structure ’wpictblk’ looks like:

typedef short pix_d:

struct wpictblk

a
pix_d p_xaddr;
pix_d p_vaddr;
pix_d p_width;
pix_d p_height;
union
a

long P_XXX;

d p_pad;

a;

'p_xaddr’ and 'p_yaddr’ are the x and y pixel coordinates (respectively)
of the lower left corner of the area to read. ’'p_width® is the pixel
width of the area and ’p_height’ the pixel height. ’BSIZE' must be at
least ’p_height’ * (’p_width’ + 7) / 8.

Data areas in buffer '.bAA’ corresponding to non-visible areas of a
virtual screen will contain zeros (i e cleared bits).

Note that the most significant bit in a byte is displayed to the left

on the screen. (While all pixels are single checked, the execution of
this request is time demanding).

3.33 ALTER THE SPRAY MASK
This request changes the pattern of 32 times 32 pixels used by the
'spray’ escape sequence (see the document in swedish; ANVANDARHANDLEDNING
ABC1600 FONSTERHANTERARE).
The request runs

Spraymask(fd, bp)

int fd;

struct sprayst *bp;

'fd' is the file descriptor for the window.

page 39

The structure ’sprayst’ looks like:

typedef unsigned long dword;
struct sprayst
a

dword sp_mask&8*sizeof (dword)A;
a;

where ’sp_maskAA’ contains the bit pattern for the spray mask.

Note that the most significant bit in a ’'dword’ is displayed to the
left on the screen.

page 40
4 MISCELLANEOUS
4.1 OTHER I/0 CONTROL COMMANDS

This is a list of I/0 control requests which are identical or similar
to their counterparts in the tty device driver. It should be noted that
the set up of the ABC99 function keys is common for all windows. Hence
the 'PFNKLD’ and ’PFNKRD’ requests should be used carefully.

PFNKLD Load ABC99 function keys. The file descriptor can be
both the one for a window and the one obtained when
the window handler was activated.

PFNKRD As above but reading the function keys.

PTOKBD Write data to the ABC99 keyboard. The file descriptor
must be the one obtained when the window handler wuas
activated.

TIOCGETP Fetch the basic parameters for the terminal.

TIOCSETP Flush and then set the basic parameters.

TIOCSETN Set the basic parameters (no flush).

TIOCEXCL Set 'exclusive-use mode’.

TIOCNXCL Turn off ’exclusive-use mode’.

TIOCFLUSH Flush input and output queues.

TIOCSETC Set the special characters.

TIOCGETC Get the special characters.

FIORDCHK Check if any character is input.

TCSETAF Wait for output to drain, then flush the input queues
and set the parameters for the terminal.

TCSETAM As above, but does not flush the input queues.

TCSETA Set the parameters for the terminal.

TCGETA Get the parameters for the terminal.

TCFLSH Flush the input, output, or both the input and output queues.

page 4]
4.2 WINDOW GROUPS

All windows belonging to the same process group and with the 'WGROUP’
flag set, belongs to a window group.

The parent window in a group is the first window in a process group
created with the 'WGROUP’ flag set.

A child window is a window which is not a parent and which has the
'WGROUP’ flag set (i e the remaining windows in a group). If the parent
disappears (i e is closed), the children looses their group connection.

It is guaranteed that all windows in one window group always are on
consecutive levels. ;

4.3 STORAGE OF THE TEXT CONTENTS OF A VIRTUAL SCREEN

If the *SAVETEXT' flag for a window is set, the window handler will
internally store the text contents of the virtual screen and
automatically update the window when necessary.

There are two cases when the window handler stops remembering the
text contents and regards text as graphics:

1) The escape sequence 'ESC : (n) H’ is sent to the window

2) The font is changed using the ’'Select Character Set’ escape sequence.

There exists two possibilities to force the handler to start

remesbering the text contents again. (While method 1) has x*%PK specify the
some side effects!
effects, method 2) is mostly prefered).

1} Send the ’'Reset to Initial State’ escape sequence (’ESC c¢’) to the
window

2) Send the ESC : I’ escape sequence to the window when the
current font is the same as the default font for the window.

page 42
4.4 AUTOMATICALLY SUPPORTED FUNCTIONS
THE MOUSE

The handler automatically moves a pointer around the screen when the
gouse 1s amoved.

When pointing to a region marked by the ’'Winicon()’ request, the

area is inverted if the 'I_INVERT’ flag is set. Then if the left button
on the mouse is pressed, the specified code sequence is sent to the
appropriate process.

CHANGE WINDOW SIZE

When pointing to a marked area in the lower right corner of a window
border and the left button on the mouse is pressed, the size of the
window can be changed by moving the mouse around. The operation is
suspended when the left mouse button is released.

MOVE WINDOW AND VIRTUAL SCREEN

To move a window (including the virtual screen) around, put the pointer
on the mark at the upper right corner of the border, press the left
button on the mouse and move the window by moving the mouse. To stop
the operation, just release the button. If the msoved window is a parent
of a window group, the children will also be moved if appropriate.

SELECT THE VISIBLE PART OF THE VIRTUAL SCREEN

To change the part of the virtual screen which is visible in the window,
put the pointer on one of the four scroll arrows and press the left
button on the mouse. This will cause the window to scroll one row or
columan in the direction indicated by the arrow. An alternative is to
put the mouse pointer on the horizontal or the vertical visible indi-
cator. Then press the left button and msove the indicator to the desired
location. The window is scrolled when the left button is released.

If the pointer is put on the mark at the upper left corner of the
border and the left button on the mouse is pressed, a signal (if
specified) will be sent to all processes in the window.

page 43
COPY TEXT BETWEEN WINDOWS

To copy a region (a rectangle) of text from one window to another, put
the pointer at the upper left character of the rectangle. Then press

the middle button on the mouse and a rectangle can now be made by moving
the pointer to the lower right character and releasing the button. The
marked region is now indicated by four lines surrounding it. To cancel

the operation, press any button (except the middle one).

An alternative is to move the pointer to the destination window and

press the middle button once more, causing the marked region to be copied.

Note, that since the text contents of all the windows are stored by the
window handler, this operation will also work with programs not knowing
about the windows. /

CHANGE TOP LEVEL WINDOW

To change a window as the top level window, put the mouse pointer on
the window and press the right mouse button. If the window already is
the top level window, the window is moved to the bottom instead.

If the pointer is pointing to the background or a special window, the
top level window is put at the bottom.

If the window is to be moved to the top or the bottom belongs to a
window group, the whole group is moved without affecting the relative
levels inside the group.

page 44
S EXAMPLES

The three following program examples will help vyou to.get familiar to
the use of windows of different types. Example one opens a window in

both ’'portrait’ and 'landscape mode’, ex two shows the use of icons,

and number three emulates a specific video terminal.

EXAMPLE 1

This program creates a window which can be used in both ’portrait’ and
'landscape mode’.

The lower left corner of the window is placed at (x,y)=(350,400) and the
size of the window is 150 * 150 pixels. The coordinates for the lower
left corner is (0,0) and the size in the window is 150 * 150 pixels.

The colour of the window is white, the font used is 'A’, and no border
is used.

#include {win/w_const.h’

#include {win/w_types.h)

$include {win/w_structs.h)

$include {win/w_macros.h)

/*

* The structure ’winstruc’ is used for creating windows.

¥/

struct winstruc win;

main()

a
int fd;
char c;
/*
* Fill in the structure.

*/

win.wp_xorig = 350;
win.wl_xorig = 350;
win.wp_yorig = 400;
win.wl_yorig = 400;
win.wp_xsize = 150;
win.wl_xsize = 150;
win.wp_ysize = 150;
win.wl_ysize = 150;
win.wp_vxorig = 0;
win.wl_vxorig = 0;
win.wp_vyorig = 0;
win.wl_vyorig = 0;
win.wp_vxsize = 150;
win.wl_vxsize = 150;
win.wp_vysize = 150;
win.wl_vysize = 150;
win.w_color = WHITE;
win.w_border = NOBORDER;
win.wp_font = A’;
win.wl_font = 'A’;

win.w_flags

/*
¥
v

if ({fd = open

printf{"Cann

Open a cha

.
=
a

PMODE 0 LMODE;

nnel for the window.

it

{("/win", 27)

== -1) a
ot open a channel for the window.On"):

page 45

[*

* Create the window.

*/

if (Wincreat(fd, &win) ¢ 0 60 win.w_rstat != W_0K) &

printf{"Cannot create the window.0n");
3 -

/*
¥ Write text in the window.
*/
write(fd, "Press the 'RETURN’ key.", 15);

/*

* MWait for the 'RETURN’ key to be pressed.
*/ -

read(fd, &c, 1);

/*

* Delete the window.
¥/

close(fd);

Qe

EXAMPLE 2

The following program creates a window which has two icons. The icons
turns inverted when pointing at them.

The window has no cursor.

The first icon sends an 'A’ when pointing at the icon and the left
mouse key pressed. The second icon sends a B’ when pointing at it
and the left key is released.

The lower left corner of the window is placed at (x,y)=(0,395) and the
size of the window is (x*y)=(768%84).

The coordinate of the lower left window corner is (0,0) and the size in
the window is (x*y)={768%84).

The colour of the window is black, the font used is ’A’, and no border
is used.

The icon no 1 is placed at (x,y)=(133,5) relatively the lower left corner
of the window. The size of the icon is (x*y)=(120%75)

The icon no 2 is placed at (x,y)=(514,5) relatively the lower left corner
of the window. The size of the icon is (x*y)=(120%75)

#include {win/w_const.h)
#include (win/w_types.h)
#include (win/w_structs.h)
ginclude (win/w_macros.h)
/*

* The structure ’winstruc’® is used for creating windows.
L

struct winstruc win;

IR
+ The structure ‘winicon® 1s used for creating icons.
* 7

main()
a
int fd;
char C;
/*
* Fill in the structure for the window.
*/
win.wp_xorig = 0;
win.wp_yorig = 395;
win.wp_xsize = 768;
win.wp_ysize = 84;
win.wp_vxorig = 0;
win.wp_vyorig = 0;
win.wp_vxsize = 768;
win.wp_vysize = 84;

win.w_color = BLACK;
win.w_border = NOBORDER;
win.up_font = 'A’;

win.w_flags = PMODE O NOCURSOR;

/*

* Open a channel for the window.
*/
if ((fd = open("/win", 2)) == -1} &

printf("Cannot open a channel for the window.0n"});
H

/*
¥ Create the window.
x/
if (Wincreat(fd, &win) (0 00 win.w_rstat !z W_0K) a
printf("Cannot create the window.0n");
&

/*
¥ Fill in the structure for icon number one.
x/
icon.ip_xorig = 133;
icon.ip_yorig = §;
icon.ip_xsize = 120;
icon.ip_ysize = 75;

strcepy(icon.i_cmdseq,"A");
icon.i_flags = I_PHMODE © I_PRESS o I_INVERT;

/*
* C(Create icon number one.
*/
if (Winicon(fd, &icon) (0 66 icon.i_rstat != W_OK) &
printf(“Cannot create icon number one.0n");
]

/*

* Fill in the structure for icon number tuwo.
*/

icon.ip_xorig = 514;

icon.ip_yorig = 5;

icon.ip_xsize = 120;

icon.ip_ysize = 75;

strcpy(icon.i_cmdseq,"B");
icon.i_flags = I_PMGDE 0 I_RELEASE o I_INVERT;

page

46

page 47
/*
¥ Create icon number two.
¥/
if (Winicon(fd, &icon) <0 06 icon.i_rstat != W_0K) &
printf("Cannot create icon number two.0n");
3 ,

/*

* Wait for the *RETURN’ key to be pressed.
x/

read{fd, &c, 1);

/*

* Delete the window.
*/
close(fd);

e

EXAMPLE 3

This function creates and opens a window running in the program speci-
fied. The window will have the status of a terminal with the same standard
input, output, and error output as the window.

A specified header will be inserted in the window header if the pointer
to this structure is not NULL.

Before the prbgram is executed, the current directory will be changed to
the one specified if the pointer to this structure is not NULL.

This function 'fork® does not wait for the process to terminate. Before
the execution of the program, all files will be closed, except those with
file descriptors zero, one, and two.

The signal set up is unaffected, therefore signals already ignored will
remain ignored when the program is executed. No errors are returned,
instead the child process will be terminated if an error occurs.

If the execution of the program fails, an error message is displayed in
the new window. (No message is displayed if the pointer to the message
is NULL.

$include {stdio.h)

$include (fontl.h)

$include "../wincl/w_const.h"
ginclude *../wincl/w_types.h"
#include *../wincl/w_structs.h"

$include ../wincl/w_macros.h”

w_term(wdp, hdp, dir, name, argv, errp)

struct winstruc *wdp; /* pointer to window data
struct headstruc *hdp; /* pointer to window data
header data or NULL
char *dir; /* directory to change to o
char *name; /* name of the file to execute
char ¥¥argv; /* program arguments
char *errp; /* error message to display if the
execution fails
a
register pid; /* process id
reaister S: /* returned status

int r:

page 48

/* Start the program. Note that two 'fork’ are necessary
* to avoid processes not waited for. In this way the
* init process will wait for the double forked process.

*/
if ((pid = fork{()) ! =0) &

while ((s:zwait(&r)) ! = pid && s !z -1)
return; '
]
if (fork() !=0) &
exit(0);
3
/*
* Close all open files.
x/
for (s = 0 ; s (_NFILE ; s ++) 3
close(s);
a
/¥
* Set up new process group (equal to the process id).
x/
if (setpgrp()) < 0 00
/*
* Open a channel for the new window.
¥/
open (WMNTDIR, 2) ! = 0 60
/*
* Set up a new controlling terminal.
x/ :
fontl(0, F_SETCT, 0) ¢ O 66
<
/*

* Do two 'dup’ to create the standard and error outputs.
X/
dup{(0) '=1 66 dup(0) t= 2 68

/*
* Create the window.
%/ '
Wincreat(0, wdp) (0 00 wdp-)w_rstat '=zW_0K 0660
/*
* Insert possible header to the window.
3
(hdp '= NULL && Winheader (0, hdp) ¢ 0) 66
/*
* Possibly change to another directory.
*

(dir !z NULL && chdir{(dir) ¢ 0}) &
_exit(l);

Qe

page 49
/*
* Execute the desired progras.
¥/
execv(name, argv);
if (errp != NULL) a
write(0, errp, strlen(errp));
sleep(5); '
3

_exit(l);

page 50
6 WINDOW UTILITY COMMANDS

In the following syntax description the characters A’ and 'A’ marks
statements or words that may be omitted. (n) symbolizes a numerical
value.

6.1 WOPEN

This command creates a new window with the status of a terminal and
executes the command given as argument in it. If no command is speci-
fied, a shell is executed.

The syntax 1is

wopen A-bwnotzA A-c (n)A A-r (n)A A-h (n)A A-w (n)A A-x (n)&A
A-y <(n)A A-f (c)A &-s {(n)A A-e (n)A A{command)A

OPTION - DESCRIPTION

b - Black window.
w - White window (default).
n - No window border.

o - Single (one) line window border.
t - Double (two) lines window border (default).
z - Zoom box shall be present in the border.

¢ - Number of character columns in the window (default 80).
r - Number of character rows in the window (default 24).
h - height of window in pixels.

w - width of window in pixels.

x - x coordinate of the lower left corner of the window (default 24
in portrait mode and 152 in landscape mode).

y - v coordinate of the lower left corner of the window (default 344
in portrait mode and 21¢ in landscape mode).

f - The default font to be used (default 'A').
s - Signal to be used to indicate that an operation on the window has
been completed. {(default zero).

e - Signal to be sent when the close box is used. If not zero, a
close {exit) box will be present in the border (default zero).

6.2 WHEAD

This command inserts a header in a window. If no header is given,
the present header will be removed.

The syntax is
whead A-iA A-tA A(header)A
OPTION - DESCRIPTION

i - Invert the header.
t - Invert the top header.

page 51
6.3 WICON
This command sets up an icon in a window.
The syntax is

wicon K-prielmgsztA A-x <(n)A A-y <(n)A &-w (n)A A-h (n)A
A{sequence)A

OPTION - DESCRIPTION

p - Send icon sequence when left mouse button is pressed (default).
r - Send icon sequence when left mouse button is released.
i - Invert the icon when pointing to it.

e - Send the icon sequence when entering the icon area.
1 - Send the icon sequence when leaving the icon area.
m - Remove the icon after the icon sequence has been sent.

q - Only send the icon sequence if there is a pending read request

on the window.
s - Check if option ‘e’ (edward) or ’1’ (london) is fulfilled upon set up.
z - Only send the icon sequence if it is the level zero window.

k]

t - The coordinates and sizes are supposed to be given in character
box units.

x - The x coordinate of the lower left corner of the icon
(default zero).

y - The y coordinate of the lower left corner of the icon
(default zero).

w - The width of the icon (default 100).

h - The height of the icon (default 100).
{sequence) - the icon sequence to be sent when the icon is chosen.

6.4 RMICONS
This command removes all icons in a window.
The syntax is

rmicons

6.5 WZOOHM
This command sets up a zoom list for a window.
The syntax is
wzoom A(zoomlist)A
(zoomlist) is a string of capital letters indicating the fonts which

the zoom list shall consist of. If no {(zoomlist) is specified, any
existing zoomlist is removed.

page 52
6.6 WFONT
This command changes the default font for a window.
The syntax is

wfont A-x (n)A A-y (n)A A{font)A

OPTION DESCRIPTION

x - The x coordinate for the middle visible character (default one).
vy - The y coordinate for the middle visible character (default one).
(font) a single capital letter specifying the new font.

If no (font) is specified, the next font in the zoom list for the
window is used instead.

6.7 WTOP
This command moves a window to the top level.
The syntax is

wtop

6.8 WBG

This command reads the file specified as argument and uses the data to
set up a new background pattern for the window handler. It supposes
'file descriptor 3’ to be the window handler ’super channel’.

The syntax is

wbg A-nA A(file)A

the option '-n’ shall be used if no error messages shall be displayed.
If (file) is not specified, the standard input is read instead.

6.9 WMSK

This command reads the file specified as argument and uses the data to
set up new mouse substitute keys for the window handler. It supposes
'file descriptor 3’ to be the window handler ’super channel’.

The syntax is
wask A-nA A(file)A

the option ’'-n’ shall be used if no error messages shall be displayed.
If (file) is not specified, the standard input is read instead.

page 53
6.10 WMP
This command reads the file specified as argument and uses the data
set up a new global mouse pointer for the window handler. It supposes
"file descriptor 3 to be the window handler ’super channel’.
The syntax is

wnp A-nA A(file)A

the option '-n’ shall be used if no error messages shall be displayed.
If (file) is not specified, the standard input is read instead.

6.11 WIDTP
This command reads the file specified as argument and uses the data to
set up new initial driver and terminal parameters for the window
handler. It supposes 'file descriptor 3’ to be the window handler
‘super’ channel’.
The syntax is:

widtp A-nA A<(file)A

the option ’-n’ shall be used if no error messages shall be displayed.
If (file) is not specified, the standard input is read instead.

6.12 WSHDIS

This command is the reverse of the window shell preprocessor. It pro-
duces a text file from a file produced by wshpp which can be modified
and then processed by WSHPP again.

The syntax is

wshdis A(infile)A A-o (outfile)A

Where (infile) is the input file (default ’.window’) and {(outfile) is
the output file (default standard output). *¥%3.32 ;

6.13 WPICTRD

This command reads a rectangle of the picture memory for a virtual

screen or the whole screen and writes an optional parameter header

followed by the binary data to the standard output. The parameter

header is the structure ’wpictblk’ (see). *

The syntax is

wpictrd A-pA A-x <(n)A A-y (m)A A-w (n)A A-h (n)A A-c (n)A
A-o0 (file)A

page 54
OPTION - DESCRIPTION

p - first output a header parameter.

x - x pixel coordinate of the lower left corner of the rectangle to
read (default zero).

y - vy pixel coordinate of the lower left corner of the rectangle to
read (default zero).

w - Width in pixels of the rectangle (default 100).

h - Height in pixels of the rectangle (default 100).

¢ - The file descriptor (channel) to read the data through
(default zero, i e standard input).

o - The name of the output file. If not specified, the output is
written to the standard output.

6.14 WDSIZE

This command sets up a new default size and location for a window. If
no arguaments are specified, the current size and location of the
window will become the default one.

The syntax is

wdsize A-t& A-x (n)A A-y (n)A A-u (n)A A-v {(nA K-w (n)A
&-h (n)A

OPTION - DESCRIPTION

t - The parameters are given in units of font boxes.

x - The lower left corner of the virtual screen (x coordinate).
y - The lower left corner of the virtual screen (y coordinate).
u - The lower left corner of the window (x coordinate).

v - The lower left corner of the window (y coordinate).

w - Width of the window.

h - Height of the window.

6.15 WHELP
This command changes the sequence sent when the help box is used.
The syntax is

whelp A(sequence)A

No sequence will be sent if {sequence) is not given.

page 55
7 INDEX

a
¥¥%% pot completed ***¥

We reserve us the right to change the product without announce-
sent and no responsibility for the result of aisprintings or
misuse of the product, Luxor Datorer AB.

production: IFS DATA AB Linképing and Luxor Datorer AB MNotala

