
\

USERS MANUAL
ABC 1 BOO WINDOW HAND I-ER

/”\

/“\

/“\

/\

PREFACE

PQSB 2

The ABCl600 WINDW HANDLER is a powerful help to fully utilize the
graphic capacity of the microprocessor system ABCIBOO. It is specially
useful when making menu windows. An example of such a u if the one
which is displayed when the Window SHell (WSH) is started

We hope that this users manual shall help you to get familiar with
thegraphics and design your own menu windows as quickly as possible.

Motala in November 1985

LUXOR DATORER AB

c copyrilht 1985, Luxor Datorer AB, Motala, Sweden

1

Fl‘.-5

00

|\'Jl-'

2

PP???”

mmommw

3

3.1

4

err?
-pcnro+-

5

6

6.1

7

CONTENTS

m 00000000000 0 0 0 0 00000'03

SUB—CONTRNTS (listing of the items of chapter 3 and 6).4

PREFACE

INTRODUCTION

How to use this nanual ..5
Presentation

BASIC OPERATIONS

Starting windows ..7
Tenninating‘windows
Opening windows
Closing windows8
riting in windows
Reading frn windows

umwnmmms

- 3.33 (listed in page SUB—CONTENTS)......9

MISCELLANEOUS

Other I/O colnands...........40
Window groups..............41
Storage of the text contents of a virtual screen
Autoltically supported functions........42

EXAMPLES

0 o 0 0 0 0 000 000 0 0 0 0 0 0044

BX 20000000000000000000000 0 0 0 0 000 0 0 0 0 0000000000000000045
0 0 0 0 0 000000000000000000 0 0 0 0 0 0 0 0 0000000 0 0 0 0 0 0 0 0 0 0 0047

WINDOW UTILITY COMMANDS

— 6.15 (listed in page SUB—CONTENTS)5O

INDEX ..55

f\

f"\

/\

/"\

3

9??FPPFFPWPFFPPPFPP?PPP???“P?P“?9

wwwwuunnMNNNN0-Iwwo-dwn-r-n-vwr-¢tom~1mO|-lhww

w~wowm<m§»w-owm<mmowm~oH

6

999999999999???

|--I-H-1|--Iv-In-'tbm<lO5<JI-I=-botxn-I

on-a-mun-ca

SUB-CONTENTS

WINDOW REQUESTS
S

Create window .9
Move window to zero level2 . l6
Move window to the top level; of its window group
Alter window . 17
Alter a window without affecting child windows18

 Set up default size and location for a window
Alter window flags -19
Get window status

Insert a header in a window border20
Icon support
Remove icons1 .23
Mouse substitution keys _-=<

Alter the background pattern . 24
Get the visible parts of a window or the background..25
Inverse video . 26
Normal video

 Make the cursor visible in the window
Change nousepointer .27
Get nunber of open windows . 28

Restore screen
Get text contents of a window .29
Test if the window handler is activated30
Set initial driver md terninal parameters
Get initial driver and terainal parmeters.31
Set up a zoon list for a window ..32
Change the default font for a window33
Turn the screen ..34
Get screen node . 35
Add an user defined box
Alter help box sequence
Keyboard input signal .37
Read the contents of the picture nenory
Alter the spray nask . 38

WINDGV UTILITY OGMANDS

Wopen . 50
Whead
Wicon .5l
Rnicons
Hzom
Wfont .52
Wtop
W:
ask
Hap ..53
Widtp
Wshdis
Wpictrd
Wdsize .54
Whelp

page4

page 5

1 INTRODUCTION

1.1 EH T0 USE THIS MANUAL

This manual consists of four major ‘parts. They are prested briefly
in the following chapter (1.2). However, the most important chapters

wh using the manual are the chapters two and three, describing the

basic operations and the requests necessary when progrming.

For quickest possible wiew over the function of the window handler,

study the examples in chapter five. But, very important it is of course
X '

to begin with the presentation (1.2).

In the end of this manual there is a set of three opens a window in both ’por

is more complex and involves icons. Example three opens a window

with status of a specified terminal - i e aulates the specified
terminal.

For optimal survey, the CONTENTS plan for this manual is limited to
one page. Then, if a special is looked for, there is a com-

plete listing of the command headings of the chapters three md six
under the heading SUB—00N'l'BN'I‘S. If you already know the name of the

cyand or keyword, use the INDEX instead.

The USEIB MANUAL can also be used as a reference docment because the

INDEX includes the most important expressions as well as keywords and
of

request stataents .

l. 2 PRESENTATION

As indicated by the name, the ABCl600 WINDOW HANDLER is implemented

as a window handler under ABCenix. Its calls are specially designed

for creating and manipulating windows with minimum effort. Typical

examples are moving windows and returning the status of a window.

The main features of the ABCIBOO WINDOW HANDLER are:

- House control. Using the mouse as input source, most user actions

are simplified and made faster. a

- Comand convertions. Using the mouse pointing on a specified area

inside a window (an icon), the ABCl600 WINDOW HANDLER converts it
tn :2 hamhlafa Prwnwiad QPGIIQQCE.

- moving LEXL neuweeu wiuuuws.

The first of the four najor chapters is nuiber two — a detailed descrip-
tion of basic operations on windows, such as starting then and writing
in then. Chapter three describes the function of the window requests -
the collands that are used as calls from programs and controls the gene-
rsd window operations. In addition to these cnnands there are others
which for example affects the I/O and the virtual screen. They are de-
scribed in chapter four. Chapter six regards the window utility com-

nands which, unlike the window requests, are used directly from the
k8?board.

s

When several windows are present on the screen each of them is thought
of as being at a certain level. The window on the top is at level zero
and it receives all the input frn the keyboard. All the other windows

are at lower levels. This neans that the window one step from the top
is at level one and so forth.

h

P8865

To switch to another window (i e attach the input from the keyboard to

another window), that window must be put at level zero. When this is
done, all windows previously at higher levels than the new level zero

window automatically are moved one level down. The level zero window

can also be loved to the bottom, making all other windows automatically

move one level up. The output fr the,processes connected to a

certain window are always sent to that window, regardless of its level.

Each window emulates a DEC VTl00 terminal augmented by ABCl600 private

escape sequences. The ABC1600 private escape sequences are compatible

with or similar to their counterparts in the ABCl60O terminal emulator.

See chapter two of the swedish documentation ’ANVKNDARHANDLBDNING

/\ ABCl600 FONSTERHANTBRARE’ for further details regarding the escape

/\

/5

f'\

sequences .

vase 7

2 BASIC OPERATIONS

2.1 STARTING WINDOWS

The window handler is started by the command

/usr/window/whgo

This is a start-up program, usually started by the ’rc script’, which

Iounts itself on the ’/win’ directory and waits in the background

until the window handler is activated. The request for opening

(activating) the window handler runs

/\ fd = open("/win/activate”, 2);

The file descriptor returned (greater than or equal to zero if no

errors) can later be used to disactivate the handler and also to issue

/K‘ some special requests to it.

When starting the window handler, ’whgo’ performs some

initializations and then executes a ‘portrait’ or ‘landscape lode’ version
of the handler, depending on the direction of the screen.

2.2 TERMINATING WINDOWS

The request for closing (disactivating) the window handler runs

/\ close(fd);

When the handler receives this request it sends hangup signals to all
processes in the windows, resets the screen, and then executes ’whgo’

’\ again. The tenninate signal will terminate the window handler in a

CODtfO118d.IBDD8f witout executing"whgo’.

2.3 OPENING WINDOWS

When the window handler has been activated, windows can be opened by

issuing an opening request to the handler which runs

fd = 0Pen("/win". 2);

This will not create a window on the screen, it just tells the handler

to allocate snece for a new window. The returned value — ’fd’ - is

I/\

,5,

/'\

/\

800 18 USBQ 10:‘ Ivl.|.\..Lu5 Lu, L't:au.Lug Llul, at-.:uu1.u5 .1/u uuuuz nu. zcquaaea

to, and for window closing

To acctually. create the window on the screen, the increat request is
used (see 3.1, page 9)

/5

/5

/'\

/"\

vase B

2.4 CLOSING WINDOWS

To close a.window, a closing trequest shall be sent to the handler with the

file descriptor obtained when the window was opened. The request runs

c1ose(fd);

This will cause the handler to remove the window from the screen.

2.5 WRITING IN WINDOWS

When writing in a window the standard write system call can be used

with the same file descriptor obtained as when the window was opened.

The request runs

write(fd, bp, bc);

2.6 READING FROM WINDOWS

To read frsn a window (get input frau the keyboard), the read system

call can be used. The request runs

cnt = read(fd, hp, bc);

page 9

3 HINDU? REQUESTS

The following is a description of all the requests which are inplen-
ted to manipulate the windows from other processes. They are all nacros,

and the definitions of th can be found in the file (win/w_Iacros.h>.

The constant definitions can be found in (win/w__const.h>, the structure

declarations in (win/w__structs.h>, and new variable type declarations

can be found in (win/w__types.h>.

The requests returns a negative value if they fail. The statts
‘union’ included in IOS‘lC of the structures below are reserved for future

use. o guarantee compatibility with future versions, the statement

r'\ ' lust be zero in all structures where ‘union’ is included.

/“§

f\

/~\

In all the following window requests, ’fd’ is the file descriptor obtained

from the ‘open’ request. This specific ’fd’ must be used when included

in a window request as a parameter.

3. l CREATE WINDOW

The request for creating a window runs

Wincreat(fd, bp);
int fd;
struct winstruc tbp;

’fd’ is the file descriptor obtained frm the open request.

The structure winstruc looks like:

typedef short pix_d
typedef short cur_d;

typedef char sint;
typedef unsigned short word;

typedef unsigned long uflags;

struct winstruc
5

pix_d wp_xorig;

pix_d w1_xorig;

pix_d wp_yorig;

/~\ pix_d w1_yorig;

pix_d wp_xsize;

pix_d w1_xsize;

pix_d wp_ysize;/'\
pix_d w1_ysize;

pix_d wp_vxorig;

pix_d w1_vxorig;

pix_d wp_vyorig;

pix_d w1_vyorig;

pix_d wp_vxsize;

pix_d w1_vxsize;

pix_d wp_vysize;

pix_d w1_vysize;

short w;co1or;

sint w;border;

/\ char wp_font;

/"'\g

char w1_font;

char w_curfont;

sint ’ w;1eve1;

aint w_nboxes;

cur_d w;xcur;
cur_d w;ycur;
pix_d w;xgcur;
pix_d w_ygcur;

sint w;tsig;
sint w_ntsig;
sint w;rsig;
sint w;csig;
word w_boxes;

uflags w_f1ags;

sint w_rstat;
union

page 10

f\

(\

/\

/\

é w__pad

Lung vI_1uus ,

/

_/\

f\

/\

/'\

page ll

All these flags are single bits in the flags unit descriptor ‘word’.

Of these only the ‘OVERLAP’ flag is non—significant when creating a

window.

KEYWORD — DESCRIPTION

wp_xorig ‘Portrait node‘: The x coordinate of the lower left corner oi

virtual screen relative to the lower left corner of
the screen. The coordinates are expressed in tern of
pixels. If the lower left corner is to the left of the

lower left corner of the screen, this value is
negative.

wl_xorig As wp_xorig‘, but used in ‘landscape node’.

wp_yorig ‘Portrait node‘: The y coordinate of the lower left
corner of the virtual screen.

wl_yorig As ‘wp_yorig‘, but used in ‘landscape node‘.

wp_xsize ‘Portrait node‘: The horizontal size of the virtual
screen expressed in pixels.

wl_xsize As ‘wp_xsize’, but used in ‘landscape node’.

wp_ysize ‘Portrait node‘: The vertical size of the virtual
screen expressed in pixels.

wl_ysize As ‘wp_ysize‘, but used in ‘landscape:node‘.

wp_vxorig ‘Portrait mode’: The x coordinate of the lower left
corner of the window (excluding the border) relative
to the lower left corner of the virtual screen.

wl_vxorig As ‘wp_vxorig’, but used in ‘landscape node‘.

wp_vyorig ‘Portrait node’: The y coordinate of the lower left
corner of the window.

wl_vyorig As ‘wp_vyorig’, but used in ‘landscape mode‘.

wp_vxsize ‘Portrait mode‘: The horizontal size of the window.

wl vxsize As ‘wt vxsize’. but used in ‘landscape mode‘.

h

/\

/\

/-\.

"P_vys-I-Z‘: {UL lvl Clllv _\I\l¢ 0 LLIG VGL DL\r€L 91.0» vs v-aw "Q.--.-..-

Qwl_vysize As wp_vysize’, but used in ’landscape IOd8'.

w;color Background colour in the window (BLACK or WHITE).

w;border The type of the border:

NOBORDER — No border.
SLBORDER.— Single line border all around.

DLBORDER — Double lines border all around.

The following principle is used when designating conbina—

tions of single (fS’) and double (‘D’) line border types:

(left) (right) (upper) (lower) BORD

This means that a window limited by double lines all around

except for the right side is expressed ’DSDDBORD’.

/\

/\

/K.

/\

page 12

wp_font The initial font in ‘portrait lode‘. The font can be in
the range ‘A’ to ‘Z’. T

wl_font As ‘wp_font‘, but used in ‘landscape lode‘.

w;curfont The currently used font. ¥¥PK frkl

w_level The level of the window. A newly created window will
be on level zero if it is not a special and not a child
window, on the lowest level if it is a special
window (see the ‘SPECIAL’ flag), and on the top level
of its window group if it is a child window.

w_uboxes The maximal number of user defined boxes allowed (see

the Winuhox() request 3.29, page 35). The value of this Ienbe
significant only if the ‘BX_USER‘ flag in ‘w;boxes‘ is
set. This value is assumed to be zero if ‘BX_USRR‘ is
not set.

w;xcur x coordinate for the text cursor position. This is
only used to return the initial position of the
cursor, which is the upper left corner of the window.

w;ycur y coordinate for the text cursor position.

w;xgcur x coordinate for the graphic cursor. This one is
only used to return the initial position (which is
the lower left corner of the window).

w_ygcur y coordinate for the graphic cursor.

w;tsig The signal to be sent to the processes in the window

when it has moved to the top level (level zero). If
‘O’, no signal will be sent.

w;ntsig As above, but signals are sent when the window loves
fro the top level to a lower level.

w;rsig The signal to be sent to the processes in the window

when the window has changed in some way. If ‘O’, no

signal will be sent.

w_csig The signal to be sent to the processes in the window

when the close box in the border is used. If ‘O’, no

/\

/'\

/\

/'\.

VIA-‘L I!» Ur!-vblB&ll\5r\v\Q vi-LDC-Q tn nrQ.aaun|-Q q-up-w— v---. -------

w_boxes Contains flags indicating which boxes shall be present
in the border:

BX_HSCR — The two boxes and the single icon which all
three scrolls the text horizontally will be present in
the border.

/~~

’/3

/'\

/"\.

page l3

. BX_VSCR — As above_but scrolls vertically.

BX_CLOS — The ‘close’ box will be present in the border.

BX_SIZE — The ‘size’ box shall be present in the border.

BX_MOVB — The ’nove’ box shall be present in the border.

BX_ZOOM — The ‘zoom’ box shall be present in the border.

BX_AVIS — The four boxes and the two icons which scrolls
the text horizontally and vertically will only be visible
if the whole virtual screen is not visible.

BX_BLOW — The ‘blow up’ box shall be present in the
border (see the Windflsz() request 3.6 page l8).

BX_HELP — The ‘help’ box shall be present in the border
(see the Winhelp() request 3.30 page 36).

BX_USER — Indicates that the value of the ’w;uboxes’
statements is significant.

w;flags PMODE — Indicates that coordinates have been given

for ’portrait node’.

LMODE — As above but for ’landscape lode’ .

SAVETEXT — Save the text contents of the virtual
screen.

, \/\ g, ,

xA\§§BI'l‘l*lAP -33 Save the bitap cont\‘ents of lheilirtual »/ /’

OVERLAP — The window may not be overlapped by another
window.

LOCK — The window is locked on the highest level
(level zero).

NOOVER — The window may not be overlapped by another
window.

NOCUHSGP — Invisible cursor

h

/5

/'\

/\,

numuvn -‘-'1"neAw1nnow lay not De“I|0V8tl or's1ze "cnangeu:

ALLSCR - The window lust be the whole virtual screen.

_,I

/\

I/\

/\

f‘\

page 14

SPECIAL — A special window will be added on the lowest
level. Special windows are always on lower
levels than non-special windows and their
levels does not change when the levels of
other windows are changed. They can for example

be used as nenu windows.

KEYSCROLL - Every tine a key is pressed it is checked

if the whole cursor is visible, and if not,
the window is scrolled.

WRITSCRDLL — After each write request to the window it
is checked if the whole cursor is visible
and if not the window is scrolled.

ALTMPNT - Allocate space to store a louse pointer
which is used when we point to this window.

Initially the louse pointer will be the sane

as the global pointer. See the
Winchnpnt() request 3.18, page 27.

RELATIVE - The coordinates ’w_xorig’ and ’w_yorig’ are
supposed to be relative to the lower left corner
of the parent in this window group (see

4.2, page 41).

NOCPIN — Makes it impossible to copy text into this
window using the text copy facility of the
window handler.

NOCPOUT - Makes it ilpossible to copy text frn this
window using the text copy facility of the
window handler. Instead the status of the
middle louse button is reported on mouse

position reports. Note that the niddle
button is only reported if this flag is set.

TXTSIZE — The ’wp_xsize’, ’wl_xsize’, ’wp_ysize’,
’wl_ysize’, ’wp_vxorig’, ’wl_vxorig’,
’wp_vyorig’, ’wl_vyorig’, ’wp_vxsize’,
’wl_vxsize’, ’wp_vysize’, and ’wl_vysize’
statements are supposed to be given in terms

of characters instead of pixels. Note that in
this case ’wt> vxoricr’. ’w1 vvnr-id’ ’wn vvorig’.

rs

F

f\

/‘\a

WW1 LCLD \-JJLLICL UL bLl\v VJ.‘ vuua. us»; \-rnobat

WGROUP — This window shall belong to a window group

(see 4.2, page 41).;

The following four flags have no effect if the actual
window is not a child window (see 4.2, page 41). Note that
at nost one of the four flags nay he set.

REL_ULC — This window shall follow its parent window

relative the upper left corner of the parent./ '

REL_URC - This window shall follow its parent window

relative the upper right corner of the parent

REL_LLC - This window shall follow its parent window

relative the lower left corner of the parent.

RBI-_LRC - This window shall follow its parent window

relative the lower right corner of the part

/\

/\

/\

/'\

page 15

w rstat return status:

W_OK — everything is well.

WE_ILPARA — an illegal parameter was specified.

WR_LOHO — the window can not be created because of
another window with the ’O0VER’ or ‘LOCK’

flag set.

WE_ALRCR - the specified window has already been created

WE_ALLSCR - the whole virtual screen is not visible and

the ’ALLSCR’ flag is set. ~

UE_OMEM — enough nelory does not renain to create the

specified‘window.

WE_FATHBR — the specified window has the ‘RELATIVE’

flag set, but there is no parent window.

WE_ILMOD - the coordinates for the current screen node

has not been given, (the screen is in ‘land-
scape Iode’ and the ’UMODE’ flag is not set).

WE_NOFONT — the specified default font can not be loaded.

Of the above statements, only the following are used when a

window is created:

wp_xorig or wl_xorig
wp_yorig or wl_yorig
wp_xsize or wl_xsize
wp_ysize or wl_ysize
wp_vxorig or wl_vxorig
wp_vyorig or wl_vyorig
wp_vxsize or wl_vxsize
wp_vysize or wl_vysize
wp_font or wl_font

and

w co!cr_ w border. w tsiq. w ntsig.

/"\

/'\

,/‘\

1%,

On exit, the values of these statts remains the sale,

except for sme adjustnents that lay occur in order to make

the window fit, etc. The other liners have on exit received

their initial values .

EXAMPLE

The following example shows how to position the lower left
corner of the virtual space at the screen coordinates (x,y)=

=(350,400). The lower left corner of the window is positioned

at the coordinates (x,y)=(0,0) relatively the virtual space.

The size of both the window and the virtual screen is (150,200).

The addressable area of the window is (0,0) to (149,199). The

colour is white, the border is double all around and the font
used is B.

The window can be used both in portrait- and landscape nodes

while the coordinates have been specified for both nodes.

The icons ’close box’, ‘size box’, "love box’ and ’zoom box’

will be presented in the border.

The text contents of the window will be stored.

struct winstruc win;

win.wp_xorig = ‘350;

win.wp_yorig = 400;

win.wp_xsize = 150;

win.wp__ysize = 200;

win.wp_vxorig = 0;

win.wp_vyorig = 0;

win.wp_vxsize = 150;

win.wp__vysize = 200;

win.wl_xorig = 350;

win.wl_yorig = 400;

win.wl_xsize = 150;

win.wl_ysize = 200;

win.wl_vxorig = 0;

win.wl_vyorig = 0;

L;_"“:Y": Q3‘; !".'C".'*'C2 "__ 2:’

/‘

/\

/K

/\

Wllla \.-\JL\/L " "A44 4.1-I,

win.w_border = DLBORDKR;

win.wp__font = ‘B’;
win.w1_font = ‘B’ ;

win.w_boxes = BX__CLOS 6 BX_SIZE 6 BX_MOVE O BX_ZOOM;

win.w_f1ags = FMODE 6 DDDB 6 SAVETEXT;

1

if (Wincreat(fd, bwin) < 0 win.w__rstat != W__OK) ii

printf("Cannot create the window.On");

6

O

O

O

h

h

3.2 MOVE WINDOW TO ZERO LEVEL

page 16

The zero level window is the window that receives the keyboard input.
The request

Winlevel(fd, bp)

int fd;
struct winlevel ibp;

,
_/'

is used to move a window which does not belong to a window group to
the zero level. If the window indicated by ’fd’ belongs to a window

group, the whole group is noved to the top without altering the rela-
tive levels inside the group. The winlevel structure looks like

typedef char sint;

struct winlevel
a

sint 1_rstat;
union

5

long l_xxx;
6 l_pad;

 a;

/~_ ’1_rstat’ is the return status:

/\
‘W;OK - everything is well.

WE_NOTCR — the window has not been created yet.

HB_SPECIAL — the window can not be loved to the top because

it is a special window.

WE_LOR0 — the level can not be changed because of another
window with the ‘LOCK’ or ’NOOVER’ flags set.

EXAMPLE

Q

The following example moves the window to zero level.

"K

f'\

/\

/'\

struct winlevel lev;

if (Win1evel(fd, &1ev) < 0 66 1ev.1_rstat != W;0K) 5

printf(”Cannot move the window to level zero.On");
t

3.3 MOVE WINDOW TO THE TOP LEVEL OF ITS WINDOW GROUP

To move a window, belonging to a window group, to the top level of the
group, use the request

Win11ev(fd, bp) ##(one,L)
int fd;
struct winlevel ibp;

’fd’ is the file descriptor for the window. The ’win1eve1’ structure
is described in section 3.2, page 16.

/'\

/'\

/\

/'\

page l7

3.4 ALTER WINDOW

The request for altering parameters of a window (size, position etc)
runs

Winalter(fd, bp);
int fd;
struct winstruc tbp;

If the window is a parent of a window group, all the children are also
moved according to the flags ’REL_ULC’, ’REL_URC’, ’REL_LLC’, and ’REL_LRC

If none of these flags are set for a child window, the child is not moved.

The structure ’winstruc’ is described in 3.1, page 9. On entry to this
request, the following structure member values are significant:

wp_xorig or wl_xorig
wp_yorig or wl_yorig
wp_vxorig or wl_vxorig
wp_vyorig or wl_vyorig
wp_vxsize or wl_vxsize

wp_vysize or wl_vysize

Further, the ’PMODE’ and ’LMODE’ flags in ’w_flags’ are used to check that
the data is relevant and if the ’TXTSIZE’ flag is set, the coordinates

and sizes are interpreted in units of characters. The size of the

curret default font is used.

The remaining parameters can not be changed using this request, but

the current values of them are returned.
’w rstat’ is the return status:

W_OK — everything is well.

WE_NOTCR — the window has not been created yet.

WE_ILPARA — an illegal parameter value was used.

WE_LOR0 — the window can not be altered because of another

window with the ’LOCK’ or ’NO0VER’ flags set.

WE_ALLSCR - the whole virtual screen will not be visible and

the ’€L1S?P’ flag for the window is set.

/~s

/\

/"\

V/_

IlU:‘Yl'I€ ‘Q-I G U Li ‘ITS \QLLYf'\-1% \I\I \-¢L‘\LLI°\n ¥lJ\-9 LY\l§L¥L\IlI Y‘ \'QI$

size bf the window (the ’NOMOVE’ flag is set).

WE_ILMOD - data for the current screen node is not present

EXAMPLE

The following example changes the positions of the lower left
corner of the virtual space to the screen coordinat (x,y)=
=(200,350). The lower left corner of the window is changed to
the hoe position, (x,y)=(0,0). The sizes of both the virtual
space and the window are changed to (350, 100).

struct winstruc win;

win.wp_xorig = 500;

win.wp_yorig = 250;

win.wp_xsize = 350;

win.wp_ysize = 100;

win.wp_vxorig = 0;

win.wp_vyorig = 0;

win.wp_vxsize = 350;

win.wp_vysize = 100;

if (Winalter(fd, &win) < 0 66 win.w_rstat != W_OK) 5

printf("Cannot alter the window.On");

6

’/\

.!’\

/\.

/\

3.5 ALTER A WINDOW WITHOUT AFFECTING CHILD WINDOWS

page 18

This request is identical to the ’Winalter()’ request, except that if
the specified window is a parent of a window group, its child windows

are not noved. The request runs

Winlalter(fd, bp)

int fd;
struct winstruc tbp;

3.6 SET UP DEFAULT SIZE AND LOCATION FOR A WINDOW

When the ‘blow up’ box is used, the size and location of the window

toggles between the default size and location and the previous size
and location (it had before it was altered to the default)

When a window is created, its initial default size and location will
be the same as the initial size and location of the window it was

created from. When the default font is changed, the default size and

location will remain the same for the newly selected font. The request

FIIDS

Windflsz(fd, hp)

int fd;
struct winstruc ibp;

The structure ‘winstruc’ is described in 3.1, page 9. On entry to this
request the following structure numbers are significant:

wp_xorig or wl_xorig
wp_yorig or wl_yorig
wp_vxorig or wl_vxorig
wp_vyorig or wl_vyorig
wp_vxsize or wl_vxsize
wp_vysize or wl_vysize

Further, the ’PMODE’ and ’LMODE’ flags in ’w_flags’ are used to check

that the data is relevant and if the ’TXTSIZE’ flag is set the coordi-
nates and sizes are interpreted in units of characters. The size of the

current default font is used.

’ \-it ' “"2 .2" 7*’ Q ' " ° ' "‘

h

A

II \ILL K’ V\-ml J UJLLLJB AP PVQLL 0

WE_NOTCR - the window has not been created yet.

WB_ILMOD — data for the current screen mode is missing.

WE_ILPARA — an illegal value was specified.

EXAMPLE

The following example designates the sizes and locations
which are recalled when the icon ‘blow up’ is activated.

struct winstruc win;

win.wp_xorig = 100;

win.wp_yorig = 150;

win.wp_xsize = 400;

win.wp_ysize = 400;

win.wp_vxorig = 0;

win.wp_vyorig = 0;

win.wp_vxsize = 400;

win.wp_vysize = 400;

’~\ if (Windflsz(fd, &win) < 0 66 win.w_rstat != W_OK) a

/\,

printf(”Cannot set up default size and location for the window.On

a

f\

f\

f'\

/\

3.7 ALTER wxnnow FLAGS

page l9

The request for altering the flags in the ’w_flags” unit descriptor
‘word’ for a window runs

Winflags(fd, bp);
int fd;
struct flgstruc tbp;

The structure ’flgstruc’ looks like:

typedef unsigned long uflags;
typedef char sint;

struct flgstruc
5

uflags f_flags;
sint f_rstat;
union

a

long f;xxx;
a f_pad;

é;

’f_flags’ is the new flags for the window.

Contains some flags of which the following may be altered:

LOCK NOOVER NOCURSOR NOMOVE

ALLSCR KEYSCROLL WHITSCROLL NOCPIN

NOCPOUT REL__ULC REL_URC REL_LLC

REL_LRC .

The following flags are ignored:

PMODE IMODE SAVETEXT SAVEB ITMAP

OVERLAP SPECIAL ALTMPNT RELATIVE

TXTSIZE WGROUP

(These flags are explained in page 13.)

't__r$ta{‘ ig Hm rghvrn stnvlv

/\

b

/'\

/\.

EXAMPLE

l'_\Ill %V\nL J ULILIIB ¢L§ \lI1e

W_0lL ~ e~1*/'3U»w~.§ is om

WE_LORO — the flags can not he altered in this way because the
v window is overlapped or it is not on the top level.

WE_ALLSCR — the whole virtual screen is not visible and the
’ALLSCR’ flag is set.

The following example removes the cursor from the window and
prevents the size and location of the window to be changed.

3.8 GET

O

O

I

struct flgstruc flg;

f1g.f_f1ags = NOCURSOR 6 NOMOVE;

if (Winflags(fd, &flg) < 0 66 flg.f_rstat != W_OK) 6
printf(”Cannot alter the window flags.On");

é

O

O

WINDOW STATUS

The request for getting the current status of a window runs

Winstat(fd, hp);
int fd;
struct winstruc Xbp;

The structure ’winstruc’ was described in 3.1, page 9. On exit, all
the members are set to their current values. Only one of ‘portrait’ or
’landscape mode’ coordinates and font is returned, depending on the
mode of
it is.

the screen. The ’PMODE’ and ’LMODE’ flags indicate which one

’w_rstat’ is the return status

W_0K — everything is well.

WE_NOTCR — the window has not been created yet.

3.9 INSERT A HEADER IN A WINDOW BORDER

page 20

The request for inserting a header (for example the program name) in
the border of a window runs

/~\ Winheader(fd, hp);
i int fd;

struct headstruc Xhp;

Ix‘ where the structure ’headstruc’ looks like:

typedef unsigned short word;

struct headstruc
5

char h_hdrKHDRSIZEA;

word h_flags;
union
5

long h_xxx;
/~ a h_pad;

6;

’h_hdrKA’ is the header string. ’h_flags’ contains the flags:/\
H_INVHD — Invert the window header (relatively the window

background) .

H_INVTOP — Invert the top window header (relatively ’H_INVHD’).

Note that the header can he created before the window is created

EXAMPLE

The following example writes an inverted header into the win—

Aw horder- Thg.headgr useclis ' FIRSTL[KE;’_

/\

,4"\

/K

/\\

struct headstruc head;

strcpy(head.h_hdr, " FIRSTLINE ");
head.h_f1ags = H_INVHD;

if (Winheader(fd, &head) < 0) 5

printf("Cannot insert a header in the window border.On")
A

3.10 ICON SUPPORT

The window handler can automatically take care of decoding commands

given by first pointing to an icon, nenu ite, or similar, and then

pressing an appropriate key on the mouse or the keyboard.

The request runs

Winicon(fd, bp);
int fd;
struct winicon ibp;

page 21

and is used to specify that when pointing inside a specified area in
the window, a specified code sequence shall be sent to the calling
process by putting it in the keyboard input buffer for the window.

The structure ’winicon’ looks like:

typedef short pix_d;
typedef unsigned short word;

typedef char sint;

struct winicon
6

/“~ pix_d ip_xorig;
pix_d il_xorig;
pix_d ip_yorig;
pix_d il_yorig;

/“‘ . . .p1x_d 1p_xs1ze;

pix_d il_xsize;
pix_d ip_ysize;
pix_d il_ysize;
char i_cndseqKICONSEQLEN£;

word i_flags;
sint i_rstat;
union

5

long i_xxx;
é i_pad;

/\ 5;

’ip_xorig’ is the lower left corner of the area relative to the

,\l ’ip_yorig’ lower left corner of the virtual screen in ‘portrait’
’il_xorig’ and ’landscape nude’, respectively.
’il yorig’

’ip_xsize’ is the width and height of the area in ’portrait’ and

’ip_ysize’ ‘landscape node’, respectively.
’il_xsize’
’il_ysize’

’i_cmdseqKA’ the sequence to be sent to the calling process (it can

be of zero length).

’i..fLw5§' conhjvs saw. ?1ag§ indicn+iv\5 We of- icon and some

h.

r~

/\

/\

I_HHODE — Portrait node coordinates are given.

I_LMODE — Landscape lode coordinates are given.

I_PRESS - Send the sequence when pointing to the area and the
left button is pressed.

f\

/75

/\

/~‘

page 22

I_RELBASE - Send the sequence when pointing to the area and the

left button is released.

I_INVERT — Invert the area occupied by the icon when pointing
to it.

I_ENTER — The sequence is sent when the mouse pointer IV8S
into the area. The area does not have to be visible. The

’I_INVERT’ flag is ignored.

I_LEAVE — As ’I_RNTER’ but the sequence is sent when leaving
the area.

 I_REMOVE - The icon is removed when the sequence has been sent.

I_RQST — The sequence is sent only if there is a pending read

request to the window.

I_SETCHK — When either one or both of ’I_ENTER’ and ’I_LEAVE’

is set, it is checked whether the mouse pointer is
inside or outside (respectively) the specified area.

If it is, the sequence is sent immediately.

I_LZERO — The sequence is sent only if it is the level zero

window.

I_TEXT — The coordinates and sizes of the icon is supposed to
be given in terns of characters instead of pixels.
Note that ’ip_xorig’ and ’ip_yorig’ or ’il_xorig’ and

’il_yorig’ in this case are interpreted as the character

position relatively the upper left corner of the virtual
screen. When the default font is changed, the locations,
and sizes of icons set up with this flag set are adjustec

Note that if no one of ’I_PRESS’, ’I_RELEASE’, ’I_BNTER’, or ’I_LEAVE’ is
given, ’I_PRESS’ is assumed. ’I_ENTER’ and ’I_LEAVE’ overrides ’I_PRESS’

and ’ I_RELEASE’ .

T7 1 _;T:' __ f;ir_‘_ _ liirjiciz _ ,
’i_rstat’ is the return status:

W_0K — everything is well.

f\

/5

,f\

T

WB_ILPARA — any of the input parameters are illegal.

HE;NOICON — no neory left for the new icon.

HE_0NICON — the icon will came above another icon in the same

window.

WE_IDMOD — no coordinates are given for the current screen mode.

EXAMPLE

The following example positions the icon in the lower left
corner of a virtual space. The size of the icon is (x,y)=
=(l50,75).

The icon can be used in both portrait— and landscape nodes
while coordinates have been specified for both modes.

The icon will send a sequence when the left key is pressed or
released. The icon is inverted when pointed at.

struct winicon icon;
O

O

icon.ip_xorig = 0;

icon.ip_yorig = 0;

icon.ip_xsize = 150;

icon.ip_ysize = 75;

icon.il_xorig = 0;

icon.il_yorig = 0;

icon.il_xsize = 150;

icon.il_ysize = 75;

strcpy(icon.i_cmdseq, "AAA");
icon.i_flags = I_PMODE 6 I_LMODE 6 I_PRESS 6 I_RELEASE 6 I_INVERT

if (Winicon(fd, &icon) < 0 66 icon.i_rstat != H_0K) 5

printf(”Cannot create the icon.On);
é

/\

r\

/~\

/‘\

page 23

3.11 REMOVE ICONS

The request for removing all set up icons for a window runs

Rmicons(fd);
int fd;

EXAMPLE

The following example roves all the icons for the window.

if (Rmicons(fd) < 0) 6

printf(”Cannot remove all icons for the window.On");

é

3.12 MOUSE SUBSTITUTING KEYS

To Iake it possible to use the window handler without a mouse, the

different functions supported by the IOUS8 can be simulated by function
keys or other special keys on the ABC99 keyboard (these keys generates

codes with the most significant bit set).

The request for specifying these keys runs

Winmsub(fd, hp);
int fd;
struct substit ibp;

The structure ’substit’ looks like:

typedef char sint;

9iru"% su5sti*

/“*

F

/\

/\

--~- u_LMAL1L5;

unsigned char c_keysK$UBSTKEYSA;

unsigned char c_step;
unsigned char c_lstep;
union

5

long c_xxx;
a c_pad;

5;

Pressing and releasing a button on the IOUS8 is replaced by pressing
the chosen keyboard key twice.

Note that no keys will be occupied by these keys if this request has
not been issued.

KEYWORD — DESCRIPTION

c_initf1g If ’ON’, the IOUS8 simulation keys will be enabled after
this request. If ’0FF’ they will initially be disabled.

c_keysIA The keys used as substitue for the mouse.

c_step Step for normal mouse pointer move (no of pixels).

c_lstep Step for long mouse pointer move (no of pixels).

,P\.

’“\

/\

/"\‘

page 24

c_keyslA l The array consists of the following keys:

S_ONOFF The key used to define whether the mouse

shall be active or inactive.

S_MPU Move mouse pointer up.

S_MPD down.

S_MPL left.
S_MPR right.

S_MPUL up - left.
S_MPUR up - right.
S__MPDL down - left.
S_MPDR down - right.

S__LMPU up long.
S__IMPD down long.
S_IMPL left long.
S_LMPR right long.

S_IMPUL up — left long.
S__IMPUR up — right long.
S_lMPDL down — left long.
S_LMPDR down - right long.

S_PCMD Point to ccmmand key (replaces the left key of
the mouse).

S_CHWIN Change window level key (replaces the right key

of the mouse).

S__MCA Mark text area to copy (replaces the middle key

of the mouse).

3.13 ALTER THE BACKGROUND PATTERN

The request for altering the pattern of the background nms

Winchbg(fd, hp)

int fd;
struct chbgstruc Xbp;

/\

/§

f\

/\
)

ill X Y1 IE UK‘ € {LL}? XL {Y LY?‘ f Ll‘§i.

typedef unsigned short word;

struct chbgstruc
6

word cb_bitnapKBGPSIZEA;

union
5

long cb_xxx;
5 cb_pad;

6;

/\.

/¥

/\

/\

vase 25

’ch_bitnapKA? is the bit pattern of a 16 x ’BGPSIZE’ pixels area which
will be repeated all over the background.

Note that the most significant hit in a unit descriptor ‘word’ is
displayed to the left on the screen.

EXAMPLE

The following example changes the background pattern to a

stilistic ’ABC1600’.

#include (win/w_const.h>
#include (win/w;types.h>
#inc1ude (win/w_structs.h>
iinclude (win/w_macros.h>

struct chhgstruc chbg =

5

0x0, 0x338e, 0x4a50, 0x4a50,

0x7b90, 0x4a50, 0x4a50, 0x4h8e,

0x0, 0x4c4-4, 0x50aa, 0x54aa,

0x5aaa, 0x52aa, 0x4c44, 0x0

é;

Iain()
5

int fd;

if (fd = opent"/win/activate”, 2)) == -l) 5

printf("Cannot open the window.On");

5

if (Winchhg(fd, &chbg) < O) 5

printf(”Cannot alter the background pattern.On")
5

sleep(15);

close(fd);
5

_/\

'/\

/'\

/'\

3.14 an rm; vxsrnm PARTS 01-" A wnmow on rm; nncxaaouun

The request for getting the visible parts of a window or the background runs

Wingetvis(fd, hp, hc)
lnt fd; ’

struct buffer ihp;
int bc;

’fd’ is the file descriptor for the window, or the file descriptor
obtained when the window handler was activated if the visible parts of
the background are desired. i,

’bc’ is the size of the structure ‘buffer’, and looks like:

istruct buffer
a

struct visdes v;
struct rectdes hKVSIZBA;

é;

The structure ’visdes’ is a parameter structure and looks like:

typedef char sint;

struct visdes
6

short v_nrect;
sint v_rstat;
union

E

long v_xxx;
a v_pad;.

é;

The structure ’rectdes’ describes one rectangle into which the visible part
of the virtual screen or the background can be divided. The structure
looks like:

typedef short pix_d;

struct rectdes
5

pix_d r_xorig;
A pix_d r_yorig;

Dix 6 r xsizef

35

page 26

where ’r_xorig’ and ’r_yorig’ are the x and y coordinates respectively
of the lower left corner of the rectangle. ’r_xsize’ and ’rgysize’ are
the width and height (respectively) of the rectangle.

When this request is executed the ’v_nrect’ Ienber of ’visdes’ should

contain the number of ’rectdes’ structures (‘V8128’) in the ‘buffer’
structure. The request returns the actual number of rectangles that
the virtual screen (or the background) can be divided into in ’v_nrect’.
’v_rstat’ is the return status:

"‘ w_oK - Ok

r

/\

/\

WE_NOTCR — The window has not been created yet.

NB_SPACE — Not enough space to hold the rectangles (i e ’VSIZE’

is too all).

3.15 INVERSE VIDEO

The request runs

Winivideo(fd)
int fd;

and changes the screen to inverse video.

EXAMPLE

The following example changes the character contents of the

entire screen to inverse video.

iinclude (win/w;const.h>
#inc1ude <win/w_types.h>

#include (win/w_structs.h>
#include (win/w_macros.h>

main()
,-

/5

1”‘

/\

/\\

if (fd = open(”/win/activate”, 2)) == -l) 5
printf(”Cannot open the window.0n”);

ta

if (Winivideo(fd) < 0) 5

printf("Cannot inversefvideo.On");

sleep(l5);

close(fd);
é /

3.15 NORMAL VIDEO

The request runs

Winnvideo(fd)

int fd;

and restores the screen to normal video.

3.17 MMKE THE CURSOR VISIBLE IN THE WINDOW

The request for making the cursor visible in the window runs

Wincurvis(fd)
int fd;

If the whole cursor is not visible, the window is scrolled.

EXAMPLE

The following example makes the cursor visible.

if (Wincurvis(fd) < 0) 6 -

printf("Cannot make the cursor visible in the window.On")

5

/\

/"

/\

/\

3. 18 cams: MOUSEPOINTER

The request for changing the layout of the Iousepointer runs

Winchmpnt(fd, bp)
int fd;
struct npstruc tbp;

page 27

If ’fd’ is the file descriptor obtained when the window handler was
activated, the global mouse pointer is altered. Otherwise the mouse
pointer for the window indicated by the file descriptor is altered
(in this case, the ’ADWHNT’ flag for the window must be set).

The ’npstruc’ structure looks like:

typedef short pix_d;
typedef unsigned long dword;

typedef unsigned char byte;
typedef char sint;

struct npstruc
5

pix_d np_xsize;
pix_d np_ysize;
pix_d np_xpnt;

pix_d np_ypnt;
dword np_andIMPSIZEA;

dword np_orKMPSIZEA;

byte np_f1ags;

sint np_rstat;
union

6

long np_xxx;

a np_pad;

5;

’np_xsize’ and ’np_ysize’ are the width and height (respectively) of
the new mouse pointer. The maximal width is 32 pixels and the height
’MPSIZE’ pixels.

’np_xpnt’ and ’np_ypnt’ are the pixel which is the pointing part of
the nousepointer. It shall be specified relative the upper left
corner of the mousepointer.

b

F

/\

f\‘

Bach pixel row of the louse pointer is constructed by the operation

(x &-np_andKprowA) 6 np_orlprowA

where ‘x’ is the contents of the graphic memory. Note that the lost
significant bit in a ’dword’ is displayed to the left on the screen.

’np_f1ags’ is reserved for future use and should be zero to guarantee

compatibility with future versions.

3.18 CHANGE MOUSKPOINTER

The request for changing the layout of the lousepointer runs -

Winchnpnt(fd, bp)

int fd;
istruct npstruc tbp;

page 27

If ’fd’ is the file descriptor obtained when the window handler was

activated, the global louse pointer is altered. Otherwise the louse
’“u pointer for the window indicated by the file descriptor is altered

b

/\

/\

4 1

(in this case, the ’ALTMPNT’ flag for the window lust be set).

The ‘npstruc? structure looks like:

typedef short pix_d;
typedef unsigned long dword;

typedef unsigned char byte;
typedef char sint;

struct npstruc
5

pix_d np_xsize;

pix_d np_ysize;
pix_d np_xpnt;

pix_d np_ypnt;

dword np_andIMPSIZEA;

dword np_orKMPSIZEA;

byte np_f1ags;

sint np_rstat;
union
5

long np_xxx;

5 np_pad;

6;

’np_xsize’ and ’np_ysize’ are the width ad height (respectively) of
the new mouse pointer. The maximal width is 32 pixels and the height
’MPSIZE’ pixels.

tE¢ mUSEDPl?§¢?- Tf ¢5¢?l h ¢DQP4{§OA relative thc nvnor lo?‘
np_xpnt’ and ’np_ypnt’ are the pixel which is the pointing part of

I\

/1.

,"\

r\

’np_andKA’ and ’np_orlA’ are lasks used to construct the nousepointer

Bach pixel row of the nouse pointer is constructed by the operation

(x & np_andKprowA) 6 np_orZprowA

where ‘x’ is the contents of the graphic nenory. Note that the lost
significant bit in a ’dword’ is displayed to the left on the screen.

’np_f1ags’ is reserved for future use and should be zero to guarantee
canpatihility with future versions.

71*

r-\

)f"\

/\,

page 28
’np_rstat’ is the return status:

W_OK — Ok.

WE_ILPARA — An illegal value was specified.

WE_NOTCR — The window has not been created yet.

WE_NOMP — The ’ALTMPNT’ flag for the window is not set, and

therefore the nousepointer can not be changed.

3.19 GET NUBER OF OPEN WINDOWS

The request for finding out how many windows which are open or created runs

Wincnt(fd, bp)

int fd;
struct nwstruc *bp;

’fd’ is the file descriptor obtained when the window handler was

activated or the file descriptor for a window.

The ’nwstruc’ structure looks like:

struct nwstruc

5

short nw_open;

short nw;created;
union H

5

long nw;xxx;

a nw_pad;

A; n

’nw_open’ is the number of windows currently open and ’nw_created’ is
the number of windows currently created (and opened).

3.20 RESTORE SCREEN

The remwest for re¢‘cr r“ ‘r s""ee* ii P rewriting the w?"‘e screen? run?

/\

/\.

/\

/-\,

int fd;

EXAMPLE

The following example restores the screen.

#inc1ude (win/w;const.h>
iinclude (win/w_types.h>
#inc1ude (win/w;structs.h>
#inc1ude (win/wJmacros.h>

./'
nain()
5

int fd;

if (fd = open(”/win/activate”, 2)) == -1) 5

printf("Cannot open the window.0n”);

6

if (Winrestor(fd) < 0) 5

printf(”Cannot restore screen.On”);
6 A

sleep(15);

close(fd);
A

page 29

3.21 GET TEXT OONTENTS OF A WINDOW

The request for getting the text contents of a window runs

Wingettxt(fd, hp, bc)
int fd;
struct buffer ibp;
int bc;

’fd’ is the file descriptor for the window. The structure ‘buffer’
consists of a parameter structure followed by a buffer with space

,_p to hold the desired text contents.

/'\

/'\

/\

The structure ‘buffer’ looks like:

struct buffer
6

struct txtstruc s;
char bKBSIZEA;

6;

The structure ’txtstruc’ looks like:

typedef short cur_d;

typedef char sint;

struct txtstruc
5

cur_d tx_row;

cur_d i tx_col;
cur_d tx_rcnt;
cur_d tx_ccnt;
sint tx_rstat;
union
6

long tx_xxx;
5 tx_pad;

5;

’tx_row’ is the row number of the first row to be read and ’tx_co1’ the

number of the first column.

‘*9 rrrf’ er‘ ’*w rcrf’ ¢ the nnmher 0? rows and columns fresnertivelw \

/\

/\

/\

/\
3

BSIZE lust be at least ’tx_rcnt’ t ’tx_ccnt’. i i
tx_rstat’ is the return status:

W_OK - Everything is Qk;

v

WE_TSAVE — The text contents of the window is nut saved

WE_ILPARA - Illegal parameters was given.

f\

f\

(K

/\
I

3.22 TEST IF THE WINDOW HANDLER IS ACTIVATED

The request for testing if the window handler is activated runs

Wintest(fd)
int fd;

page 30

’fd’ is the file descriptor for a window or the one obtained when the
handler was activated.

If a negative value is returned, the window handler is not present.

EXAMPLE

The following example checks if the window handler is activated.

if (Wintest(fd) < 0) 5

printf(”The window handler is not activated.On");
a

3.23 SET INITIAL DRIVER AND TERMINAL PARAMETERS

This request is used to set the initial driver and terminal parameters

for windows. The request runs

Winsinit(fd, hp)

int fd;
struct wininit ibp;

The structure ’wininit’ looks like:

+-.-'r~<~d-9*?‘ Y::ws?7s:‘r:e-5 Ear" ta stop:

/'“

rvx

/'\

struct wininit
5

t_stop td_tbstoplTSTOPSIZBA;

word td_tern;
struct
5 ;

unsigned short c_iflag;
unsigned short c_of1ag;
unsigned short c_cf1ag;
unsigned short c_1f1ag;

char c_1ine;
unsigned char c_ccsl8A;

5 td_driver;

union

5

long td_xxx;
6 td_pad;

6;

’td_tbstopKA’ contains the tab stops; A set bit indicates a tab stop.
The least significant bit of the first element corresponds to the first
character position of a row.

/\

"\

page 31
’td_terI’ contains initial VTl00 terminal flags:

TD_NL ’linefeed newline node’.

TD_WRAP ‘auto wrap mode’.

TD_0RIGIN ’origin mode’.

TD_USCORE underscore character attribute.

TD_RBVERSE reverse character attribute.

TD_SCREEN screen mode.

TD_CUNDER underline cursor.

TD_NONBLNK non—blinking cursor.

TD_PHASE phased pattern node.

TD_NOSCR no scroll (page) mode.

The raining bits in ’td_term’ should be zero to guarantee compati-
bility with future versions. *

’td_driver’ is a structure which contains the driver parameters. It is
the sane structure as the structure ’ternio’ (see the header file
<sys/termio.h> and the documentation for the ioctl() unix systau call).

The default tab stops are places every eighth position. Of the terminal
flags, the ’TD_WRAP’ flag is set by default. The driver parameters are

’“\ the same as those of the console when the window handler was activated.

3.24 GET INITIAL DRIVER AND TERMINAL PARAMETERS

The request for getting the values of the initial driver and terminal
parameters runs

Winginit(fd, bp)

int fd;
struct wininit *bp;

3.25 SET UP A ZOOM LIST FOR A WINDOW

page 32

A zoom list is a list of fonts to change between when pointing to the

zoom box and the left button of the mouse is pressed. Every time this
happens, the next font in the zoom list becomes the default font for
the window. When the end of the list is reached, the next font will be

the first one in the list.

When a zoom list is set up, the current default font will become the

first font in the list followed by the fonts specified in the

»" structure ’zoolst’.

F

/"\

f\’

Note that this request can be used before the window has been created.

The request for setting up a zoom list runs

Winzoom(fd, hp)

int fd;
struct zoomlst ibp;

’fd’ is the file descriptor for the window. The zoomlst structure

looks like:

typedef unsigned char byte;

typedef char sint;

struct zoomlst

5' .

char zp_listKZO0MSIZEA;

char zl_listKZOOMSIZEA;

byte z_flags;
sint z_rstat;
union
5

long z_xxx;

a z_pad;

é;
9 .

’zp_listKA’ is the list of fonts to be used in portrait mode and

’zl_1istKA’ is used in landscape mode.

~ P *~P’ ccrtefns some flesz

/\

"\

./'\

/\‘
I

0

u__a rlvuu I U1 Ll. ELL IIULIU ZUQI 1181. 15 81VeI]¢
Z_DHODE — ‘Landscape mode’ zoom list is given.

’z_rstat’ is the return status:

W;OK — everything is ok.

WE_ILPARA — an illegal font was specified.

WE_ILMOD — no list is given for the current screen mode

EXAMPLE

The following example shows a zoomlist which makes toggling
between the default font of the window and the fonts I, L and
R possible.

struct zoomlst zoom;

strcpy(zoom.zp_1ist, "ILR");
strcpy(zoom.zl_1ist, ”ILR");
zoom.z_flags = Z_PMODE 6 Z_LMODE;

if (Winzoom(fd, &zoom) < 0 66 zoom.z_rstat != W;0K) 6

printf("Cannot set up a zoom list for the window.On");
é

page 33

3.26 CHANGE THE DEFAULT FONT FOR A WINDOW

The request for changing the default font for a window runs

Winndchr(fd, bp);
int fd;
struct dfltchr *bp;

’fd’ is the file descriptor for the window and the structure ’dfltchr’
looks like: -

typedef short cur_d;
/*~ typedef unsigned char byte;

struct dfltchr
6I" /

char dcp_font; /4‘/ .

char dcl_font; /
cur_d dcp_x;

cur_d dcl_x;
cur_d dcp_y;

cur_d dcl_y;
byte dc_rstat;
union
6

long dc_xxx;

5 dc_pad;

’dcp_font’ and ’dcl_fontf are the new default font in ’portrait’ and

’landscape IOd8’ (respectively). If the specified font is zero, the next

 3 font in the zom list is used.

’dcp_x’, ’dcp_y’, ’dcl_x’, and ’dcl_y’ is the character coordinates in
portrait and landscape mode (respectively) for the middle character in
the window after the default font has been changed.

’dc_flags’ contains some flags:

Z_PMODE — Data has been given for ‘portrait mode’.

Z_DMODE — Data has been given for ’landscape mode’.

h

r'\

/\

/'\

ClC_r5laL 15 I-K13 I'CLUITl SLC1LU§-

W_OK - everything is ok.

WE_NOTCR — the window has not been created yet.

WE_ILMOD — no data is given for the current screen node

WE_ILPARA — an illegal font or illegal character
coordinates were given.

page 34

WE_TSAVE — the text contents of the virtual screen is not
saved.

WE_ALLSCR — the ’ALLSCR’ flag for the window is set.

WE_NOMOVE — the ’NOMOVE’ flag for the window is set.

WE_NOFONT — the specified font does not exist.
,/' '

This request does not (if possible) change the size of the window.

However, the size of the virtual screen is adjusted so it contains the

/*~ same number of character rows and columns.

EXAMPLE

f\
The following example sets the default font for the window to D

struct dfltchr dflt;

dflt.dcp_font = ‘D’;
df1t.dcl_font = ‘D’;

/\ dflt.dc__f1ags = Z_PMODE 6 Z_LMODE;

if (Winndchr(fd, &dflt) < 0 66 dflt.dc_rstat != W_OK) 6

printf("Cannot change the default font for the window.On");

T a

O

3.27 TURN THE SCREEN

The request for turning the screen from portrait to landscape mode

,-5‘.-. ~£v~1_r~:__~ v__yQ~p~g-zg ' l

/"~

f\

/‘\

*1

ninturnglu, op)

int fd;
struct nodstruc ibp;

All channels, except the one obtained when the window handler was

activated, lust be closed.

The structure ’modstruc’ looks like:

typedef char sint;

struct modstruc

5

sint m_mode;

sint m_rstat;
union
5

long n_xxx;

a n_pad;

é;

’n_node’ will on return be ’M_PORT’ if the new mode is ‘portrait node’ or
M_LAND if it is ‘landscape mode’.
’n_rstat’ is the return status:

W_OK — everything is ok.

HE_OPEN — there are windows open.

/"~

f"

/\

/\

page 35

3.28 GET SCREEN MODE

The request for getting the current screen node (’portrait’ or r

’landscape’) runs #

Hinmode(fd, bp)
int fd;
struct modstruc *bp;

’fd’ is the file descriptor obtained when the window handler was acti-
vated or the file descriptor for a window. The structure ’modstruc’ is
described in section 3.27, page 34. The ’m_mode’ statement contains the curre
mode (’M_PORT’ or ’H_LAND’) and ’m_rstat’ is always ’N_0K’.

3.29 ADD AN USER DEFINED BOX

In the left side of the window border there are user defined boxes of
16x16 pixels. when the mouse pointer points to a user box and the left
mouse button is pressed, a signal is sent to the process(es) running
in the window.

when a window is created, the maximal number of user defined boxes for
the window must be specified (see the Hincreat() request 3.1, page 9).

The request for setting up a user defined box runs

Hinubox(fd, bp)
int fd;
struct userbox ibp;

’fd’ is the file descriptor for the window.

The structure ‘userbox’ looks like:

tvpedef unsigned short word;
tvpedef unsigned char byte;
tvpedef char sint;

struct userbox
a

word bx_bmapKUBOXSI2EA;
short ' bx_sig;
byte bx_flags;
sint bx_rstat;
union
5

long bx_xxx;
5 bx_pad;

5;

(5

/\

page 36
KEYHORD - DESCRIPTION

bx_bnaphA contains the bitmap for the box. Note that the most
significant bit in a unit descriptor ‘word’ is displayed
to the left on the screen.

bx_sig is the signal to be sent when the box is used.

bx_flags is reserved for future use and should be zero to guarantee
compatibility with future versions.

bx_rstat is the return status:

W_0K — all is well.

NE_NOTCR - the window has not been created yet.

HE_SPACE - the maximal number of user defined boxes have
already been set up.

NE_ILPARA - an illegal signal number was specified.

3.30 ALTER HELP BOX SEQUENCE

The help box is a box in the upper side of the border containing a
question mark which upon use puts a character sequence on the keyboard
input buffer. The intention is that all programs use this facility so
that help can be requested in a similar nanner in all programs.

Hhen a window is opened, the help box sequence is initialized to a ’?’
(question mark). The request for altering this to another sequence runs

Uinhelp(fd, bp) ‘
int fd;
struct helpst #bp;

’fd’ is the file descriptor for the window.

/\ The structure ’helpst’ looks like:

E

typedef unsigned short word;

struct helpst
a

char hlp_seqKHLPSIZEA;
word hlp_flags;
union
5

long hlp_xxx;
5 hlp_pad;

5;
_

’hlp_seqhA’ is the new help box sequence. ’hlp_flags’ is reserved for
future use and should be zero to guarantee compatibility with future
versions of the window handler.

Note that the help box sequence can be altered before the window has
been created.

3.31 KEYBOARD INPUT SIGNAL -

To make it possible to know when there is something to read from
keyboard buffer, a signal can be set up for this purpose. The si
will be sent when there is no pending read request to the window
Reading the keyboard buffer will not lead to wait.

The request runs

winky$i9(fd, bp)
int fd;
struct kysigst tbp;

The structure ’kysigst’ looks like}

struct kysigst
a t

’T‘ sint ks_sig;
byte ks_flags;
sint ks_rstat;
union
5

’* long ks_xxx;
5 ks_pad;

5;

’ks_sig’ is the signal to be sent. If zero, no signals are sent.

page 37

the
gnal

’ks_flags’ is reserved for future use and should be zero to guarantee
compatibility with future versions.

’ks_rstat’ is the return status:

H_0K - everything is well.

wE_ILPARA - an illegal signal was specifiead.

,/\ 3.32 READ THE CONTENTS OF THE PICTURE HEHORY

The request for reading the contents of the picture memory for a

window or the whole screen runs

,\\ wpictrd(fd, bp, bc);
‘ Int fd;

struct buffer *bp;
lt bc;

’fd’ is the file descriptor for the window or, if the contents of the
whole screen is desired, the file descriptor obtained when the window
handler was activated. The structure ‘buffer’ consists of a parameter
structure followed by a buffer. The buffer is big enough to hold
contents of the specified picture memory area and looks like:

the

f\

/"

/\

/'\}

page 38

typedef unsigned char byte;

struct buffer
a

struct wpictblk p;
bYte b§BSIZEA;

3;

The structure ’wpictblk’ looks like:

typedef short pix_d;

struct wpictblk
a

pix_d p_xaddr;
pix_d p_yaddr;
pix_d p_width;
pix_d p_height;
union
5

long p_xxx;
5 p_pad;

5;

’p_xaddr’ and ’p_yaddr’ are the x and y pixel coordinates (respectively)
of the lower left corner of the area to read. ’p_width’ is the pixel
width of the area and ’p_height’ the pixel height. ’BSIZE‘ must be at
least ’p_height’ * (’p_width’ + 7) / 8.

Data areas in buffer ’.bKA’ corresponding to non-visible areas of a
virtual screen will contain zeros (i e cleared bits).

Note that the most significant bit in a byte is displayed to the left
on the screen. (While all pixels are single checked, the execution of
this request is time demanding).

i

3.33 ALTER THE SPRAY MASK

This request changes the pattern of 32 tines 32 pixels used by the
‘spray’ escape sequence (see the document in swedish; ANVKNDARHANDLEDNING
ABCl600 FUNSTERHANTERARE).

The request runs

Spraymask(fd, bp)
lt fd;
struct sprayst *bp;

’fd’ is the file descriptor for the window. T

/"'\

f_

/\

/\

The structure ’sprayst’ looks like

typedef unsigned long dword;

struct spravst
5

dword sp_naskK8*sizeof(dword)A;
3;

where ’sp_maskKA’ contains the bit pattern for the spray mask.

page 39

Note that the most significant bit in a ’dword’ is displayed to the
left on the screen.

‘f\

/\

/'\

/T

page 40

4 MISCELLANEOUS

4.1 OTHER I/0 CONTROL COMMANDS

This is a list of I/0 control requests which are identical or similar
to their counterparts in the tty device driver. It should be noted that
the set up of the ABC99 function keys is common for all windows. Hence
the 'PFNKLD’ and ’PFNKRD’ requests should be used carefully.

PFNKLD Load ABC99 function keys. The file descriptor can be
both the one for a window and the one obtained when
the window handler was activated.

PFNKRD As above but reading the function keys.

PTOKBD write data to the A8099 keyboard. The file descriptor
must be the one obtained when the window handler was
activated.

TIOCGETP Fetch the basic parameters for the terminal.

TIOCSETP Flush and then set the basic parameters.

TIOCSETN Set the basic parameters (no flush).

TIGCEXCL Set ‘exclusive-use mode’.

TIOCNXCL Turn off ‘exclusive-use mode’.

TIOCFLUSH Flush input and output queues.

TIOCSETC Set the special characters.

TIOCBETC Get the special characters.

FIORDCHK Check if any character is input.

TCSETAF wait for output to drain, then flush the input queues
and set the parameters for the terminal.

TCSETAN As above, but does not flush the input queues.

TCSETA Set the parameters for the terminal.

TCGETA Set the parameters for the terminal.

TCFLSH Flush the input, output, or both the input and output queues

/'\

/-\

/5

/\,

page 41

4.2 HINDON GROUPS n

All windows belonging to the same process group and with the ‘HGROUP’
flag set, belongs to a window group.

The parent window in a group is the first window in a process group
created with the ’HGROUP’ flag set.

A child window is a window which is not a parent and which has the
’UGROUP’ flag set (i e the remaining windows in a group). If the parent
disappears (i e is closed), the children looses their group connection.

It is guaranteed that all windows in one window group always are on
consecutive levels. 7

4.3 STORAGE OF THE TEXT CONTENTS OF A VIRTUAL SCREEN

If the ’SAVETEXT’ flag for a window is set, the window handler will
internally store the text contents of the virtual screen and
automatically update the window when necessary.

There are two cases when the window handler stops remembering the
text contents and regards text as graphics:

1) The escape sequence ‘ESE : <n) H’ is sent to the window

2) The font is changed using the ’Select Character Set’ escape sequence.

There exists two possibilities to force the handler to start
remembering the text contents again. (Hhile method 1) has **PK specify the
some side effects!
effects, method 2) is mostly prefered).

1) Send the ‘Reset to Initial State’ escape sequence (’ESC c’) to the
window

2) Send the ‘ESE : J’ escape sequence to the window when the
current font is the same as the default font for the window.

f\

page 42

4.4 AUTOMATICALLY SUPPORTED FUNCTIONS

THE HOUSE

The handler automatically moves a pointer around the screen when the
mouse is moved.

when pointing to a region marked by the ’Ninicon()’ request, the
area is inverted if the ’I_INVERT’ flag is set. Then if the left button
on the mouse is pressed, the specified code sequence is sent to the
appropriate process.

CHANGE WINDOW SIZE

Hhen pointing to a marked area in the lower right corner of a window
border and the left button on the mouse is pressed, the size of the
window can be changed by moving the mouse around. The operation is
suspended when the left mouse button is released.

/*\ HOVE NINDOU AND VIRTUAL SCREEN

f\

/'\

To move a window (including the virtual screen) around, put the pointer
on the mark at the upper right corner of the border, press the left
button on the mouse and move the window by moving the IOUS8. To stop
the operation, just release the button. If the moved window is a parent
of a window group, the children will also be moved if appropriate.

SELECT THE VISIBLE PART OF THE VIRTUAL SCREEN
~_

To change the part of the virtual screen which is visible in the window,
put the pointer on one of the four scroll arrows and press the left
button on the mouse. This will cause the window to scroll one row or
column in the direction indicated by the arrow. An alternative is to
put the mouse pointer on the horizontal or the vertical visible indi~
cator. Then press the left button and move the indicator to the desired
location. The window is scrolled when the left button is released.

If the pointer is put on the mark at the upper left corner of the
border and the left button on the mouse is pressed, a signal (if
specified) will be sent to all processes in the window.

f\

f\

/'\,

."'\

page 43

COPY TEXT BETWEEN HINDOHS '

To copy a region (a rectangle) of text from one window to another, put
the pointer at the upper left character of the rectangle. Then press
the middle button on the mouse and a rectangle can now be made by moving
the pointer to the lower right character and releasing the button. The
marked region is now indicated by four lines surrounding it. To cancel
the operation, press any button (except the middle one).
An alternative is to move the pointer to the destination window and
press the middle button once more, causing the marked region to be copied

Note, that since the text contents of all the windows are stored by the
window handler, this operation will also work with programs not knowing
about the windows. ;

CHANGE TOP LEVEL HINDOH

To change a window as the top level window, put the mouse pointer on
the window and press the right mouse button. If the window already is
the top level window, the window is moved to the bottom instead.
If the pointer is pointing to the background or a special window, the
top level window is put at the bottom.

If the window is to be moved to the top or the bottom belongs to a

window group, the whole group is moved without affecting the relative
levels inside the group.

page A4

5 EXAMPLES‘

The three following program examples will help you to.get familiar to
the use of windows of different types. Example one opens a window in
both ‘portrait’ and ‘landscape mode‘, ex two shows the use of icons,
and number three emulates a specific video terminal.

EXAMPLE 1

This program creates a window which can be used in both ‘portrait’ and
‘landscape node‘.

The lower left corner of the window is placed at (x,y)=(350,400) and the
size of the window is 150 * 150 pixels. The coordinates for the lower
left corner is (0,0) and the size in the window is 150 * 150 pixels.
The colour of the window is white, the font used is ‘A’, and no border
is used.

include (win/w_const.h>
’\‘ include (win/w_tYpes.h>

Ainclude (win/w_structs.h>
iinclude (win/w_aacros.h>

/It
/“* * The structure ‘winstruc’ is used for creating windows.

*/
struct winstruc win;

main()
a

int fd;
char c;

/1?-

* Fill in the structure.
*/

win.wp_xorig = 350;
win.wl_xorig = 350;
win.wp_yorig = 400;
win.wl_yorig = 400;
win.wp_xsize = 150;

/~\ win.wl_xsize = 150;
win.wp_ysize = 150;
win.wl_vsize = 150;
win.wp_vxorig = 0;
win.wl_vxorig = 0; '

,_\ win.wp_vyorig = 0;
win.wl_vyorig = 0;
win.wp_vxsize = 150;
win.wl_vxsize = 150;
win.wp_vysize = 150;
win.wl_vysize = 150;
win.w_color = WHITE;
win.w_border = NOBORDER;
win.wp_font = ‘A’;
win.wl_font = ‘A’;
win.w_flags = PMODE 6 LHODE;

/It
* Open a channel for the window.
*/if (ifd = open("iwin", 2)) == -1) a

printf("Cannot open a channel for the window.5n");
ri

page 45

/*
* Create the window.
*/if (Hincreat(fd, &win) < 0 66 win.w rstat !' U OK) 5

printf("Cannot create the window.0n");
5 T ...

/#
* Hrite text in the window.
*/

write(fd, “Press the ‘RETURN’ key.", 15);

/1
* Hait for the ‘RETURN’ key to be pressed.

/ '*/
read(fd, &c, 1);

/1
,_\ II Delete the window.

close(fd);
5

/\
EXAMPLE 2

The following program creates a window which has two icons. The icons
turns inverted when pointing at them.

The window has no cursor.

The first icon sends an ‘A’ when pointing at the icon and the left
. mouse key pressed. The second icon sends a ‘B’ when pointing at it

and the left key is released.

The lower left corner of the window is placed at (x,y)=(0,395) and the
size of the window is (x*y)=(768*84).

The coordinate of the lower left window corner is (0,0) and the size in
the window is (x*y)=(768*84)./\
The colour of the window is black, the font used is ‘A’, and no border
is used.

~

The icon no 1 is placed at (x,y)=(133,5) relatively the lower left corner
/~c of the window. The size of the icon is (x*y)=(120*75)

The icon no 2 is placed at (x,y)=(514,5) relatively the lower left corner
of the window. The size of the icon is (x*y)=(120*75)

include (win/w_const.h>
include (win/w_types.h>
include (win/w_structs.h>
Rinclude (win/w_macros.h)

/#
* The structure ’winstruc’ is used for creating windows.
/

struct winstruc win;

[1
' # The structure ’winicon’ is used for creating icons.

15 I
.- W4 ,.,_..-,. ;-g.,,_.

nain()
5

int fd;
char c;

/t
* Fill in the structure for the window.
*/

win.wp_xorig = 0;
win.wp_yorig = 395;
win.wp_xsize = 768;
win.wp_ysize = 84;
win.wp_vxorig = 0;
win.wp_vyorig = 0;
win.wp_vxsize = 768;
win.wp_vvsize = 84;
win.w_color = BLACK;
win.w_border = NOBORDER;

,\; win.wp_font = ‘A’;
win.w_flags = PHODE 6 NOCURSOR;

/t
*

r\» */if ((fd = open("/win". 2)) == -1) 5

printf(”Cannot open a channel for the window.6n")
5

Open a channel for the window.

/1|!

* Create the window.
*/if (Nincreat(fd, &win) <0 66 win.w_rstat != H_0K) 5

printf("Cannot create the window.6n");
5

/#
* Fill in the structure for icon number one.
*1

icon.ip_xorig = 133;
icon.ip_vorig = 5;
icon.ip_xsize = 120;

"~ icon.ip_ysize = 75;
strcPY(icon.i_cndseq,"A”);
icon.i_flags = I_PHODE 6 I_PRESS 6 l_INVERT;

/t
/~, * Create icon number one.

6

#

printf(“Cannot create icon number one.6n”);
5

/*
1

*/
icon.ip_xorig = 514;
icon.ip_yorig = 5;
icon.ip_xsize = 120;
icon.ip_vsize = 75;
strcpv(icon.i_cmdseq,"B");
icon.i_flags I I_PHODE 6 I_RELEASE 6 I_INVERT;

Fill in the structure for icon number two.

/if (winicon(fd, &icon) (0 66 icon.i_rstat != N_0K) 5

page 46

page 47

/*
Create 1C0 number two. "

*/if (Hinicon(fd, &icon) <0 66 icon.i_rstat != N_0K) 5

printf("Cannot create icon number two.Un');
5 e L

/1
* Wait for the ‘RETURN’ key to be pressed.
*1

read(fd» &c, 1);

/#
* Delete the window.
*/

close(fd);
5

/\
EXAMPLE 3

This function creates and opens a window running in the program speci-
fied. The window will have the status of a terminal with the same standard"‘ input, output, and error output as the window.

A specified header will be inserted in the window header if the pointer
to this structure is not NULL.

Before the program is executed, the current directory will be changed to
the one specified if the pointer to this structure is not NULL.

This function ’fork’ does not wait for the process to terminate. Before
the execution of the program, all files will be closed, except those with
file descriptors zero, one, and two.

The signal set up is unaffected, therefore signals already ignored will
remain ignored when the program is executed. No errors are returned,
instead the child process will be terminated if an error occurs.

If the execution of the program fails, an error message is displayed in
/~ the new window. (No message is displayed if the pointer to the message

is NULL. T

include (stdio.h>
iinclude <fontl.h)

,-\ include "../wincl/w_const.h"
* include ”../wincl/w_tyPes.h”

include ../wincl/w_structs.h"
iinclude ../wincl/w_macros.h“

w_term(wdp, hdp, dir, name, argv, errp)
struct winstruc *wdp; /* pointer to window data
struct headstruc *hdp; /* pointer to window data

header data or NULL

char *dir; /* directory to change to o

char *name; /* name of the file to execute
char **argv; /* program arguments
char *errp; /* error message to display if the

execution fails
a

register pid; /* process id
register s: /* returned status
int I’;

page 48

/* Start the program. Note that two ‘fork’ are necessary
* to avoid processes not waited for. In this way the
* init process will wait for the double forked process.
*/
if ((pid = fork()) ! =0) 6

while ((s=wait(&r)) ! = pid && s != -1)
I
9

return;
5if (fork() !=0) 5

exit(0);
5

/It
* Close all open files.
*1

for (s = 0 ; s < _NFILE ; s ++) 6’“ close(s);
5

/*
* Set up new process group (equal to the process id).r- #/
if (setPQrp()) < 0 66

/#
* Open a channel for the new window.
*/

open(wHNTDIR, 2) ! = 0 66

/*
* Set up a new controlling terminal.
*/

fontl(0, F_SETCT, 0) < 0 66
C-

/1
* Do two ’dup’ to create the standard and error outputs
*/

/~. duP(0) !=1 66 dup(0) != 2 66

/*
* Create the window.
#/ '

,_\ Uincreat(0, wdp) <0 66 wdp->w_rstat !=N_0K 66

/#
Insert possible header to the window.
*1

(hdp != NULL && Hinheader(0, hdp) (0) 66

/#
* Possibly change to another directory.
*/

(dir != NULL && chdir(dir) (0)) 5

_exit(l);
5

/\

/"\

/-\

/‘\

/it
* Execute the desired program.
*/

execv(nane, argv);
if (errP != NULL) 5

5

_exit(1)

urite(0, errqg str1en(errP))
s1eeP(5); %

0
1

page 49

/\

/'\

6 HINDON UTILITY COMMANDS

page 50

In the following syntax description the characters ‘R’ and ’A’ marks
statements or words that may be omitted. (n) symbolizes a numerical
value.

6.1 HOPEN

This command creates a new window with the status of a terminal and
executes the command given as argument in it. If no command is speci-
fied, a shell is executed.

The syntax is

wopen K-bwnotzA K-c (n>A K-r <n>A K-h <n>A K—w (n>A K-x
K-Y (n)A K-f <c)A K-s <n)A K-e (n)A K<command)A

OPTION - DESCRIPTION

b - Black window.
w - Hhite window (default).
n — No window border.

o - Single (one) line window border.
t - Double (two) lines window border (default).
z - Zoom box shall be present in the border.

c - Number of character columns in the window (default 80).
r - Number of character rows in the window (default 24).
h - height of window in pixels.

w - width of window in pixels.

(n)A

x - x coordinate of the lower left corner of the window (default 24
in portrait mode and 152 in landscape mode).

y - y coordinate of the lower left corner of the window (default 344
in portrait mode and 216 in landscape mode).

f - The default font to be used (default ’A’).
s — Signal to be used to indicate that an operation on the window has

been completed. (default zero).
e - Signal to be sent when the close box is used. If not zero, a

/*i close (exit) box will be present in the border (default zero).

/"\‘
6.2 wusxn '

This command inserts a header in a window. If no header is given,
the present header will be removed.

The syntax is

whead 5-ih A-ta £<header>A

OPTION - DESCRIPTION

i - Invert the header.
t - Invert the top header.

I§

iii

/"\

f~\

page 51

6.3 NICON '

This command sets up an icon in a window.

The syntax is : 7

wicon I-prielmqsztA K-x <n)A 5-y <n>A I-w <n)A I-h <n)A
l(sequence>A

OPTION - DESCRIPTION

p — Send icon sequence when left mouse button is pressed (default).
r - Send icon sequence when left mouse button is released.
i - Invert the icon when pointing to it.
e - Send the icon sequence when entering the icon area.
1 — Send the icon sequence when leaving the icon area.
m - Remove the icon after the icon sequence has been sent.

q — Only send the icon sequence if there is a pending read request
on the window.

s — Check if option ‘e’ (edward) or ‘l’ (london) is fulfilled upon set up

z — Only send the icon sequence if it is the level zero window.

t - The coordinates and sizes are supposed to be given in character
box units.

x - The x coordinate of the lower left corner of the icon
(default zero).

y - The y coordinate of the lower left corner of the icon
(default zero).

w - The width of the icon (default 100).
h - The height of the icon (default 100).
(sequence) - the icon sequence to be sent when the icon is chosen.

6.4 RHICONS

This command removes all icons in a window.

The syntax is

rmicons

6.5 HZOOH

This command sets up a zoom list for a window.

The syntax is

wzoom K(zoomlist)A

<zoomlist> is a string of capital letters indicating the fonts which
the zoom list shall consist of. If no <zoomlist) is specified, any
existing zoomlist is removed.

/\

2"“

/~. If (file) is not specified, the standard input is read instead.

/'\,

6.6 HFONT ' T

This command changes the default font for a window.

The syntax is

wfont K-x <n>A K-y (n>A £A

OPTION - DESCRIPTION

page 52

x - The x coordinate for the middle visible character (default one).
y - The y coordinate for the middle visible character (default one).
(font) - a single capital letter specifying the new font.

If no (font) is specified, the next font in the zoom list for the
window is used instead.

6.7 HTOP

This command moves a window to the top level.

The syntax is

wtop

6.8 NBS

This command reads the file specified as argument and uses the data to
set up a new background pattern for the window handler. It supposes
‘file descriptor 3’ to be the window handler ’super channel’.

The syntax is

wbg I—nA h<file>A

the option ’-n’ shall be used if no error messages shall be displayed.

6.9 HHSK

This command reads the file specified as argument and uses the data to
set up new mouse substitute keys for the window handler. It supposes
’file descriptor 3’ to be the window handler ’super channel‘.

The syntax is

wmsk 3-nA §<file)A

the option ’-n‘ shall be used if no error messages shall be displayed.
If (file) is not specified, the standard input is read instead

page 53

6.10 UMP ' " .

This command reads the file specified as argument and uses the data
set up a new global mouse pointer for the window handler. It supposes
’file descriptor 3’ to be the windowfhandler ‘super channel’.

The syntax is

wmp I-nA l<file)A e

the option ’-n’ shall be used if no error messages shall be displayed.
If (file) is not specified, the standard input is read instead.

/
Z

6.11 HIDTP

This command reads the file specified as argument and uses the data to
’\‘ set up new initial driver and terminal parameters for the window

/§

/'\

/\

handler. It supposes ’file descriptor 3’ to be the window handler
‘super’ channel’.

The syntax is:

widtp I-nA K<file>A

the option ’-n’ shall be used if no error messages shall be displayed.
If (file) is not specified, the standard input is read instead.

6.12 HSHDIS

This command is the reverse of the window shell preprocessor. It pro-
duces a text file from a file produced by wshpp which can be modified
and then processed by HSHPP again.

The syntax is

wshdis l<infile>A K-0 (outfile>A

where (infile> is the input file (default ’.window’) and (outfile> is
the output file (default standard output). **3.32

6.13 HPICTRD

This command reads a rectangle of the picture memory for a virtual
screen or the whole screen and writes an optional parameter header
followed by the binary data to the standard output. The parameter
header is the structure ’wpictblk’ (see).

The syntax is

wpictrd 5-pA K-x <n>A K-y <n>A §—w <n>A 3-h <n>A Z-c <n>A

K-o <file>A

/\

/5

/\

/\

OPTION - DESCRIPTION
4

p - first output a header parameter.
x - x pixel coordinate of the lower left corner of the rectangle

read (default zero).
y — y pixel coordinate of the lower left corner of the rectangle

read (default zero).

w - width in pixels of the rectangle (default 100).
h - Height in pixels of the rectangle (default 100).
c - The file descriptor (channel) to read the data through

(default zero, i e standard input).

o - The name of the output file. If not specified, the output is
written to the standard output.

6.14 HDSIZE

This command sets up a new default size and location for a windo
no arguments are specified, the current size and location of the
window will become the default one.

The syntax is

wdsize K-tA I-x <n)A K-v (n)A I-u <n>A R-v (n)A B-w <n)A
. Z-h (n)A

OPTION - DESCRIPTION

t - The parameters are given in units of font boxes.
x - The lower left corner of the virtual screen (x coordinate).
y - The lower left corner of the virtual screen (v coordinate).

u - The lower left corner of the window (x coordinate).
v - The lower left corner of the window (Y coordinate).
w - Width of the window.

h - Height of the window.

6.15 HHELP

This command changes the sequence sent when the help box is used

The syntax is

whelp l(sequence>A

No sequence will be sent if <sequence> is not given.

page 54

to

to

w. If

f5

/\

/\

7 INDEX

a
**** not completed ****

.2 _'

He reserve us the right to change the product without announce/\
3 lent and no responsibility for the result of aisprintings or

nisuse of the oroduct, Luxor Datorer A8.

production: IFS DATA A8 Linkooing and Luxor Datorer A8 Notala

page 55

